STSCI | science msmmure

EXPANDING THE FRONTIERS OF SPACE ASTRONOMY

UWS through OpenAPI

Joshua Fraustro f
May 22nd, 2024 o |

What were the goals?

What would a UWS 1.1 OpenAPI specification look like?
Why UWS?

» A sufficiently complicated example of a web service pattern that is already very
RESTful in its design.

» No part of it requires describing / modeling data formats. (VOTables)

Demonstrate:

» Paths, operations, parameters, and protocol models could be adequately
represented.

» Version changes, iterative and large updates, were easy to create and work against.

- We could take advantage of modern tooling that uses OpenAPI| standards.

sTscl | Scmescore | JWS through OpenAPl, Joshua Fraustro, 2024

Problems? What problems?

Some of the problems & HTTP/REST issues in UWS have been pointed out in
previous Interops.

Some are small and simple to fix, some are definitely breaking
- Case-insensitive query parameters
- 303 HTTP status codes for successful operations (creating Jobs)
« POST operations for updating Job parameters
- Difficult to describe nuances of the XML schema
» Empty response bodies for certain Job parameters

» Unclear which parameters can be updated with POSTS to their endpoint.

See: P3T Sydney 2024 & DAL Bologna 2023

sTScl | Scmescore | JWS through OpenAPl, Joshua Fraustro, 2024

https://wiki.ivoa.net/internal/IVOA/InterOpMay2024P3T/dal-openapi-tech-overview.pdf
https://wiki.ivoa.net/internal/IVOA/InterOpMay2023DAL/mast-tapservice-fraustro.pdf

We listened to feedback.

| presented a version of UWS in OpenAPI in Sydney & virtually.
» This version had the OpenAPI doc + all of the “fixes”.

Generally:

» People liked the idea of adding this kind of documentation.

- Felt it added an extra option for client & service developers.

But also concerns:

» Too much, too fast, breaking changes, interoperability concerns

How do we bridge the gap from here, to there?

sTScl | Scmescore | JWS through OpenAPl, Joshua Fraustro, 2024

\%}@ Describing UWS in 3 steps

As an exercise, create 3 versions of the spec, showing we can iterate:
“As-Is” “ Refinement ” * What-If? ”
» Describe the current . Solve a few Solve the highlighted
UWS 1.1 standard as problems with small problems, knowing
closely as possible changes things will break

» Only make changes * Non-breaking / as * Replace XSD

that are not otherwise easy for client definitions with
possible to avoid. developers as OpenAPIl schema
possible models

sTScl | Scmescore | JWS through OpenAPl, Joshua Fraustro, 2024

= UWS OpenAPI v1.1 - “As-Is”

Version 1:

A mostly straight-forward description of UWS 1.1 into an OpenAPI specification.
Positives:

» Fairly simple to do, UWS is already very RESTful in its design.

- Paths, operations easy to document — no conflict with OpenAPI specs.

» Avoid trying to model the XML request / responses, only point to current XSD.
Notes:

* OpenAPI 3.0 has XML support, but too basic for the UWS schema.

- Case-insensitive query parameters are not describable.

» Redocly linting immediately noticed HT TP status code problem.

sTScl | Scmescore | JWS through OpenAPl, Joshua Fraustro, 2024

A T R W & e N

1paths:

/{job-id}:
[parameters: -
| /{job-id}: get:
: pa rameters:® - Scan | Try it | Audit
; get: - operationId: getJobSummary
_ summary: 'Returns the job summary'
zZiZ;;: parameters: -
i responses:
/{job-id}/phase: .200.:

parameters: - description: Success

get: - content:
post: = application/xml:
schema:

/{job-id}/executiondur
parameters: --
get: -

-“-L-

$ref: '#/components/schemas/Job’

'403"':
$refi; "#/components/responses/Forbidden’

"As-Is” OpenAP| Document . | '#/components/responses/JobNotFound

e Examples here of:

e Path parameters and operations

® Response enumeration

e Request & response models
Github Link:

https://github.com/jwfraustro/PTTT/tree/uws-basic

JobSummary:

type: object
description: |
The complete representation of the stz
title: jobSummary
required: [jobId]
properties:
jobId:
type: string
description: |
The identifier for the job
example: 'HSC_XYZ_123'
runld:
type: string
maxItems: 1

description: |-
example: 'JWST-1234"
ownerlId:

type: string
nullable: true

description: |-
example: 'Noirlab/John.Smith'
phase:

$ref: '#/components/schemas/Executic

-

https://github.com/jwfraustro/PTTT/tree/uws-basic

UWS OpenAPI vi1.2 - “Refinement”

Version 2: Small changes to fix design issues without greatly changing the spec.

