
International
Virtual
Observatory

Alliance

VOSpace

Version 2.1

IVOA Proposed Recommendation 20180502

Working group
Grid and Web Services Working Group

This version
http://www.ivoa.net/documents/VOSpace/20180502

Latest version
http://www.ivoa.net/documents/VOSpace

Previous versions
PR-VOSpace-2.1-20170924
PR-VOSpace-2.1-20170405
WD-VOSpace-2.1-20160405
WD-VOSpace-2.1-20150601
WD-VOSpace-2.1-20140805
REC-VOSpace-2.0-20130329
PR-VOSpace-2.0-20121221
PR-VOSpace-2.0-20120824
PR-VOSpace-2.0-20111202
WD-VOSpace-2.0-20110628
WD-VOSpace-2.0-20101112
WD-VOSpace-2.0-20100323
WD-VOSpace-2.0-20090513

Author(s)
Matthew Graham, Dave Morris, Guy Rixon, Pat Dowler, André
Schaaff, Doug Tody, Brian Major

Editor(s)
Matthew Graham, Brian Major

http://www.ivoa.net/documents/VOSpace/20180502
http://www.ivoa.net/documents/VOSpace
http://www.ivoa.net/documents/VOSpace/20170924/index.html
http://www.ivoa.net/documents/VOSpace/20170405/index.html
http://www.ivoa.net/documents/VOSpace/20160420/index.html
http://www.ivoa.net/documents/VOSpace/20150601/index.html
http://www.ivoa.net/documents/VOSpace/20140805/index.html
http://www.ivoa.net/documents/VOSpace/20130329/index.html
http://www.ivoa.net/documents/VOSpace/20121221/index.html
http://www.ivoa.net/documents/VOSpace/20120824/index.html
http://www.ivoa.net/documents/VOSpace/20111202/index.html
http://www.ivoa.net/documents/VOSpace/20110628/index.html
http://www.ivoa.net/documents/VOSpace/20101112/index.html
http://www.ivoa.net/documents/VOSpace/20100323/index.html
http://www.ivoa.net/documents/VOSpace/20090513/index.html

Abstract
VOSpace is the IVOA interface to distributed storage. This specification

presents the second RESTful version of the interface. It specifies how VO
agents and applications can use network attached data stores to persist and
exchange data in a standard way.

Status of this document
This is an IVOA Proposed Recommendation made available for public

review. It is appropriate to reference this document only as a recommended
standard that is under review and which may be changed before it is accepted
as a full Recommendation.

A list of current IVOA Recommendations and other technical documents
can be found at http://www.ivoa.net/documents/.

Contents

1 Introduction 4
1.1 Previous Versions . 5
1.2 Typical use of a VOSpace service 5
1.3 Role within the VO Architecture 7
1.4 Document roadmap . 7

2 VOSpace identifiers 9
2.1 Identifier resolution . 10

3 VOSpace data model 11
3.1 Nodes and node types . 11
3.2 Properties . 14

3.2.1 Property values . 15
3.2.2 Property identifiers . 15
3.2.3 Property descriptions 16
3.2.4 Standard properties 17

3.3 Capabilities . 19
3.3.1 Example capability use cases 19
3.3.2 Capability identifiers 20
3.3.3 Capability descriptions 20
3.3.4 UI display name . 21
3.3.5 Standard capabilities 21

3.4 Views . 22
3.4.1 Example view use cases 22

2

http://www.ivoa.net/documents/

3.4.2 View identifiers . 24
3.4.3 View descriptions . 25
3.4.4 Default views . 25
3.4.5 Container views . 26

3.5 Protocols . 27
3.5.1 Protocol identifiers . 27
3.5.2 Protocol descriptions 28
3.5.3 Standard protocols . 29
3.5.4 External standard protocols 29
3.5.5 Security Methods . 30

3.6 Transfers . 31
3.6.1 XML Document Transfers 31
3.6.2 URL Parameter Transfers 33
3.6.3 Service-initiated transfers 34
3.6.4 Client-initiated transfers 35

4 REST bindings 36

5 Access Control 37

6 Web service operations 38
6.1 Service metadata . 39

6.1.1 getProtocols . 39
6.1.2 getViews . 40
6.1.3 getProperties . 41

6.2 Creating and manipulating data nodes 43
6.2.1 createNode . 43
6.2.2 moveNode . 45
6.2.3 copyNode . 48
6.2.4 deleteNode . 51

6.3 Accessing metadata . 52
6.3.1 getNode . 52
6.3.2 setNode . 54

6.4 Transferring data . 56
6.4.1 pushToVoSpace . 58
6.4.2 pullToVoSpace . 66
6.4.3 pullFromVoSpace . 69
6.4.4 pushFromVoSpace . 80

6.5 Fault arguments . 83

A Machine readable definitions 84
A.1 Message schema . 84

3

B Compliance matrix 95

C Standard properties 99

D Changes from Previous Versions 101

Acknowledgments

This document derives from discussions among the Grid and Web Services
working group of the IVOA.

This document has been developed with support from the National Sci-
ence Foundation’s Information Technology Research Program under Coop-
erative Agreement AST0122449 with the John Hopkins University, from the
UK Science and Technology Facilities Council (STFC), and from the Eu-
ropean Commission’s Sixth Framework Program via the Optical Infrared
Coordination Network (OPTICON).

Conformance-related definitions

The words “MUST”, “SHALL”, “SHOULD”, “MAY”, “RECOMMENDED”,
and “OPTIONAL” (in upper or lower case) used in this document are to be
interpreted as described in IETF standard, (Bradner, 1997).

The Virtual Observatory (VO) is general term for a collection of feder-
ated resources that can be used to conduct astronomical research, education,
and outreach. The International Virtual Observatory Alliance (IVOA) is a
global collaboration of separately funded projects to develop standards and
infrastructure that enable VO applications.

1 Introduction

VOSpace is the IVOA interface to distributed storage. It specifies how VO
agents and applications can use network attached data stores to persist and
exchange data in a standard way.

A VOSpace web service is an access point for a distributed storage net-
work. Through this access point, a client can:

• add or delete data objects in a tree data structure

• manipulate metadata for the data objects

• obtain URIs through which the content of the data objects can be
accessed

4

http://www.ivoa.net

VOSpace does not define how the data is stored or transferred, only the
control messages to gain access. Thus, the VOSpace interface can readily be
added to an existing storage system.

When we speak of “a VOSpace”, we mean the arrangement of data ac-
cessible through one particular VOSpace service.

Each data object within a VOSpace service is represented as a node
and has a description called a representation. A useful analogy to have in
mind when reading this document is that a node is equivalent to a file or a
directory.

Nodes in VOSpace have unique identifiers expressed as URIs in the ‘vos’
scheme, as defined below.

1.1 Previous Versions

This specification presents the second RESTful version of the interface. Ex-
cept for minor additions to the 2.0 specification, it is functionally equiva-
lent to the SOAP-based VOSpace 1.1 specification. Note that 1.x VOSpace
clients will not work with this new version of the interface. VOSpace 2.0 and
2.1 clients will work with 2.1 services. VOSpace 2.1 clients, however, will
not work with VOSpace 2.0 services.

VOSpace 2.0 did not introduce any new functionality to that already
offered by prior (SOAP-based) versions of the interface (VOSpace 1.1) but
defines a RESTful binding for the interface. VOSpace 2.1 introduces mi-
nor changes to VOSpace 2.0 mainly addressing access control and operation
optimizations.

1.2 Typical use of a VOSpace service

A typical use case for VOSpace is uploading a local data file to a remote
VOSpace service. This is a two-stage process: creating a description of the
data file (representation) in the VOSpace including any metadata (its prop-
erties) that they want to associate with it (e.g., MIME type), and defining
the transfer operation that will actually see the data file bytes uploaded to
the VOSpace service.

Let’s consider the first step: the user provides a XML description of
the data file which they HTTP PUT to the appropriate VOSpace URI –
this will be the HTTP identifier for the data file in the VOSpace, e.g.,
http://server.example.com/vospace/nodes/mytable1. The description will
resemble this:
<vos:node xmlns:vos="http://www.ivoa.net/xml/VOSpace/v2.0"

xmlns:xs="http://www.w3.org/2001/XMLSchema-instance"
uri="vos://example.com!vospace/mytable1"
xsi:type="vos:UnstructuredDataNode">
<vos:properties>

<vos:property uri="ivo://ivoa.net/vospace/core#mimetype">

5

text/xml
</vos:property>

</vos:properties>
</vos:node>

Note that the node path is specified in two places on this request, and that
they must match:

• In the path of the URL in which the client performs the HTTP PUT

• In the node uri attribute of the XML description

The service will reply with an amended version of the representation
containing service-specific details in addition to the information supplied by
the user. These will include data formats that the service can handle for the
type of node created in the VOSpace, third-party interfaces (capabilities) to
the data that the service offers, and system metadata.

The user will then describe the data format (the view) they want
to use in uploading the file, e.g., VOTable, and the transport proto-
col (the protocol) that they want to employ to upload the file, e.g.,
HTTP PUT. This will result in the HTTP POSTing of a XML descrip-
tion of the transfer request to the appropriate VOSpace transfer URL:
http://server.example.com/vospace/synctrans. The description will resem-
ble this:
<vos:transfer xmlns:vos="http://www.ivoa.net/xml/VOSpace/v2.0" version="2.1">

<vos:target>vos://example.com!vospace/mytable1</vos:target>
<vos:direction>pushToVoSpace</vos:direction>
<vos:view uri="ivo://ivoa.net/vospace/core#votable"/>
<vos:protocol uri="ivo://ivoa.net/vospace/core#httpput"/>

</vos:transfer>

The service will reply with a redirect to a location with an amended
version of the transfer representation that contains, for the protocols the
service supports, URL endpoints that the user may HTTP PUT the data
file to, e.g., http://storage1.example.com/vospace/mytable1. The user will
then use a regular HTTP client to transfer (PUT) the local file to one of the
endpoints. This illustrates an important point about VOSpace – it is only
concerned with the server-side management of data storage and transfer. A
client negotiates the details of a data transfer with a VOSpace service but
the actual transfer of bytes across a network is handled by other tools.

Similarly, when users want to retrieve a data file from a VOSpace service,
they will specify the data format (view) they want to use in downloading
the file (e.g., VOTable), and the transport protocol (the protocol) that they
want to employ to download the file (e.g., HTTP GET), and then HTTP
POST a XML description of this transfer request to the VOSpace transfer
URL (e.g., http://server.example.com/vospace/synctrans). The description
will resemble this:

6

<vos:transfer xmlns:vos="http://www.ivoa.net/xml/VOSpace/v2.0" version="2.1">
<vos:target>vos://example.com!vospace/mytable1</vos:target>
<vos:direction>pullFromVoSpace</vos:direction>
<vos:view uri="ivo://ivoa.net/vospace/core#votable"/>
<vos:protocol uri="ivo://ivoa.net/vospace/core#httpget"/>

</vos:transfer>

The service will reply with a redirect to a location that contains an
amended version of the transfer representation that contains, for the proto-
cols the service supports, the URL endpoints that the user may HTTP GET
the data from, e.g., http://storage1.example.com/vospace/myDataNode.
The user can then download the data file by pointing an HTTP client (e.g.,
web browser) at the specified endpoint.

1.3 Role within the VO Architecture

The IVOA Architecture (Arviset and Gaudet et al., 2010) provides a high-
level view of how IVOA standards work together to connect users and ap-
plications with providers of data and services, as depicted in the diagram in
Figure 1.

In this architecture, users employ a variety of tools (from the User Layer)
to discover and access archives and services of interest (represented in the
Resource Layer). VOSpace provides an interface to storage resources con-
taining the results of using these archives and services and also to other
storage solutions, e.g., local disks, where users might want to transfer these
results for further work. Items in these resources are referenced by a VOSpace
identifier which is related to the standard IVOA Resource Identifier. This
version of VOSpace employs the UWS design pattern (Harrison and Rixon,
2010) to manage data transfers (see section 3.6). VOSpace instances may
also employ the IVOA Single-Sign-On standard (Major and Rixon et al.,
2016) for authentication purposes (see section 5) and IVOA Credential Del-
egation Protocol (Matthew Graham and Raymond Plante and Guy Rixon
and Giuliano Taffoni, 2010) to delegate data transfers.

1.4 Document roadmap

The rest of this document is structured as follows:
In Section 2, we specify the URI syntax for identifying data objects

(nodes) in VOSpace.
In Section 3, we present the data model that underpins the VOSpace

architecture. This consists of a number of data structures, which have XML
representations that are used across the wire in message exchanges with a
VOSpace service. These structures represent:

• the data objects themselves (nodes)

7

Figure 1: VOSpace in the IVOA Architecture. This provides an interface
to distributed storage. It specifies how applications can use networked data
stores to persist and exchange data in a standardized fashion.

• metadata that can be associated with a data object (properties)

• third-party interfaces to the data (capabilities)

• the data format used when transferring data objects across the wire
(views)

• the transport protocol employed in a data transfer (protocols)

• the data transfer itself (transfers)

We also describe the REST bindings between these representations and
their URIs (HTTP identifiers).

In Section 5, we outline how security and access control policies are cur-
rently handled in VOSpace.

In Section 6, we detail the operations that the VOSpace interface sup-
ports. These handle access to service-level metadata, the creation and ma-
nipulation of nodes within the VOSpace, access to node metadata (proper-
ties) and data transfer to and from the VOSpace.

In Appendix A, we formally define the VOSpace interface with a machine
readable description of its requests and responses and in Appendix B, we

8

present a compliance matrix listing the mandatory behaviour required of a
valid VOSpace 2.1 service.

2 VOSpace identifiers

The identifier for a node in VOSpace SHALL be a URI with the scheme vos.
Such a URI SHALL have the following parts with the meanings and

encoding rules defined in RFC3986 (Berners-Lee and Fielding et al., 2005).

• scheme

• naming authority

• path

• (optional) query

• (optional) fragment identifier (with the expected semantics noted in
URI fragments in IVOA specifications (Gray, 2012))

The naming authority for a VOSpace node SHALL be the VOSpace
service through which the node was created. The authority part of the
URI SHALL be constructed from the IVO registry identifier (Demleitner
and Plante et al., 2015) for that service by deleting the ivo:// prefix and
changing all forward-slash characters(‘/’) in the resource key to exclamation
marks (‘ !’) or tildes (‘∼’). Note that a service SHALL be consistent in its
use of separator characters (‘ !’ or ‘∼’) when referring to its own data but
SHALL accept either as valid in URIs in service requests.

This is an example of a possible VOSpace identifier.

vos://example.com!vospace/myresults/siap-out-1.vot

And is equivalent to this identifier that uses the tilde character instead
of an exclamation mark:

vos://example.com~vospace/myresults/siap-out-1.vot

The URI scheme is vos
Using a separate URI scheme for VOSpace identifiers enables clients to

distinguish between IVO registry identifiers and VOSpace identifiers.
example.com!vospace is the authority part of the URI, corresponding to

the IVO registry identifier ivo://example.com/vospace. This is the IVO reg-
istry identifier of the VOSpace service that contains the node.

/siap-out-1.vot is the URI path

9

Note
The tilde (‘∼’) character was introduced in version 2.0
as an alternative to the exclamation (‘ !’) character
because it does not have to be URL encoded in HTTP
requests making it more convenient for use.

Slashes in the URI path imply a hierarchical arrangement of data:
the data object identified by vos://example.com!vospace/myresults/siap-out-
1.vot is within the container identified by vos://example.com!vospace/myresults.

Literal space characters are also not allowed in URIs.
All ancestors in the hierarchy SHALL be resolvable as containers (Con-

tainerNodes), all the way up to the root node of the space (this precludes
any system of implied hierarchy in the naming scheme for nodes with ances-
tors that are just logical entities and cannot be reified, e.g., the Amazon S3
system).

A VOSpace identifier is globally unique, and identifies one specific node
in a specific VOSpace service.

A VOSpace 2.1 service in the VO Registry is identified by its standardID.
The standardID for this specification SHALL be:

ivo://ivoa.net/std/VOSpace/v2.1

2.1 Identifier resolution

A VOSpace identifier can be resolved to a HTTP endpoint for accessing
representations of the node associated with it. A client SHOULD use the
following procedure to resolve access to a VOSpace node from a VOSpace
identifier:

• Resolve the HTTP endpoint of a VOSpace service with using the reg-
istry.

• Append “nodes/” and the path following the naming authority part of
the VOSpace identifier to the service endpoint

Given the example identifier

vos://example.com!vospace/container-6/siap-out-1.vot?foo=bar

Processing the URI to resolve the VOSpace service would involve:

1. Extract the IVO registry identifier of the VOSpace service by prepending
an ivo scheme to the naming authority part:

ivo://example.com/vospace

10

2. Resolve the IVO identifier in a registry and retrieve the access URL of
the service endpoint:

http://server.example.com/vospace

3. Append “nodes/” and the path part of the VOSpace identifier:

http://server.example.com/vospace/nodes/container-6/siap-out-1.vot?foo=bar

Note that any fragment identifier in the identifier SHOULD be removed
when resolving the identifier to a HTTP endpoint, consistent with the im-
plied semantics of URI fragments (Gray, 2012).

3 VOSpace data model

3.1 Nodes and node types

We refer to the arrangement of data accessible through one particular
VOSpace service as “a VOSpace”.

Each data object within a VOSpace SHALL be represented as a node
that is identified by a URI.

There are different types of nodes and the type of a VOSpace node de-
termines how the VOSpace service stores and interprets the node data.

In an XML representation of a Node, the type is specified by the xsi:type
attribute on the node. For example, xsi:type="vos:ContainerNode".

The types are arranged in a hierarchy (see Figure 2), with more detailed
types inheriting the structure of more generic types.

The following types (and representations) are defined:

• Node is the most basic type

• ContainerNode describes a data item that can contain other data items

• DataNode describes a data item stored in the VOSpace

• UnstructuredDataNode describes a data item for which the VOSpace
does not understand the data format

• StructuredDataNode describes a data item for which the space under-
stands the format and may make transformations that preserve the
meaning of the data.

• LinkNode describes a node that points to another node.

11

Figure 2: Node hierarchy – This shows the inheritance structure for the
different types of nodes in VOSpace.

When data is stored and retrieved from an UnstructuredDataNode, the
bit pattern read back SHALL be identical to that written.

When data is stored and retrieved from a StructuredDataNode, the bit
pattern returned MAY be different to the original. For example, storing
tabular data from a VOTable file will preserve the tabular data, but any
comments in the original XML file may be lost.

A Node representation SHALL have the following elements:

• uri : the vos:// identifier for the node, URI-encoded according to
RFC3986 (Berners-Lee and Fielding et al., 2005).

• properties: a set of metadata properties for the node

• capabilities: a third-party interface to a data object

12

In addition, a DataNode representation SHALL have the following ele-
ments:

• accepts: a list of the views (data formats) that the node can accept

• provides: a list of the views (data formats) that the node can provide

A DataNode representation MAY have the following element:

• busy : a boolean flag to indicate that the data associated with the node
cannot be accessed.

The busy flag is used to indicate that an internal operation is in progress,
and the node data is not available.

A ContainerNode representation SHALL have the following elements, in
addition to those it inherits from the Node representation:

• nodes: a list of the direct children, if applicable, that the container
has. Each child is represented as a node subelement containing its
vos:// identifier, URI-encoded according to RFC3986 (Berners-Lee and
Fielding et al., 2005)

A LinkNode representation SHALL have the following elements, in addi-
tion to those it inherits from the Node representation:

• target : the target URI, URI-encoded according to RFC3986 (Berners-
Lee and Fielding et al., 2005)

The link target can be a URI that points to any type of resource, includ-
ing other VOSpace Nodes (within the same VOSpace service or in another
service), or external resources outside VOSpace altogether.

The properties of a LinkNode do not propagate to the target of the Lin-
kNode, i.e., a property attached to a LinkNode does not also get attached to
the target node. One use case is to enable third-party annotations to be asso-
ciated with a resource but without the resource itself getting cluttered with
unnecessary metadata. In this case, the client creates a LinkNode pointing
to the resource in question and then adds the annotations as properties of
the LinkNode.

Both the ContainerNode and the LinkNode SHALL have no data bytes
associated with them.

The set of node types defined by this standard is closed; new types may
be introduced only via new versions of the standard.

To comply with the standard, a client or service SHALL be able to parse
XML representations of all the node types defined in the current specifica-
tion.

13

Note: This does not require all services to support all of the Node types,
just that it can process an XML request containing any of the types. If
the service receives a request for a type that it does not support, the service
SHOULD return a TypeNotSupported fault. The service SHALL NOT throw
an XML parser error if it receives a request for a type that it does not support.

The following Nodes, appearing as part of a node-path, are reserved:

• .auto indicates that the service should auto-generate an endpoint URI
to replace this placeholder (Note: that this is an OPTIONAL feature
of a service)

• .null indicates an endpoint that discards all data written to it and
provides no data when read from, i.e., a bit bucket

3.2 Properties

Properties are simple string-based metadata properties associated with a
node.

Individual Properties should contain simple short string values, not large
blocks of information. If a system needs to attach a large amount of metadata
to a node, then it should either use multiple small Properties, or a single
Property containing a URI to an internal or external resource that contains
the additional metadata.

A Property representation SHALL have the following elements:

• uri : the Property identifier

• value: the string value of the Property

• readOnly : a boolean flag to indicate that the Property cannot be
changed by the client

Properties may be set by the client or the service.

3.2.1 Property values

Unless they have special meaning to the service or client, Properties are
treated as simple string values.

When a Property can take multiple values, e.g., a list of groups which can
access a particular resource, these SHOULD be comma-separated, unless the
property description defines a specific delimiter.

Some Properties may have meaning to the service; others may have mean-
ing only to one specific type of client. A service implementation does not
need to understand the meaning of all the Properties of a node. Any Prop-
erties that it does not understand can simply be stored as text strings.

14

3.2.2 Property identifiers

Every new type of Property SHALL require a unique URI to identify the
Property and its meaning.

The rules for the Property identifiers are similar to the rules for names-
pace URIs in XML schema. The only restriction is that it SHALL be a valid
(unique) URI.

• An XML schema namespace identifier can be just a simple URN
(Moats, 1997), e.g., urn:my-namespace

• Within the IVOA, the convention for namespace identifiers is to use a
HTTP URL pointing to the namespace schema or a resource describing
it

The current VOSpace schema defines Property identifiers as anyURI. The
only restriction is that it SHALL be a valid (unique) URI.

• A Property URI can be a simple URN, e.g., urn:my-property

This may be sufficient for testing and development on a private system,
but it is not scalable for use on a public service.

For a production system, any new Properties SHOULD have unique URIs
that can be resolved into to a description of the Property.

Ideally, these should be IVO registry URIs that point to a description
registered in the IVO registry:

• ivo://my-registry/vospace/properties#my-property

Using an IVO registry URI to identify Properties has two main advan-
tages:

• IVO registry URIs are by their nature unique, which makes it easy to
ensure that different teams do not accidentally use the same URI

• If the IVO registry URI points to a description registered in the IVO
registry, this provides a mechanism to discover what the Property
means

3.2.3 Property descriptions

If the URI for a particular Property is resolvable, i.e., an IVO registry iden-
tifier or a HTTP URL, then it SHOULD point to an XML resource that
describes the Property.

A Property description SHOULD describe the data type and meaning of
a Property.

A PropertyDescription SHOULD have the following members:

15

• uri : the formal URI of the Property

• DisplayName: A display name for the Property

• Description: A text block describing the meaning and validation rules
of the Property

A PropertyDescription MAY have the following OPTIONAL members:

• UCD : the Universal Content Descriptor (in the UCD1 + scheme) for
the Property

• Unit : the unit of measurement of the Property

The information in a Property description can be used to generate a UI
for displaying and modifying the different types of Properties.