- Minimal to implement for services, clients.
An example of how it’'s easy to see changes in the OpenAP| document.

Example Breaking?

All query parameters shall be

lowercase or camelCase PHASE -> phase No.
. OtherParam -> otherParam DALI allows arbitrary casing.
(for multi-word params)
GET /quote

HTTP status codes for GET’s to

empty parameters should indicate 204, No-Content

or Yes, but a simple change.

as such 200, null
303 Redirects (for POST’s, etc.) POST /jobs
changed to their appropriate status should return Yes, but a simple change.
codes 200 OK

sTScl | Scmescore | JWS through OpenAPl, Joshua Fraustro, 2024

u '
.

& . : . - L PO AR BN ATV YT, .] T TN . e ..
o paths . . upc%xu‘. ycLouuLiSu

/: summary: Returns the list of UWS jobs
. arameters: . . :
get: . ’ _ . PHASE /{job-id}/destruction:
Scan | Try it | Audit fames :
rationId: tJobList 5 — name: phase You, 8 n PRITEIIEEEE _ |
ope€ratio - g€LJODL1S 05 GuaET — $ref: '#/components/parameters/job-id’
summary: Returns the list of UWS jobs e HEne TEeene [get:
parameters: schema: operationId: getJobDestruction
- name: phase - $ref: '#/components/sct summary: 'Returns the job destruction time'
— name®* after - B — name: AFTER responses.
in: quer iption:
responses: = 1n: query | ' description: Success
. description: 'Return jobs content:
OStT. . :
: . . schema: text/plain:
operationId: postCreatelob format: date-time T
Fl I - g l — — .
summary: 'Submits a job name: LAST format: date—time
requestBody: - . - name: last 204"
in: quer
responscEs. q. ¥ , : \ description: 'No destruction time set'
: : description: 'Return only . '
200" : - schema: 4@3.f
"AQR - ... |
: enum:
“Refinement” OpenAPIl Document = RN
o A "ABORT"
e New OpenAP| document on the left e "SUSPEND"
e Git diffs between the two versions are easy to see - AR
¥ responses:
and understand. gk v v 13093 " :
Github Link: ‘ et '200':

description: "Success"

https://qithub. Wil tro/PTTT/t -l d .
ps://github.com/jwiraustro/PTTT/tree/uws-improve $ref: '#/components/responses/JobSummaryRedirect'

$ref: '#/components/responses/JobSummaryResponse'’

https://github.com/jwfraustro/PTTT/tree/uws-improved

ST

.
@ UWS OpenAPIl vX - “What-if?”

Version X: The version | presented in Sydney.
Changes:
» All of the previous changes

» Request / response job messages are fully JSONSchema describable.
» Means we get more varied native encoding formats.
» Job creation by POST’ing the document — no HT TP/form-encoded
s it breaking?
» Well, yes.

Working on a prototype implementation at MAST w/ FastAPI client libraries.

smeemescore | JWS through OpenAPI, Joshua Fraustro, 2024

10

post:
- operationId: postCreatelob
~ | | tags: [UwS]
summary: ‘'Submits a job'
requestBody:
description: 'Job parameters'
required: true
content:
application/x-www—-form-urlencoded:
application/json:
schema:
type: object
properties:
Examples for TAP implementation
QUERY:
type: string
description: 'The query to be performed'
example: 'SELECT x FROM TAP_SCHEMA.tables'
LANG:
type: string
ol description: 'The language in which the query should be performed’
“What-If” OpenAPI Document £ example: 'ADQL'
e Removal of form-url encoded. éﬁ additionalProperties: true
¢ | | | | $ref: '#/components/schemas/Parameters'

e Simple to represent change, just point the
request body at the ‘Parameters’ object
Github Link:
&1 https://github.com/jwfraustro/PTTT/tree/UWS-MAST
;‘f;?" —

@4 What’s the point?

RN
Demonstrations here are:

Not about how easy the changes are, but how easy they are to
document.

Show that:
» We can take iterative steps towards what was proposed.
» |teration is clearly shown through these documents.
» We have a version that can be deployed “tomorrow”.