UI Display name If a client is unable to resolve a Property identifier into
a description, then it may just display the identifier as a text string:

• urn:modifieddate

If the client can resolve the Property identifier into a description, then
the client may use the information in the description to display a human
readable name and description of the Property:

• Last modification date of the node data

Property editors If the client is unable to resolve a Property identifier into
a description, or does not understand the type information defined in the
description, then the client MAY treat the Property value as a simple text
string.

If the client can resolve the Property identifier into a description, then the
client MAY use the information in the description to display an appropriate
editing tool for the Property.

In the current version of the specification the rules for editing Properties
are as follows:

• A service MAY impose validation rules on the values of specific types
of Properties

• If a client attempts to set a Property to an invalid value, then the
service MAY reject the change

• Where possible, the validation rules for a type of Property SHOULD
be defined in the Property description

16

Future versions of the VOSpace specification may extend the Property-
Description to include more specific machine readable validation rules for a
Property type.

3.2.4 Standard properties

Property URIs and PropertyDescriptions for the core set of Properties
are registered under a StandardKeyEnumeration resource (Harrison and
Burke et al., 2012) in the IVOA registry with the resource identifier
ivo://ivoa.net/vospace/core. The following URIs SHOULD be used to rep-
resent the service properties:

• ivo://ivoa.net/vospace/core#title SHALL be used as the property URI
denoting a name given to the resource

• ivo://ivoa.net/vospace/core#creator SHALL be used as the property
URI denoting an entity primarily responsible for making the resource

• ivo://ivoa.net/vospace/core#subject SHALL be used as the property
URI denoting the topic of the resource

• ivo://ivoa.net/vospace/core#description SHALL be used as the prop-
erty URI denoting an account of the resource

• ivo://ivoa.net/vospace/core#publisher SHALL be used as the prop-
erty URI denoting an entity responsible for making the resource avail-
able

• ivo://ivoa.net/vospace/core#contributor SHALL be used as the prop-
erty URI denoting an entity responsible for making contributions to
this resource

• ivo://ivoa.net/vospace/core#date SHALL be used as the property
URI denoting a point or period of time associated with an event in
the lifecycle of the resource

• ivo://ivoa.net/vospace/core#type SHALL be used as the property
URI denoting the nature or genre of the resource

• ivo://ivoa.net/vospace/core#format SHALL be used as the property
URI denoting the file format, physical medium, or dimensions of the
resource

• ivo://ivoa.net/vospace/core#identifier SHALL be used as the property
URI denoting an unambiguous reference to the resource within a given
context

17

• ivo://ivoa.net/vospace/core#source SHALL be used as the property
URI denoting a related resource from which the described resource is
derived

• ivo://ivoa.net/vospace/core#language SHALL be used as the property
URI denoting a language of the resource

• ivo://ivoa.net/vospace/core#relation SHALL be used as the property
URI denoting a related resource

• ivo://ivoa.net/vospace/core#coverage SHALL be used as the property
URI denoting the spatial or temporal topic of the resource, the spa-
tial applicability of the resource, or the jurisdiction under which the
resource is relevant

• ivo://ivoa.net/vospace/core#rights SHALL be used as the property
URI denoting information about rights held in and over the resource

• ivo://ivoa.net/vospace/core#availableSpace SHALL be used as the
property URI denoting the amount of space available within a con-
tainer

• ivo://ivoa.net/vospace/core#groupread SHALL be used as the prop-
erty URI denoting the list of groups which can only read this resource
(read-only)

• ivo://ivoa.net/vospace/core#groupwrite SHALL be used as the prop-
erty URI denoting the list of groups which can read and write to this
resource (read-write)

• ivo://ivoa.net/vospace/core#publicread SHALL be used as the prop-
erty URI denoting whether this resource is world readable (anon-read-
only)

• ivo://ivoa.net/vospace/core#quota SHALL be used as the property
URI denoting the value of a system quota on the resource

• ivo://ivoa.net/vospace/core#length SHALL be used as the property
URI denoting the length or size of a resource

• ivo://ivoa.net/vospace/core#mtime SHALL be used as the property
URI denoting the data modification time

• ivo://ivoa.net/vospace/core#ctime SHALL be used as the property
URI denoting status change (aka metadata modification) time

• ivo://ivoa.net/vospace/core#btime SHALL be used as the property
URI denoting initial creation time

18

However, this is not intended to be a closed list, different implementations
are free to define and use their own Properties.

3.3 Capabilities

A Capability describes a third-party interface to a node. One application
of this would be to enable data access to a node or its contents using a 3rd
party service interface.

A Capability representation SHALL have the following members:

• uri : the Capability identifier

• endpoint : the endpoint URL to use for the third-party interface

• param: a set of parameters for the capability

3.3.1 Example capability use cases

A ContainerNode containing image files may offer a DAL SIAP capability
so that the images in the container can be accessed using a SIAP service.
In this way, a user could create a (DAL enabled) Container in VOSpace,
transfer some images into it and then query the set of images using the
SIAP interface.

Another example is a DataNode that provides a OpenStack Swift capa-
bility so that the OpenStack service API is exposed on that node.

3.3.2 Capability identifiers

Every new type of Capability SHALL require a unique URI to identify the
Capability. The rules for the Capability identifiers are similar to the rules
for namespace URIs in XML schema. The only restriction is that it SHALL
be a valid (unique) URI.

• An XML schema namespace identifier can be just a simple URN, e.g.,
urn:my-namespace

• Within the IVOA, the convention for namespace identifiers is to use a
HTTP URL pointing to the namespace schema, or a resource describ-
ing it.

The VOSpace schema defines Capability identifiers as anyURI. The only
restriction is that it SHALL be a valid (unique) URI.

• A Capability URI can be a simple URN, e.g., urn:my-capability

19

This may be sufficient for testing and development on a private system,
but it is not suitable for use on a public service. For a production system,
any new Capabilities SHOULD have unique URIs that can be resolved into a
description of the Capability. Ideally, these SHOULD be IVO registry URIs
that point to a description registered in the IVO registry:

• ivo://my-registry/vospace/capabilities#my-capability

Using an IVO registry URI to identify Capabilities has two main advan-
tages:

• IVO registry URIs are by their nature unique, which makes it easy to
ensure that different teams do not accidentally use the same URI

• If the IVO registry URI points to a description registered in the IVO
registry, this provides a mechanism to discover how to use the Capa-
bility.

3.3.3 Capability descriptions

If the URI for a particular Capability is resolvable, i.e., an IVO registry
identifier or a HTTP URL then it SHOULD point to an XML resource that
describes the Capability.

A CapabilityDescription SHOULD describe the third-party interface and
how it should be used in this context. A CapabilityDescription SHOULD
have the following members:

• uri : the formal URI of the Capability

• DisplayName: a simple display name of the Capability.

• Description: a text block describing the third-party interface and how
it should be used in this context.

3.3.4 UI display name

If a client is unable to resolve a Capability identifier into a description then
it may just display the identifier as a text string:

• Access data using urn:openstack

If a client can resolve the Capability identifier into a description then
the client may use the information in the description to display a human
readable name and description of the Capability:

• Access data using openstack

20

3.3.5 Standard capabilities

Capability URIs and CapabilityDescriptions for the core set of Capabil-
ities are registered under a StandardKeyEnumeration resource (Harrison
and Burke et al., 2012) in the IVOA registry with the resource identifier
ivo://ivoa.net/vospace/core.. The following URIs SHALL be used to repre-
sent the service capabilities:

• ivo://ivoa.net/vospace/core#vospace-1.0 SHALL be used as the capa-
bility URI for a VOSpace 1.0 service

• ivo://ivoa.net/vospace/core#vospace-1.1 SHALL be used as the capa-
bility URI for a VOSpace 1.1 service

• ivo://ivoa.net/vospace/core#vospace-2.0 SHALL be used as the capa-
bility URI for a VOSpace 2.0 service

• ivo://ivoa.net/vospace/core#vospace-2.1 SHALL be used as the capa-
bility URI for a VOSpace 2.1 service

If a service implementation supports more than one version of the VOSpace
interface then these capability URIs can be used with a VOSpace service to
identify different VOSpace capabilities for a node.

3.4 Views

A View describes the data formats and contents available for importing or
exporting data to or from a VOSpace node.

The metadata for a DataNode contains two lists of Views.

• accepts: is a list of Views that the service can accept for importing
data into the Node

• provides: is a list of Views that the service can provide for exporting
data from Node

A View representation SHALL have the following members:

• uri : The view identifier

• original : an optional boolean flag to indicate that the View preserves
the original bit pattern of the data

• param: a set of name-value pairs that can be used to specify additional
arguments for the View

21

3.4.1 Example view use cases

A simple VOSpace system that stores data as a binary files can just return
the contents of the original file. The client supplies a View identifier when it
imports the data, and the service uses this information to describe the data
to other clients.

A file based system can use the special case identifier

ivo://ivoa.net/vospace/core#anyview

to indicate that it will accept any data format or View for a Node.
For example:

• A client imports a file into the service, specifying a View to describe
the file contents

• The service stores the data as a binary file and keeps a record of the
View

• The service can then use the View supplied by the client to describe
the data to other clients

This type of service is not required to understand the imported data, or
to verify that it contents match the View, it treats all data as binary files.

Database store A VOSpace system that stores data in database tables
would need to be able to understand the data format of an imported file in
order to parse the data and store it correctly. This means that the service
can only accept a specific set of Views, or data formats, for importing data
into the Node.

In order to tell the client what input data formats it can accept, the
service publishes a list of specific Views in the accepts list for each Node.

On the output side, a database system would not be able to provide
access to the original input file. The contents of the file would have been
transferred into the database table and then discarded. The system has to
generate the output results from the contents of the database table.

In order to support this, the service needs to be able to tell the client
what Views of the data are available.

A database system may offer access to the table contents as either
VOTable or FITS files, it may also offer zip or tar.gz compressed versions
of these. In which case the system needs to be able to express nested file
formats such as “zip containing VOTable” and “tar.gz containing FITS”.

A service may also offer subsets of the data. For example, a work flow
system may only want to look at the table headers to decide what steps are
required to process the data. If the table contains a large quantity of data,

22

then downloading the whole contents just to look at the header information
is inefficient. To make this easier, a database system may offer a ’metadata
only’ View of the table, returning a VOTable or FITS file containing just
the metadata headers and no rows.

So our example service may want to offer the following Views of a
database table:

• Table contents as FITS

• Table contents as VOTable

• Table contents as zip containing FITS

• Table contents as zip containing VOTable

• Table contents as tar.gz containing FITS

• Table contents as tar.gz containing VOTable

• Table metadata as FITS

• Table metadata as VOTable

The service would publish this information as a list of Views in the pro-
vides section of the metadata for each Node.

The VOSpace specification does not mandate what Views a service must
provide. The VOSpace specification is intended to provide a flexible mech-
anism enabling services to describe a variety of different Views of data. It
is up to the service implementation to decide what Views of the data it can
accept and provide.

3.4.2 View identifiers

Every new type of View SHALL require a unique URI to identify the View
and its content.

The rules for the View identifiers are similar to the rules for namespace
URIs in XML schema. The only restriction is that it SHALL be a valid
(unique) URI.

• An XML schema namespace identifier can be just a simple URN, e.g.,
urn:my-namespace

• Within the IVOA, the convention for namespace identifiers is to use a
HTTP URL pointing to the namespace schema, or a resource describ-
ing it

The current VOSpace schema defines View identifiers as anyURI. The
only restriction is that it SHALL be a valid (unique) URI.

23

• A View URI can be a simple URN, e.g., urn:my-view

This may be sufficient for testing and development on a private system,
but it is not scalable for use on a public service.

For a production system, any new Views SHOULD have unique URIs
that can be resolved into to a description of the View.

Ideally, these should be IVO registry URIs that point to a description
registered in the IVO registry:

• ivo://my-registry/vospace/views#my-view

Using an IVO registry URI to identify Views has two main advantages:

• IVO registry URIs are by their nature unique, which makes it easy to
ensure that different teams do not accidentally use the same URI

• If the IVO registry URI points to a description registered in the IVO
registry, this provides a mechanism to discover what the View contains

3.4.3 View descriptions

If the URI for a particular View is resolvable, i.e., an IVO registry identifier
or a HTTP URL, then it SHOULD point to an XML resource that describes
the View.

A ViewDescription SHOULD describe the data format and/or content of
the view.

A ViewDescription SHOULD have the following members:

• uri : the formal URI of the View

• DisplayName: a simple display name of the View.

• Description: a text block describing the data format and content of
the View.

A ViewDescription MAY have the following optional members:

• MimeType: the standard MIME type of the View, if applicable

• Parameters: a list of required and option parameters the view accepts,
if applicable

24

UI Display name If a client is unable to resolve a View identifier into a
description, then it MAY just display the identifier as a text string:

• Download as urn:table.meta.fits

If the client can resolve the View identifier into a description, then the
client MAY use the information in the description to display a human read-
able name and description of the View:

• Download table metadata as FITS header

Mime Types If a VOSpace service provides HTTP access to the data con-
tained in a Node, then if the ViewDescription contains a MimeType field,
this SHOULD be included in the appropriate header field of the HTTP re-
sponse.

3.4.4 Default views

The following standard URIs are registered under a StandardKeyEnumera-
tion resource (Harrison and Burke et al., 2012) in the IVOA registry with
the resource identifier ivo://ivoa.net/vospace/core. They SHALL be used to
refer to the default import and export views:

• ivo://ivoa.net/vospace/core#anyview SHALL be used as the view URI
to indicate that a service will accept any view for an import operation

• ivo://ivoa.net/vospace/core#binaryview SHALL be used as the view
URI to import or export data as a binary file

• ivo://ivoa.net/vospace/core#defaultview SHALL be used by a client
to indicate that the service should choose the most appropriate view
for a data export

Default import view If a client imports data using this view, the data
SHALL be treated as a binary BLOB, and stored as is with no additional
processing. This is equivalent to the application/octet-stream MIME type.

Note, this view is OPTIONAL, and the service may throw a ViewNot-
Supported exception if it does not accept this view. In particular, this view
cannot be used to import data into a StructuredDataNode as the service
needs to know about and understand the data format to be able to create
the StructuredDataNode.

Note, this view is only valid for the data import operations, pull-
ToVoSpace and pushToVoSpace. If this view is requested in an export op-
eration, pullFromVoSpace and pushToVoSpace, then the service SHOULD
throw a ViewNotSupported exception.

25

Default export view If a client requests data using this view, the server
SHALL choose whichever of the available views the server thinks is the most
appropriate, based on how the data is stored. In a simple file-based system,
this will probably be the same format that the data was originally imported
in. In a database table system, this will probably either be VOTable or CVS,
depending on the level of metadata available.

Note, this view is OPTIONAL, and the server may throw a ViewNotSup-
ported exception if it does not provide this view. However, in most cases,
it is expected that a service would be able to select an appropriate ’default’
format for data held within the service.

Note, this view is only valid for the data export operations, pull-
FromVoSpace and pushFromVoSpace. If this view is requested in an import
operation, pullToVoSpace and pushToVoSpace, then the service SHOULD
throw a ViewNotSupported fault.

3.4.5 Container views

In VOSpace 2.1, a view of a ContainerNode describes the data representa-
tion (format) of a file or data stream that represents the combined contents
of the node and its children. If the view describes an archive format (tar,
zip, etc.) then a service that accepts this view (format) for a Container-
Node SHALL provide access to the archive contents as children nodes of
the container. Whether or not the service actually unpacks the archive is
implementation dependent but the service SHALL behave as though it has
done so. For example, a client may want to upload a tar file containing
several images to a VOSpace service. If they associate it with (upload it to)
a (Un)structuredDataNode then it will be treated as a blob and its contents
will be not be available. However, if they upload it to a ContainerNode with
an accepts view of "tar" then the image files within the tar file will be
represented as children nodes of the ContainerNode and accessible like any
other data object within the space.

If a service provides an archive format (tar, zip, etc.) view of a Contai-
nerNode then the service SHALL package the contents of the container and
all its child nodes in the specified format.

3.5 Protocols

A Protocol describes the parameters required to perform a data transfer
using a particular protocol.

A Protocol representation SHALL have the following members:

• uri : the Protocol identifier

• endpoint : the endpoint URL to use for the data transfer additional
arguments required for the transfer

26

A protocol representation MAY have the following members:

• param: A list of name-value pairs that specify any additional argu-
ments required to support the protocol

• securityMethod : The requested (and/or resulting) authentication type

Note: endpoint will only contain a value after the response from the
service is received.

3.5.1 Protocol identifiers

Every new type of Protocol requires a unique URI to identify the Protocol
and how to use it.

The rules for the Protocol identifiers are similar to the rules for namespace
URIs in XML schema. The only restriction is that it SHALL be a valid
(unique) URI

• An XML schema namespace identifier can be just a simple URN, e.g.,
urn:my-namespace

• Within the IVOA, the convention for namespace identifiers is to use a
HTTP URL pointing to the namespace schema, or a resource describ-
ing it

The current VOSpace schema defines Protocol identifiers as anyURI. The
only restriction is that it SHALL be a valid (unique) URI.

• A Protocol URI can be a simple URN, e.g., urn:my-protocol

This may be sufficient for testing and development on a private system,
but it is not scalable for use on a public service.

For a production system, any new Protocols SHOULD have unique URIs
that can be resolved into to a description of the Protocol.

Ideally, these should be IVO registry URIs that point to a description
registered in the IVO registry:

• ivo://my-registry/vospace/protocols#my-protocol

Using an IVO registry URI to identify Protocols has two main advan-
tages:

• IVO registry URIs are by their nature unique, which makes it easy to
ensure that different teams do not accidentally use the same URI

• If the IVO registry URI points to a description registered in the IVO
registry, this provides a mechanism to discover how to use the Protocol

27

3.5.2 Protocol descriptions

If the URI for a particular Protocol is resolvable, i.e., an IVO registry iden-
tifier or a HTTP URL, then it SHOULD point to an XML resource that
describes the Protocol.

A ProtocolDescription SHOULD describe the underlying transport pro-
tocol, and how it should be used in this context.

A ProtocolDescription SHOULD have the following members:

• uri : the formal URI of the Protocol

• DisplayName: A simple display name of the Protocol

• Description: Text block describing describing the underlying transport
protocol, and how it should be used in this context

UI display name If a client is unable to resolve a Protocol identifier into a
description, then it MAY just display the identifier as a text string:

• Download using urn:my-protocol

If the client can resolve the Protocol identifier into a description, then
the client MAY use the information in the description to display a human
readable name and description of the Protocol:

• Download using standard HTTP GET

3.5.3 Standard protocols

Protocol URIs and ProtocolDescriptions for the core set of standard pro-
tocols are registered under a StandardKeyEnumeration resource (Harrison
and Burke et al., 2012) in the IVOA registry with the resource identifier
ivo://ivoa.net/vospace/core. The following URIs SHALL be used to repre-
sent the standard transfer protocols:

• ivo://ivoa.net/vospace/core#httpget

SHALL be used as the protocol URI for a HTTP GET transfer

• ivo://ivoa.net/vospace/core#httpput

SHALL be used as the protocol URI for a HTTP PUT transfer

• ivo://ivoa.net/vospace/core#httpsget

SHALL be used as the protocol URI for a HTTP GET transfer over a
Secure Socket Layer (SSL)

28

• ivo://ivoa.net/vospace/core#httpsput

SHALL be used as the protocol URI for a HTTP PUT transfer over a
Secure Socket Layer (SSL)

However, this is not intended to be a closed list, different implementations
are free to define and use their own transfer Protocols and authentication
types.

3.5.4 External standard protocols

The following section lists protocols that are identified by an external URI
and are documented at the location referenced by that URI. If a service pro-
vides protocols with the following URIs, one should regard the information
at the referenced location as if they were a part of this specification. Incom-
patible changes to protocols listed here are forbidden by this specification.

Currently, there is only external standard protocol: the public share pro-
tocol.

The public share protocol provides a means of obtaining, through a trans-
fer negotiation, a URL endpoint from a VOSpace service that can be shared
with colleagues or published in a paper. Implementation of this protocol is
optional so services MAY provide support for the public share protocol if they
wish to generate URLs to data objects that can be shared with anonymous
users.

The standard ID for the public share protocol is:

http://wiki.ivoa.net/twiki/bin/view/IVOA/VOSpacePublicShare

Note that, as mentioned above, the standard ID serves as both a URL to
a document describing the protocol and as the URI identifying the protocol.
Thus, readers can find additional documentation on the public share protocol
at the URL of the standard ID.

The curl command below gives an example of how to obtain a public
share URL from VOSpace:

curl "https://server.example.com/vospace/synctrans
?TARGET=vos://example.com~vospace/mydata1
&DIRECTION=pullFromVoSpace
&PROTOCOL=http://wiki.ivoa.net/twiki/bin/view/IVOA/VOSpacePublicShare

If the VOSpace service supports the public share protocol, the resulting
transfer document SHALL include an endpoint URLs for distribution and
sharing. For example:

<vos:endpoint>http://public.example.com/001237995/mydata1</vos:endpoint>

29

The endpoint MUST be anonymously accessible, so the endpoint SHALL
NOT contain a securityMethod for authentication.

If the VOSpace service does not support the public share protocol, the
transfer Job phase SHALL be set to ERROR and the ErrorSummary SHALL
be set to "ProtocolNotSupported".

Use of the public share protocol in transfer negotiations is only valid
when the DIRECTION of the transfer request is pullFromVoSpace. If a DI-
RECTION other than pullFromVoSpace is used then the service SHALL set
the Job phase to ERROR and set the ErrorSummary to "ProtocolNotSup-
ported".

3.5.5 Security Methods

Each protocol may have an associated securityMethod element that describes
the supported authentication method for that protocol.

For transfer requests, the securityMethod indicates that the client is ca-
pable of that authentication method for that protocol. The protocols should
be listed in preferred order. It is recommended that the entire list of protocol
securityMethod combinations that the client supports be provided.

The Protocol list in transfer responses represent the protocol and securi-
tyMethod combinations that are supported by the server. The server must
only list supported combinations. The server may choose to consult the pro-
tocol and securityMethod combinations in the transfer request to generate
the ordered list of protocols.

Please refer to the IVOA Single-Sign-On Profile: Authentication Mecha-
nisms for more information: (Major and Rixon et al., 2016)

3.6 Transfers

A Transfer describes the details of a data transfer to or from a VOSpace.

3.6.1 XML Document Transfers

Transfers can be represented as XML documents. For example:
<vos:transfer xmlns:vos="http://www.ivoa.net/xml/VOSpace/v2.0" version="2.1">

<vos:target>vos://example.com!vospace/myspace/myfile</vos:target>
<vos:direction>pushToVoSpace</vos:direction>
<vos:protocol uri="ivo://ivoa.net/vospace/core#httpsput">

<vos:securityMethod uri="ivo://ivoa.net/sso#tls-with-certificate"/>
</vos:protocol>
<vos:protocol uri="ivo://ivoa.net/vospace/core#httpput">

<vos:securityMethod "uri="http://www.w3.org/Protocols/HTTP/1.0/spec/html#
BasicAA"/>

</vos:protocol>
</vos:transfer>

30

Clients send transfer XML documents to a VOSpace synchronous or asyn-
chronous UWS transfer endpoint. The VOSpace service SHALL put, in the
UWS Job results, a resulting transfer XML document.

A client initiated UWS Job representation of a Transfer SHALL have the
following parameters:

• target : denotes the VOSpace node to/from which data is to be trans-
ferred

• direction: denotes the direction of a data transfer

– It can be a URI for internal data transfers (move and copy
operations) or one of: pushToVoSpace, pullToVoSpace, push-
FromVoSpace or pullFromVoSpace – for external data transfer.

• view : denotes the requested View

– For the transfer to be valid, the specified View must match one
of those listed in the accepts or provides list of the Node.

– For an internal data transfer, this parameter is not required.

• protocol : denotes the transfer protocol(s) to use

– A transfer may contain more than one protocol with different
Protocol URIs.

– Each protocol may contain one or more security methods that can
be applied to the protocol. It is recommended that a protocol for
each securityMethod be included in the transfer.