- We understand what might break at each step.

sTScl | Scmescore | JWS through OpenAPl, Joshua Fraustro, 2024

12

Q)
o4
1N\

Going Forward

/_\
What’s next?

TAP 1.2 will be implementing an OpenAPI spec that needs UWS.
- Take a look at the “As-Is” version of the OpenAPI spec.
» No functional changes in the standard.

» Needs review from more eyes (than mine!)

 Think about how we would integrate OpenAPI docs with our current
document publishing pipelines.

» Keep pushing forward with JSON-compatible implementation / libraries to
understand what the future looks like.

sTScl | Scmescore | JWS through OpenAPl, Joshua Fraustro, 2024

@4 Bonus: PetStore IVOA Spec

/\
IVOA-style standards document for the classic PetStore APl example:

2.2.3.1. Getting the Pet List

The list of pets available in the Pet Store may be retrieved by sending a GET request to the endpoint
/pets. In this case, the query parameters that may be included in the request are LIMIT, which restricts
the number of pet items returned, and STATUS, which allows the client to specify a filter based on the
current availability of the pets. The status parameter accepts the values "AVAILABLE", "PENDING", or
"SOLD". The response to this request will contain a JSON array of pet objects, each representing a
distinct pet record in the system.

Upon successftul retrieval, the response code will be 200 "OK", and the response body will contain a
JSON representation of the pets matching the query parameters, if any. The server may also respond
with a 400 "Bad Request" status code if the request parameters are invalid (for example, if limit is non-
numeric or negative).

sTScl | Scmescore | JWS through OpenAPl, Joshua Fraustro, 2024

Q)
4
1N\

Bonus: PetStore IVOA Spec

TN

1
2

Can you diff it?

2.2.3.1. Getting the Pet List

3 The list of pets available in the Pet Store may be

4

retrieved by sending a GET request to the endpoint /pets.
In this case, the query parameters that may be included
in the request are LIMIT, which restricts the number of
pet items returned, and STATUS, which allows the client
to specify a filter based on the current availability of
the pets. The status parameter accepts the values
"AVAILABLE", "PENDING", or "SOLD". The response to this
request will contain a JSON array of pet objects, each
representing a distinct pet record in the system.

5 Upon successful retrieval, the response code will be 200

ST\A-I- | SCIENCE INSTITUTE

"OK", and the response body will contain a JSON
representation of the pets matching the query parameters,
if any. The server may also respond with a 400 "Bad
Request" status code if the request parameters are
invalid (for example, if limit is non-numeric or
negative).

1 2.2.3.1. Getting the Pet List

2

3 A client may access the list of pets in the Pet Store by

initiating a GET request to /pets. Clients can include
optional query parameters in the request to influence the
returned data. These parameters include QUANTITY, which
specifies the desired count of pet items in the response,
and STATE, which allows clients to specify a filter based
on the current state of the pets, accepting values such
as "ACTIVE", "RESERVED", or "SOLD". The server's response
will include a JSON-formatted array of objects, each
representing a pet with various attributes.

On successful execution of the request, the server will
return a status code of 200 "OK", with a JSON body
representing the list of pets that meet the specified
criteria. The server may return a 400 "Bad Request" if it
detects invalid parameter values, such as a non-numeric
quantity or unrecognized state value.

UWS through OpenAPI, Joshua Fraustro, 2024

Bonus: PetStore IVOA Spec

Q)
4
Z T\

/pets: 1 /pets:
get: . 2 get:
wes: Gan you diff... the OpenAPI spec? 3 tags:
- pet 4 - pet
summary: List all pets 5 summary: List all pets
description: Returns all pets from the store 6 description: Returns all pets from the store
operationId: listPets 7 operationId: listPets
parameters: 8 parameters:
- name: limit 9 - name: quantity
in: query 10 in: query
description: How many pets to return at one time (max 100) 11 description: How many pets to return at one time (max 100)
required: false 12 required: false
schema: 13 schema:
type: integer 14 type: integer
format: int32 15 format: int32
- name: status 16 - name: state
in: query 17 in: query
description: Filter pets by status 18 description: Filter pets by status
required: false 19 required: false
schema: 20 schema:
type: array 21 type: array
items: 22 items:
type: string 23 type: string
enum: 24 enum:
— available 25 — active
- pending 26 - reserved
- sold 27 - sold
responses: 28 responses:

sTScl | Scmescore | JWS through OpenAPl, Joshua Fraustro, 2024