– For an internal data transfer, this parameter is not required.

• keepBytes: denotes whether the source object is to be kept in an in-
ternal data transfer, i.e., distinguishes between a move and a copy

– For an external data transfer, this parameter is not required.

• param: A list of zero or more parameters that specify any additional
arguments for the transfer.

– Standard Property URIs should be used as the parameter key.

– e.g., Clients may tell the service the size of a file they intend to
upload:

<vos:param uri="ivo://ivoa.net/vospace/core\#length">1024</vos:param>

31

This representation will be used as a child of the jobInfo element in a
UWS Job representation.

The service representation of the results of a Transfer SHALL have the
following members:

• target : denotes the VOSpace node to/from which data is to be trans-
ferred

• direction: denotes the direction of a data transfer

– It can be a URI for internal data transfers (move and copy
operations) or one of: pushToVoSpace, pullToVoSpace, push-
FromVoSpace or pullFromVoSpace – for an external data transfer.

• view : A View specifying the requested View

– For the transfer to be valid, the specified View must match one
of those listed in the accepts or provides list of the Node.

– For an internal data transfer, this parameter is not required.

• protocol : denotes the transfer protocol(s) to use

– A transfer may contain more than one protocol with different
Protocol URIs.

– A Transfer may contain more than one Protocol element with the
same Protocol URI with different endpoints

– Each protocol on the result must contain an endpoint.
– Each protocol may contain one or more security methods that can

be applied to the protocol.
– For an internal data transfer, this parameter is not required.

• param: parameters related to the transfer

– A transfer may contain zero or more transfer parameters.

3.6.2 URL Parameter Transfers

A simplified and restricted method of transfer negotiation makes use of URL
query string parameters rather than XML documents. Parameter based
transfer negotiation support is optional and is limited to the synchronous
transfer endpoint. The following is an example URL for a parameter transfer
negotiation:

http://server.example.com/vospace/synctrans?
TARGET=vos://example.com~vospace/mydata1&
DIRECTION=pullFromVoSpace&
PROTOCOL=ivo://ivoa.net/vospace/core#httpget

32

The following parameters MUST be supplied by the client requesting a
transfer:

• TARGET : denotes the VOSpace node to/from which data is to be
transferred

• DIRECTION : denotes the direction of a data transfer

– With parameter based negotiation, only pushToVoSpace and pull-
FromVoSpace are allowed as values for DIRECTION.

• PROTOCOL: denotes the transfer protocol(s) to use.

– With parameter based negotiation, clients MUST provide exactly
one PROTOCOL parameter.

The following parameters MAY be supplied by the client requesting a
transfer:

• VIEW : The standard URI of the view to use. If no view is provided
the service SHALL use the default view.

• SECURITYMETHOD : The standard URI of the security method that
can be used for the supplied PROTOCOL.

• REQUEST=redirect : If the supplied, the service SHALL respond with
an HTTP redirect to an endpoint for the PROTOCOL.

– This parameter is only applicable when the value of the DIREC-
TION parameter is pullFromVoSpace.

Parameter values must be URL-encoded.
Upon receipt of a parameter based transfer negotiation request to the syn-

chronous transfer endpoint, the service SHALL reply with a XML represen-
tation of the transfer results in the response body. The only exception to this
is when the DIRECTION is pullFromVoSpace and the REQUEST=redirect
parameter is provided and set to true, in which case the service SHALL re-
spond with an HTTP redirect to the endpoint of the supplied PROTOCOL.

3.6.3 Service-initiated transfers

Two of the external data transfers (pullToVoSpace and pushFromVoSpace)
rely on the server performing the data transfer itself.

The client constructs a Job request containing details of the View and
one or more Protocol elements with valid endpoint addresses.

The service MAY ignore Protocols with URIs that it does not recognize.

33

If the server is unable to handle any of the requested Protocols in a
Transfer request, then it SHALL respond with a fault.

The order of the Protocols in the request indicates the order of preference
that the client would like the server to use. However, this is only a suggestion,
and the server is free to use its own preferences to select which Protocol it
uses first.

The service selects the first Protocol it wants to use from the list and
attempts to transfer the data using the Protocol endpoint.

If the first attempt fails, the server may choose another Protocol from
the list and re-try the transfer using that Protocol endpoint. The status flag
will be updated to reflect this.

The server may attempt to transfer the data using any or all of the
Protocols in the list until either, the data transfer succeeds, or there are no
more Protocol options left.

The server SHALL be allowed to only use each Protocol option once.
This allows a data source to issue one time URLs for a Transfer, and cancel
each URL once it has been used.

Once one of the Protocol options succeeds the transfer SHALL be consid-
ered to have completed – the status flag needs to be updated to reflect this
-, and the server is not allowed to use any of the remaining Protocol options.
This allows a data source to issue a set of one time URLs for a transfer, and
to cancel any unused URLs once the transfer has been completed.

Some Protocols MAY require the service to call a callback address when
a data transfer completes. This behavior is specific to the Protocol, and
SHOULD be defined in the ProtocolDescription.

If none of the Protocol options succeed, then the transfer SHALL be
considered to have failed, and the service SHALL return a fault containing
details of the Protocol options it tried. The status flag will be updated to
reflect this.

3.6.4 Client-initiated transfers

Two of the VOSpace external transfer methods (pushToVoSpace and pull-
FromVoSpace) rely on an external actor performing the data transfer outside
the scope of the service call.

In these methods, the client sends a Job request to the server which
SHOULD contain details of the View and one or more protocol parameters.

In effect, the client is sending a list of Protocols that it (the client) wants
to use for the transfer.

The service MAY ignore Protocols with URIs that it does not recognize.
The service selects the Protocols from the request that it is capable of

handling, and builds a Transfer results response containing the selected Pro-
tocol elements filling in valid endpoint addresses for each of them.

34

If available, the service may choose to consult the securityMethod in the
Protocols to construct correct endpoints.

The order of the Protocol elements (and their corresponding security
methods) in the request indicates the order of preference that the client
would like to use. However, this is only a suggestion, and the server is
free to use its own preferences when generating the list of Protocols in the
response.

In effect, the server is responding with the subset of the requested Pro-
tocols that it (the server) is prepared to offer.

If the server is unable to accept any of the requested Protocols, then it
SHALL respond with a fault.

On receipt of the response, the client can use the list of Protocols itself,
or pass them on to another agent to perform the data transfer on its behalf.

The agent MAY ignore Protocols URIs that it does not recognize.
The agent selects the first Protocol it wants to use from the list and

attempts to transfer the data using the Protocol endpoint. The status flag
will be updated to reflect this.

If the first attempt fails, the agent MAY choose another Protocol from
the list and re-try the transfer using that Protocol endpoint.

The agent MAY attempt to transfer the data using any or all of the
Protocols in the list until either, the data transfer succeeds, or there are no
more Protocol options left.

The agent SHALL be allowed to only use each Protocol option once. This
allows a data source to issue one time URLs for a Transfer, and cancel each
URL once it has been used.

Once one of the Protocol options succeeds the transfer SHALL be consid-
ered to have completed and the status flag will be updated correspondingly.
The agent is not allowed to use any of the remaining unused Protocol options.
This allows a data source to issue a set of one time URLs for a transfer, and
to cancel any unused URLs once the transfer has been completed.

Some Protocols MAY require the agent to call a callback address when
a data transfer completes. This behavior is specific to the Protocol, and
SHOULD be defined in the ProtocolDescription.

If none of the Protocol options succeed, then the transfer SHALL be
considered to have failed and the status will be updated.

4 REST bindings

In a REST (Representational State Transfer) binding of VOSpace, each of
the objects defined below is available as a web resource with its own URI.

The standard ID of a VOSpace is:

ivo://ivoa.net/std/VOSpace

35

The 2.0 specification defined the standardID as:

ivo://ivoa.net/std/VOSpace/v2.0

This form of standardID will also be recognized as a valid standardID
for VOSpace in the 2.1 specification.

The syntax of the standard IDs for the REST bindings has changed
in VOSpace 2.1 to be in accordance with the IVOA Recommendation IVOA
Identifiers 2.0 (Demleitner and Plante et al., 2016). Specifically, the question
mark (?) symbol is to be used in place of the hash (#) symbol for listing the
particular resource. Secondly, the resource is now versioned to align with the
version of the standard, rather than having the version in the standardID of
the specification.

Since only the /synctrans binding has changed in version 2.1, it is the
only binding with a separate 2.1 resource identifier version.

The following is a list of the resourceIDs for the REST bindings for
VOSpace 2.x implementations:

• ivo://ivoa.net/std/VOSpace/v2.0#properties

The properties employed in the space.

• ivo://ivoa.net/std/VOSpace/v2.0#views

The protocols employed in the space.

• ivo://ivoa.net/std/VOSpace/v2.0#protocols

The views employed in the space.

• ivo://ivoa.net/std/VOSpace/v2.0#nodes

A Node under the nodes of the space.

• ivo://ivoa.net/std/VOSpace/v2.0#transfers

Asynchronous transfers for the space.

Transfer details can be discovered by appending /[job-id]/results/transferDetails
to the end of a service’s transfer endpoint.

In version 2.0, the following is the resourceID for synchronous transfers
in the space:

• ivo://ivoa.net/std/VOSpace/v2.0#sync

In version 2.1, the following resourceID has been introduced for the 2.1
version of synchronous transfers:

• ivo://ivoa.net/std/VOSpace#sync-2.1

36

For backwards compatibility support in the exchange of XML documents
on transfers, VOSpace 2.1 employs the techniques described in the IVOA
XML Schema Versioning note (Harrison and Demleitner et al., 2016). This
means that both 2.0 and 2.1 documents will use the single, major version
in the namespace (v2.0), but 2.1 documents will also be tagged with the
attribute version="2.1".

5 Access Control

VOSpace implementations may support a number of authentication methods
including:

• no authentication (anonymous clients)

• digital signatures with X.509 client certificates

• OAuth (http://oauth.net)

For a full list of authentication methods and the associated standardIDs
please refer to the IVOA Single Sign-On document: (Major and Rixon et al.,
2016).

When a client is requesting a transfer from the service, the authentica-
tion type (securityMethod) may be supplied along side the list of transfer
protocols. The securityMethod is specified by standardID. If the service sup-
ports the requested type, it may base the construction of the endpoint URL
for data transfer from this information. (Services may encounter situations
when the URL for data transfer will depend on the authentication type the
client wishes to use.)

For backwards compatibility support, services SHALL include the secu-
rityMethod element in the transfer response if and only if a securityMethod
was provided by the client in the protocol.

The access control policy for a VOSpace is defined by the implementor
of that space according to the use cases for which the implementation is
intended.

A human-readable description of the implemented access policy must be
declared in the registry metadata for the space.

These are the most probable access policies:

• No authorization is required, but clients must authenticate an identity
(for logging purposes) in each request to the space

• Clients may not create or change nodes (i.e., the contents of the space
are fixed by the implementation or set by some interface other than
VOSpace), but any client can read any node without authentication

37

• Nodes are considered to be owned by the user who created them. Only
the owner can operate on a node

• Node authorization is similar to that of Linux file system permission
handling with ownership and group membership.

No operations to modify the access policy (e.g., to set permissions on an
individual node) are included in this standard. Later versions may add such
operations.

Where the access policy requires authentication of callers, the VOSpace
service SHALL support one of the authentication methods defined in the
IVOA Single Sign On Profile.

6 Web service operations

A VOSpace 2.1 service SHALL be a RESTful service with the operations
listed in this section.

Notes

• The URL http://(rest-endpoint)/nodes denotes the URL of the top
node in the VOSpace. The URL http://(rest-endpoint)/nodes/(path)
denotes a specific node within the VOSpace.

• When representing a Fault, the exact specified fault name SHALL be
used. If this is followed by some details, the fault SHALL be separated
from the subsequent characters by whitespace.

• If the service is able to detect an internal system failure (associated
with an HTTP 500 status code) then it should indicate this as described
below if possible.

• When clients POST or PUT XML documents (such as transfer docu-
ments), the Content-Type should be set to text/xml

6.1 Service metadata

These operations return comprehensive lists of service-level metadata, e.g.,
all protocols supported by the service. Individual nodes within a service,
however, may not necessarily support all of these, i.e., only container nodes
may support archive formats such as zip or tar.

6.1.1 getProtocols

Get a list of the transfer Protocols supported by the VOSpace service

38

Request A HTTP request to http://rest-endpoint/protocols

Response

Status code A HTTP 200 status code

Body A Protocols representation giving:

• accepts: A list of Protocols that the service SHALL accept

– In this context ‘accepting a protocol’ means that the service
SHALL act as a client for the protocol

– e.g., ‘accepting httpget’ means the service can read data from an
external HTTP web server

• provides: A list of Protocols that the service SHALL provide

– In this context ‘providing a protocol’ means that the service
SHALL act as a server for the protocol

– e.g., ‘providing httpget’ means the service can act as a http web
server

Faults

• The service SHOULD throw a HTTP 500 status code including an
InternalFault fault in the entity body if the operation fails

Example Get the VOSpace protocols

Request:
> curl -v http://server.example.com/vospace/protocols

Response:
> GET /vospace/protocols HTTP/1.1
>
< HTTP/1.1 200 OK
< Content-Type: text/xml
<
<vos:protocols xmlns:vos="http://www.ivoa.net/xml/VOSpace/v2.0" xmlns:xs="http://

www.w3.org/2001/XMLSchema-instance">
<vos:accepts>

<vos:protocol uri="ivo://ivoa.net/vospace/core#httpget"/>
<vos:protocol uri="ivo://ivoa.net/vospace/core#httpput"/>

</vos:accepts>
<vos:provides>

<vos:protocol uri="ivo://ivoa.net/vospace/core#httpget"/>
<vos:protocol uri="ivo://ivoa.net/vospace/core#httpput"/>

</vos:provides>
</vos:protocols>

39

6.1.2 getViews

Get a list of the Views and data formats supported by the VOSpace service

Request A HTTP GET to http://rest-endpoint/views

Response

Status code A HTTP 200 status code

Body A Views representation giving:

• accepts: A list of Views that the service SHALL accept

– In this context ‘accepting a view’ means that the service SHALL
receive input data in this format

– A simple file based system may use the reserved View URI
ivo://net.ivoa.vospace/views/any to indicate that it can accept
data in any format

• provides: A list of Views that the service SHALL provide

– In this context ‘providing a view’ means that the service SHALL
produce output data in this format

– A simple file based system may use the reserved View URI
ivo://net.ivoa.vospace/views/any to indicate that it can provide
data in any format

Faults

• The service SHOULD throw a HTTP 500 status code including an
InternalFault fault in the entity body if the operation fails

Example Get the VOSpace views

Request:
> curl -v "http://server.example.com/vospace/views"

Response:
> GET /vospace/views HTTP/1.1
>
< HTTP/1.1 200 OK
< Content-Type: text/xml
<
<vos:views xmlns:vos="http://www.ivoa.net/xml/VOSpace/v2.0" xmlns:xs="http://www.

w3.org/2001/XMLSchema-instance">
<vos:accepts>

40

<vos:view uri="ivo://ivoa.net/vospace/core#anyview"/>
</vos:accepts>
<vos:provides>

<vos:view uri="ivo://ivoa.net/vospace/core#defaultview"/>
</vos:provides>

</vos:views>

6.1.3 getProperties

Request A HTTP request to http://rest-endpoint/properties

Response

Status code A HTTP 200 status code

Body A Properties representation including:

• accepts: A list of identifiers for the Properties that the service SHALL
accept and understand. This refers to metadata (Properties) that is
implementation dependent but can be used by a client to control oper-
ational aspects of the service: for example, a VOSpace implementation
might allow individual users to control the permissions on data objects
via a Property called “permissions”. If the VOSpace receives a data ob-
ject with this Property then it ‘understands’ what this property refers
to and can deal with it accordingly.

• provides: A list of identifiers for the Properties that the service SHALL
provide

• contains: A list of identifiers for all the Properties currently used by
Nodes within the service

Faults

• The service SHOULD throw a HTTP 500 status code including an
InternalFault fault in the entity body if the operation fails

Example Get the VOSpace properties

Request:
> curl -v "http://server.example.com/vospace/properties"

Response:

41

> GET /vospace/properties HTTP/1.1
>
< HTTP/1.1 200 OK
< Content-Type: text/xml
<
<vos:properties xmlns:vos="http://www.ivoa.net/xml/VOSpace/v2.0" xmlns:xs="http://

www.w3.org/2001/XMLSchema-instance">
<vos:accepts>

<vos:property uri="ivo://ivoa.net/vospace/core#title"/>
<vos:property uri="ivo://ivoa.net/vospace/core#creator"/>
<vos:property uri="ivo://ivoa.net/vospace/core#description"/>

</vos:accepts>
<vos:provides>

<vos:property uri="ivo://ivoa.net/vospace/core#availableSpace"/>
<vos:property uri="ivo://ivoa.net/vospace/core#httpput"/>

</vos:provides>
<vos:contains>

<vos:property uri="ivo://ivoa.net/vospace/core#availableSpace"/>
<vos:property uri="ivo://ivoa.net/vospace/core#title"/>
<vos:property uri="ivo://ivoa.net/vospace/core#creator"/>
<vos:property uri="ivo://ivoa.net/vospace/core#description"/>

</vos:contains>
</vos:properties>

6.2 Creating and manipulating data nodes

6.2.1 createNode

Create a new node at a specified location

Request A HTTP PUT of a node representation to path of the node to be
created on the /nodes resource:

http://server.example.com/vospace/nodes/<path to node>

The node representation is template Node (as defined in section 3.1) for the
node to be created.

A valid uri attribute SHALL be required. The name .auto is a reserved
URI to indicate an auto-generated URI for the destination, i.e., given the fol-
lowing URI vos://service/path/.auto a service SHOULD create a new unique
URI for the node within vos://service/path.

If the node path of the URI in the node representation does not match
the node path in the HTTP PUT URL the service SHALL return an error.

If the Node xsi:type is not specified then a generic node of type Node is
implied.

The permitted values of xsi:type are:

• vos:Node

• vos:DataNode

• vos:UnstructuredDataNode

42

• vos:StructuredDataNode

• vos:ContainerNode

• vos:LinkNode

When creating a new Node the service MAY substitute a valid subtype,
i.e., If xsi:type is set to vos:DataNode then this may be implemented as a
DataNode, StructuredDataNode or an UnstructuredDataNode.

The properties of the new Node can be set by adding Properties to the
template. Attempting to set a Property that the service considers to be
’readOnly’ SHALL cause a PermissionDenied fault. The accepts and pro-
vides lists of Views for the Node cannot be set using this method.

The capabilities list for the Node cannot be set using this method.

Response

Status code A HTTP 201 status code

Body A node representation including:

• node: details of the new Node

The accepts list of Views for the Node SHALL be filled in by the service
based on service capabilities.

The provides list of Views for the Node MAY not be filled in until some
data has been imported into the Node.

The capabilities list for the Node MAY not be filled in until some data
has been imported into the Node.

Faults

• The service SHOULD throw a HTTP 500 status code including an
InternalFault fault in the entity body if the operation fails

• The service SHALL throw a HTTP 409 status code including a Du-
plicateNode fault in the entity body if a Node already exists with the
same URI

• The service SHALL throw a HTTP 400 status code including an In-
validURI fault in the entity body if the requested URI is invalid

• If the URI node path does not match the node path of the HTTP
PUT request the service must throw a HTTP 400 status including an
InvalidURI fault in the entity body.

43

• The service SHALL throw a HTTP 400 status code including a Type-
NotSupported fault in the entity body if the type specified in xsi:type
is not supported

• The service SHALL throw a HTTP 403 status code including Permis-
sionDenied fault in the entity body if the user does not have permis-
sions to perform the operation

• If a parent node in the URI path does not exist then the service SHALL
throw a HTTP 404 status code including a ContainerNotFound fault
in the entity body.

– For example, given the URI path /a/b/c, the service must throw
a HTTP 404 status code including a ContainerNotFound fault in
the entity body if either /a or /a/b do not exist.

• If a parent node in the URI path is a LinkNode, the service SHALL
throw a HTTP 400 status code including a LinkFound fault in the
entity body.

– For example, given the URI path /a/b/c, the service must throw
a HTTP 400 status code including a LinkFound fault in the entity
body if either /a or /a/b are LinkNodes.

Example Create a node

The node to be created (newNode.xml):
<vos:node xmlns:xs="http://www.w3.org/2001/XMLSchema-instance"

xmlns:vos="http://www.ivoa.net/xml/VOSpace/v2.0" xsi:type="vos:
UnstructuredDataNode" uri="vos://example.com!vospace/mydata1">

<vos:properties>
<vos:property uri="ivo://ivoa.net/vospace/core#description">My important
results</vos:property>

</vos:properties>
<vos:accepts/>
<vos:provides/>
<vos:capabilities/>

</vos:node>

Request:
> curl -v -X PUT -d @newNode.xml -H "Content-type: text/xml" "http://server.

example.com/vospace/nodes/mydata1"

Response:
> PUT /vospace/nodes/mydata1 HTTP/1.1
> Content-Type: text/xml
>
< HTTP/1.1 200 OK
< Content-Type: text/xml
<
<vos:node xmlns:xi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:vos="http://www.ivoa.net/xml/VOSpace/v2.0"

44

xsi:type="vos:UnstructuredDataNode"
uri="vos://example.com!vospace/mydata1">

<vos:properties>
<vos:property uri="ivo://ivoa.net/vospace/core#description">My important
results</vos:property>
<vos:property uri="ivo://ivoa.net/vospace/core#date" readOnly="true
">2015-05-22T23:06:32.966</vos:property>

</vos:properties>
<vos:accepts>

<vos:view uri="ivo://ivoa.net/vospace/core#anyview"/>
</vos:accepts>
<vos:provides/>
<vos:capabilities/>

</vos:node>

6.2.2 moveNode

Move a node within a VOSpace service.
Note that this does not cover moving data between two separate VOSpace

services.
Moving nodes between separate VOSpace services SHOULD be handled

by the client, using the import, export and delete methods.
When the source is a ContainerNode, all its children (the contents of the

container) SHALL also be moved to the new destination.
When the destination is an existing ContainerNode, the source SHALL

be placed under it (i.e., within the container).
The Node type cannot be changed using this method.

Request

• A HTTP POST of a Job representation for the transfer to http://rest-
endpoint/transfers.

.auto is a reserved URI to indicate an autogenerated URI for the desti-
nation, i.e., vos://service/path/.auto SHOULD cause a new unique URI for
the node within vos://service/path to be generated.

Response

Status code The initial response is a HTTP 303 status code with the
Location header keyword assigned to the created job.

Body If an autogenerated URI for the destination was specified in the
request then its value SHALL be specified as a result in the Results List for
the completed transfer with the id of “destination”:

45

<uws:job>
...
<uws:jobInfo>

<vos:direction>vos://example.com!vospace/mjg/.auto</vos:direction>
...
<uws:results>

<uws:result id="destination">vos://example.com!vospace/mjg/abc123</uws:result>
</uws:results>
...

</uws:job>

Faults For all faults, the service shall set the PHASE to “ERROR” in
the Job representation. The <errorSummary> element in the Job rep-
resentation shall be set to the appropriate value for the fault type and
the appropriate fault representation provided at the error URI: http://rest-
endpoint/transfers/(jobid)/error.

Fault description errorSummary Fault representation
Operation fails Internal Fault InternalFault
User does not have permis-
sions to perform the operation

Permission Denied PermissionDenied

Source node does not exist Node Not Found NodeNotFound
Destination node already ex-
ists and it is not a Container-
Node

Duplicate Node DuplicateNode

A specified URI is invalid Invalid URI InvalidURI

Example Move a node

The Job to be submitted (moveJob.xml):
<vos:transfer xmlns:xs="http://www.w3.org/2001/XMLSchema-instance"

xmlns:vos="http://www.ivoa.net/xml/VOSpace/v2.0" version="2.1">
<vos:target>vos://example.com!vospace/mydata1</vos:target>
<vos:direction>vos://example.com!vospace/mydata2</vos:direction>
<vos:keepBytes>false</vos:keepBytes>

</vos:transfer>

Request:
> curl -v -X POST -d @moveJob.xml -H "Content-type: text/xml" "http://server.

example.com/vospace/transfers"

Response:
> POST /vospace/transfers HTTP/1.1
> Content-Type: text/xml
>
< HTTP/1.1 303 See Other
< Location: http://server.example.com/vospace/transfers/glmldqf591feljub
< Content-Type: text/plain
<

46

Job information can be seen by following the redirect to:
> curl -v "http://server.example.com/vospace/transfers/glmldqf591feljub"

Response:
> GET /vospace/transfers/glmldqf591feljub HTTP/1.1
>
< HTTP/1.1 200 OK
< Content-Type: text/xml
<
<?xml version="1.0" encoding="UTF-8"?>
<uws:job xmlns:uws="http://www.ivoa.net/xml/UWS/v1.0" xmlns:xlink="http://www.w3.

org/1999/xlink">
<uws:jobId>glmldqf591feljub</uws:jobId>
<uws:ownerId xs:nill="true" />
<uws:phase>PENDING</uws:phase>
<uws:quote>2015-05-23T11:44:03.993</uws:quote>
<uws:startTime xmlns:xs="http://www.w3.org/2001/XMLSchema-instance" xs:nil="true

" />
<uws:endTime xmlns:xs="http://www.w3.org/2001/XMLSchema-instance" xs:nil="true"

/>
<uws:executionDuration>43200</uws:executionDuration>
<uws:destruction>2015-05-29T23:44:03.993</uws:destruction>
<uws:parameters />
<uws:results />
<uws:jobInfo>

<vos:transfer xmlns:vos="http://www.ivoa.net/xml/VOSpace/v2.0" version="2.1">
<vos:target>vos://example.com!vospace/mydata1</vos:target>
<vos:direction>vos://example.com!vospace/mydata2</vos:direction>
<vos:keepBytes>false</vos:keepBytes>

</vos:transfer>
</uws:jobInfo>

</uws:job>

Now start the UWS job:
> curl -v -d "PHASE=RUN" "http://server.example.com/vospace/transfers/

glmldqf591feljub/phase"

Response:
> POST /vospace/transfers/glmldqf591feljub/phase HTTP/1.1
> Content-Type: text/xml
>
< HTTP/1.1 303 See Other
< Location: http://server.example.com/vospace/transfers/glmldqf591feljub
< Content-Type: text/plain
<

Follow the redirect to see the phase. The job will be either RUNNING,
COMPLETED or ERROR.
> curl -v http://server.example.com/vospace/transfers/glmldqf591feljub/phase

Response:
> GET /vospace/transfers/glmldqf591feljub/phase HTTP/1.1
>
< HTTP/1.1 200 OK
< Content-Type: text/plain
<
COMPLETED

47

If the job is in phase RUNNING, the phase can be polled intermittently
until it is COMPLETED or ERROR. Error and result details can be seen
by performing an HTTP GET to the job URL:
> curl -v "http://server.example.com/vospace/transfers/glmldqf591feljub"

6.2.3 copyNode

Copy a node with a VOSpace service. Note that this does not cover copy-
ing data between two separate VOSpace services. Copying nodes between
separate VOSpace services SHOULD be handled by the client, using the
import and export methods. When the source is a ContainerNode, all its
children (the full contents of the container) SHALL get copied, i.e., this is
a deep recursive copy. When the destination is an existing ContainerNode,
the copy SHALL be placed under it (i.e., within the container). The Node
type cannot be changed using this method.

Request A HTTP POST of a Job representation for the transfer (see sec-
tion 3.6) to http://rest-endpoint/transfers. .auto is the reserved URI to indi-
cate an auto-generated URI for the destination, i.e., vos://service/path/.auto
SHOULD cause a new unique URI for the node within vos://service/path
to be generated.

Response The initial response is a HTTP 303 status code with the Location
header keyword assigned to the created job. If an autogenerated URI for the
destination was specified in the request then its value SHALL be specified
as a result in the Results List for the completed transfer with the id of
"destination":
<uws:job>

...
<uws:jobInfo>

<vos:direction>vos://nvo.caltech!vospace/mjg/.auto</vos:direction>
...
<uws:results>

<uws:result id="destination">vos://nvo.caltech!vospace/mjg/abc123</uws:result>
</uws:results>
...

</uws:job>

Faults For all faults, the service shall set the PHASE to “ERROR” in the
Job representation. The <errorSummary> element in the Job represen-
tation shall be set to the appropriate value for the fault type and the ap-
propriate fault representation (see section 6.5) provided at the error URI:
http://rest-endpoint/transfers/(jobid)/error.

48

Fault description errorSummary Fault representation
Operation fails Internal Fault InternalFault
User does not have permis-
sions to perform the operation

Permission Denied PermissionDenied

Source node does not exist Node Not Found NodeNotFound
Destination node already ex-
ists and it is not a Container-
Node

Duplicate Node DuplicateNode

A specified URI is invalid Invalid URI InvalidURI

Example Copy a VOSpace node

The Job to be submitted (copyJob.xml):
<vos:transfer xmlns:xs="http://www.w3.org/2001/XMLSchema-instance"

xmlns:vos="http://www.ivoa.net/xml/VOSpace/v2.0" version="2.1">
<vos:target>vos://example.com!vospace/mydata1</vos:target>
<vos:direction>vos://example.com!vospace/mydir/.auto</vos:direction>
<vos:keepBytes>true</vos:keepBytes>

</vos:transfer>

Request:
> curl -v -X POST -d @copyJob.xml -H "Content-type: text/xml" "http://server.

example.come/vospace/transfers"

Response:
> POST /vospace/transfers HTTP/1.1
> Content-Type: text/xml
>
< HTTP/1.1 303 See Other
< Location: http://server.example.com/vospace/transfers/usil5s8mdbgjwzvq
< Content-Type: text/plain
<

* Closing connection #0

Job information can be seen by following the redirect to:
> curl -v "http://server.example.com/vospace/transfers/usil5s8mdbgjwzvq"

Response:
> GET /vospace/transfers/usil5s8mdbgjwzvq HTTP/1.1
>
< HTTP/1.1 200 OK
< Content-Type: text/xml
<
<?xml version="1.0" encoding="UTF-8"?>
<uws:job xmlns:uws="http://www.ivoa.net/xml/UWS/v1.0" xmlns:xlink="http://www.w3.

org/1999/xlink">
<uws:jobId>usil5s8mdbgjwzvq</uws:jobId>
<uws:ownerId xs:nill="true" />
<uws:phase>PENDING</uws:phase>
<uws:quote>2015-05-23T11:44:03.993</uws:quote>
<uws:startTime xmlns:xs="http://www.w3.org/2001/XMLSchema-instance" xs:nil="true

" />

49

<uws:endTime xmlns:xs="http://www.w3.org/2001/XMLSchema-instance" xs:nil="true"
/>

<uws:executionDuration>43200</uws:executionDuration>
<uws:destruction>2015-05-29T23:44:03.993</uws:destruction>
<uws:parameters />
<uws:results>

<uws:result id="destination" xlink:href="vos://example.com!vospace/mydir/
ef9ce281f5bd4bff92c8991580cddff4"/>

</uws:results>
<uws:jobInfo>

<vos:transfer xmlns:vos="http://www.ivoa.net/xml/VOSpace/v2.0" version="2.1">
<vos:target>vos://example.com!vospace/mydata1</vos:target>
<vos:direction>vos://example.com!vospace/mydir/.auto</vos:direction>
<vos:keepBytes>true</vos:keepBytes>

</vos:transfer>
</uws:jobInfo>

</uws:job>

Now start the UWS job:
> curl -v -d "PHASE=RUN" "http://server.example.com/vospace/transfers/

usil5s8mdbgjwzvq/phase"

Response:
> POST /vospace/transfers/usil5s8mdbgjwzvq/phase HTTP/1.1
> Content-Type: text/xml
>
< HTTP/1.1 303 See Other
< Location: http://server.example.com/vospace/transfers/usil5s8mdbgjwzvq
< Content-Type: text/plain
<

Follow the redirect to see the phase. The job will be either RUNNING,
COMPLETED or ERROR.
> curl -v http://server.example.com/vospace/transfers/usil5s8mdbgjwzvq/phase

Response:
> GET /vospace/transfers/usil5s8mdbgjwzvq/phase HTTP/1.1
>
< HTTP/1.1 200 OK
< Content-Type: text/plain
<
COMPLETED

If the job is in phase RUNNING, the phase can be polled intermittently
until it is COMPLETED or ERROR. Error and result details can be seen
by performing an HTTP GET to the job URL:
> curl -v "http://server.example.com/vospace/transfers/usil5s8mdbgjwzvq"

6.2.4 deleteNode

Delete a node. When the target is a ContainerNode, all its children (the
contents of the container) SHALL also be deleted. Note that the same op-
eration can also be achieved with a moveNode (see 6.2.2) with a .null node
as the direction (destination node).

50

Request A HTTP DELETE to the URL of an existing node

Response A HTTP 204 status code

Faults

• The service SHOULD throw a HTTP 500 status code including an
InternalFault fault in the entity-body if the operation fails

• The service SHALL throw a HTTP 403 status code including a Per-
missionDenied fault in the entity-body if the user does not have per-
missions to perform the operation

• The service SHALL throw a HTTP 404 status code including a Node-
NotFound fault in the entity-body if the target node does not exist

• If a parent node in the URI path does not exist then the service SHALL
throw a HTTP 404 status code including a ContainerNotFound fault
in the entity-body

– For example, given the URI path /a/b/c, the service must throw
a HTTP 404 status code including a ContainerNotFound fault in
the entity-body if either /a or /a/b do not exist.

• If a parent node in the URI path is a LinkNode, the service SHALL
throw a HTTP 400 status code including a LinkFound fault in the
entity-body.

– For example, given the URI path /a/b/c, the service must throw a
HTTP 400 status code including a LinkFound fault in the entity-
body if either /a or /a/b are LinkNodes.

• If the target node in the URI path does not exist, the service SHALL
throw a HTTP 404 status code including a NodeNotFound fault in the
entity-body.

– For example, given the URI path /a/b/c, the service must throw
a HTTP 404 status code including a NodeNotFound fault in the
entity-body if /a/b/c does not exist.

Example Delete a VOSpace node

Request:
> curl -v -X DELETE "http://server.example.com/vospace/nodes/mydata1"

Response:

51

> DELETE /vospace/nodes/mydata1 HTTP/1.1
>
< HTTP/1.1 200 OK
< Content-Type: text/plain
<

6.3 Accessing metadata

6.3.1 getNode

Get the details for a specific Node.

Request A HTTP GET to the URL of an existing node http://rest-
endpoint/nodes/path This can take the optional parameters to control the
size of the response:

• detail with values of:

– min: the returned record for the node contains minimum detail
with all optional parts removed – the node type should be re-
turned

∗ e.g., <Node uri="vos://service/name" xsi:type="Node"/>

– max : the returned record for the node contains the maximum
detail, including any xsi:type specific extensions

– properties: the returned record for the node contains the basic
node element with a list of properties but no xsi:type specific
extensions

• uri with a value of a VOSpace identifier, URI-encoded according to
RFC2396

• limit with an integer value indicating the maximum number of results
in the response.

– No limit indicates a request for an unpaged list. However the
server MAY still impose its own limit on the size of an individual
response, splitting the results into more than one page if required

The list of supported protocols for a node can be retrieved with:

• A HTTP POST of an empty protocol representation to the URL of an
existing node http://rest-endpoint/nodes/path

52

Response A HTTP 200 status code and a Node representation in the
entity-body. When no parameters are present in the request, the full ex-
panded record for the node SHALL be returned, including any xsi:type spe-
cific extensions; otherwise the appropriate form for the specified value of the
“detail” parameter SHALL be returned.

When the node is a container, the returned record will also contain a list
of direct children nodes in the container (as <node> subelements under the
<nodes> element).

If a “uri” and “offset” are specified in the request then the returned list
will consist of the subset of children which begins at the node matching
the specified value of the “uri” parameter and with cardinality matching the
specified value of the “offset” parameter drawn from an ordered sequence
of all children. The ordering is determined by the server but results must
always be drawn from the same ordered sequence.

For the target node and for any children returned for a container node,
the attribute xsi:type SHALL be included in the resulting Node document.

Faults

• The service SHOULD throw a HTTP 500 status code including an
InternalFault fault in the entity-body if the operation fails

• The service SHALL throw a HTTP 403 status code including a Per-
missionDenied fault in the entity-body if the user does not have per-
missions to perform the operation

• The service SHALL throw a HTTP 404 status code including a Node-
NotFound fault in the entity-body if the target Node does not exist

Example Get a VOSpace node

Request:
> curl -v "http://server.example.com/vospace/nodes/mydir?detail=min&uri=vos://

example.com!vospace/mydir/file3401"

Response:
> GET /vospace/nodes/mydir?detail=min&uri=vos://example.com!vospace/mydir/file3401

HTTP/1.1
>
< HTTP/1.1 200 OK
< Content-Type: text/xml
<
<?xml version="1.0" encoding="UTF-8"?>
<vos:node xmlns:vos="http://www.ivoa.net/xml/VOSpace/v2.0" version="2.1" xmlns:xs

="http://www.w3.org/2001/XMLSchema-instance" uri="vos://example.com!vospace/
mydir" xsi:type="vos:ContainerNode">

<vos:properties>
<vos:property uri="ivo://ivoa.net/vospace/core#description">My award winning
images</property>

53

</vos:properties>
<vos:accepts>
<vos:view uri="ivo://ivoa.net/vospace/core#anyview"/>

</vos:accepts>
<vos:provides>

<vos:view uri="ivo://ivoa/net/vospace/core#defaultview"/>
</vos:provides>
<vos:capabilities/>
<vos:nodes>

<vos:node uri="vos://example.com!vospace/mydir/file3401" xsi:type="vos:
DataNode"/>
<vos:node uri="vos://example.com!vospace/mydir/file3406" xsi:type="vos:
DataNode"/>
<vos:node uri="vos://example.com!vospace/mydir/file3532" xsi:type="vos:
DataNode"/>

</vos:nodes>

6.3.2 setNode

Set the property values for a specific Node

Request A HTTP POST of a Node representation to the URL of an exist-
ing node http://rest-endpoint/nodes/path including:

• node: A Node containing the Node URI and a list of the Properties to
set (as defined in section 3.1)

This will add or update the node properties including any xsi:type specific
elements.

The operation is the union of existing values and new ones. An empty
value sets the value to blank. To delete a Property, set the xs:nil attribute
to true

This method cannot be used to modify the Node type.
This method cannot be used to modify the accepts or provides list of

Views for the Node.
This method cannot be used to create children of a container Node.

Response A HTTP 200 status code and a Node representation in the
entity-body The full expanded record for the node SHALL be returned, in-
cluding any xsi:type specific extensions.

Faults

• The service SHOULD throw a HTTP 500 status code including an
InternalFault fault in the entity-body if the operation fails

• The service SHALL throw a HTTP 403 status code including a Permis-
sionDenied fault in the entity-body if the request attempts to modify
a read-only Property

54

• The service SHALL throw a HTTP 403 status code including a Per-
missionDenied fault in the entity-body if the user does not have per-
missions to perform the operation

• The service SHALL throw a HTTP 404 status code including a Node-
NotFound fault in the entity-body if the target Node does not exist

• If a parent node in the URI path does not exist then the service SHALL
throw a HTTP 404 status code including a ContainerNotFound fault
in the entity-body

– For example, given the URI path /a/b/c, the service must throw
a HTTP 404 status code including a ContainerNotFound fault in
the entity-body if either /a or /a/b do not exist.

• The service SHALL throw a HTTP 400 status code including an In-
validArgument fault in the entity-body if a specified property value is
invalid

Example Set node metadata

The updated node (setNode.xml) is:
<node xmlns:xs="http://www.w3.org/2001/XMLSchema-instance" xsi:type="vos:

UnstructuredDataNode" xmlns:vos="http://www.ivoa.net/xml/VOSpace/v2.0" version
="2.1" uri="vos://nvo.caltech!vospace/mydata1">

<properties>
<property uri="ivo://ivoa.net/vospace/core#title" readOnly="false">Title for
my data</property>

</properties>
<accepts/>
<provides/>
<capabilities/>

</node>

Request:
> curl -v -X POST -d @setNode.xml -H "Content-type: text/xml" "http://server.

example.com/vospace/nodes/mydata1"

Response:
> POST /vospace/nodes/mydata1 HTTP/1.1
> Content-type: text/xml
>
< HTTP/1.1 200 OK
< Content-Type: text/xml
<
<?xml version="1.0" encoding="UTF-8"?>
<vos:node xmlns:vos="http://www.ivoa.net/xml/VOSpace/v2.0" xmlns:xs="http://www.w3

.org/2001/XMLSchema-instance" version="2.1" uri="vos://cadc.nrc.ca!vospace/
mydata1" xsi:type="vos:DataNode" busy="false">

<vos:properties>
<vos:property uri="ivo://ivoa.net/vospace/core#length" readOnly="true">44</vos
:property>
<vos:property uri="ivo://ivoa.net/vospace/core#MD5" readOnly="true">12
c13e49f2fd37e2c91bcca6acb78a08</vos:property>

55

<vos:property uri="ivo://ivoa.net/vospace/core#date" readOnly="true
">2015-05-24T23:02:10.397</vos:property>
<vos:property uri="ivo://ivoa.net/vospace/core#title" readOnly="false">Title
for my data</vos:property>

</vos:properties>
<vos:accepts>

<vos:view uri="ivo://ivoa.net/vospace/core#anyview"/>
</vos:accepts>
<vos:provides />

</vos:node>

6.4 Transferring data

Two modes are supported for external data transfers: a simple HTTP GET
to retrieve data from a service (pullFromVoSpace) and a more general mech-
anism which employs a UWS-based approach (Harrison and Rixon, 2010)
for submitting general data transfer requests (see section 3.6). In the latter,
four directions are specified in which external data transfers can happen:

• pushToVoSpace

For sending data to a service (upload from a client to a VOSpace)

• pullFromVoSpace

For reading data from a service (download from a VOSpace to a client)

• pullToVoSpace

For importing data into a service (download from one VOSpace to
another VOSpace)

• pushFromVoSpace

For sending data from a service (upload from one VOSpace to another
VOSpace)

A transfer job is created by a HTTP POST of an appropriate Job repre-
sentation to the transfers endpoint of the service: http://rest-endpoint/transfers.
The following example shows a transfer document for a pushToVoSpace op-
eration:
<vos:transfer xmlns:vos="http://www.ivoa.net/xml/VOSpace/v2.0" version="2.1">

<vos:target>vos://server.example.com!vospace/mydata1</vos:target>
<vos:direction>pushToVoSpace</vos:direction>
<vos:view uri="ivo://net.ivoa/vospace/core#fits"/>
<vos:protocol uri="ivo://net.ivoa/vospace/core#httpsput">

<vos:securityMethod uri="ivo://ivoa.net/sso#tls-with-certificate"/>
</vos:protocol>

</vos:transfer>

This example transfer job is making a request for an TLS endpoint that
supports client certificates that is to be used for performing an HTTP PUT
of a file.

56

The service returns a 303 redirect with the Location set to the URL
of the UWS jobid of the transfer. It can then be initiated with a HTTP
POST of the single parameter “PHASE=RUN” to the appropriate job
endpoint: http://rest-endpoint/transfers/(jobid)/phase. Alternatively the
transfer can also be run immediately on creation by adding the parameter
“PHASE=RUN” to the initial Job creation URL.

If the job creation POST is sent the synchronous transfer endpoint in-
stead (http://rest-endpoint/synctrans), then the Job is started immediately.

The status of any transfer can be obtained by polling the phase
endpoint for a particular transfer, i.e., a HTTP GET to http://rest-
endpoint/transfers/(jobid)/phase.

Once a transfer has completed, any results can be obtained by following
the link in the Results List available from the results endpoint for that trans-
fer, i.e., with a HTTP GET to http://rest-endpoint/transfers/(jobid)/results.
This pertains particularly to the transfer methods in which data is sent to or
read from a service-negotiated URL (pushToVoSpace and pullFromVoSpace).

A transfer can also be aborted at any stage with a HTTP POST of the
parameter “PHASE=ABORT” to the endpoint:
http://rest-endpoint/transfers/(jobid)/phase

The two write operations, pushToVoSpace and pullToVoSpace, should
set the busy flag on the Node to true while the operation is in progress. This
would have the consequence that the two read operations, pullFromVoSpace
and pushFromVoSpace, may fail on requests to that Node.

It is up to each specific transfer protocol or view to define how they
behave when invoked on a busy node.

During the negotiation of a transfer, a Node should only offer transfer
protocols that are valid at the point when the negotiation is taking place.

More specific details for each of the four directions are given in the sec-
tions following.

6.4.1 pushToVoSpace

Request a list of URLs to send data to a VOSpace node.
This method asks the server for a list of one or more URLs that the client

can use to send data to.
The data transfer is initiated by the client, after it has received the

response from the VOSpace service.
The primary use case for this method is client that wants to send some

data directly to a VOSpace service.
This operation is OPTIONAL.

57

Request An HTTP POST of a Job representation for the transfer to
http://rest-endpoint/transfers or http://rest-endpoint/synctrans

If a Node already exists at the target URI, then the data SHALL be
imported into the existing Node and the Node properties SHALL be cleared
unless the node is a ContainerNode.

If there is no Node at the target URI, then the service SHALL create a
new Node using the URI and the default xsi:type for the space.

The transfer representation contains details of the View and a list of the
Protocols (and, optionally, the preferred security method(s) per protocol)
that the client wants to use.

The list of Protocols SHOULD not contain endpoint addresses, the ser-
vice will supply the endpoint addresses in the response.

The service SHALL ignore any of the requested protocols and security
methods that it does not understand or is unable to support.

.auto is the reserved URI to indicate an auto-generated URI for the
destination, i.e., vos://service/path/.auto SHOULD cause a new unique URI
for the node within vos://service/path to be generated. If supported, this
URI SHALL be specified as a result in the Results list for the completed
transfer with the id of "target".

A pushToVoSpace transfer may be initiated with an HTTP POST of a
Job representation of the transfer to http://rest-endpoint/transfers. The ser-
vice SHALL respond with a redirect to the newly created job. (See Example
1)

A pushToVoSpace transfer may be initiated with an HTTP POST of a
Job representation of the transfer to http://rest-endpoint/synctrans. The
service SHALL respond with a redirect to the transfer details of the job.
(See Example 2)

A pushToVoSpace transfer may be initiated with an HTTP POST or
GET to http://rest-endpoint/synctrans with the following required URL
query parameters:

• TARGET : The value is the URI of the target node

– Example: vos://example.com∼vospace/mydata1

• DIRECTION : pushToVoSpace

• PROTOCOL: The standard URI of the protocol to use (see section
3.5.3)

– Example: ivo://ivoa.net/vospace/core#httpput

The following optional parameters may also be included:

• VIEW : The standard URI of the view to use

58

– Example: ivo://ivoa.net/vospace/core#fits

• SECURITYMETHOD : The standard URI of the security method to
use

– Example: ivo://ivoa.net/sso#tls-with-certificate

The service SHALL respond with the job containing the transfer results
in the response body. (See Example 3)

Response Redirect responses are a HTTP 303 status code with the Lo-
cation header keyword assigned to the created job. The service SHALL
select which of the requested Protocols it is willing to provide and fill in the
operational details for each one in the transfer result representation – this
SHOULD normally include specifying the destination URL of the transfer
protocol endpoint.

The transfer result SHOULD not include any Protocols or security meth-
ods that it is unable to support.

During the byte transfer for the pushToVoSpace operation, the service
SHOULD set the busy flag of the Node to true.

If the busy flag of the Node is already set to true, the service SHOULD
respond with a NodeBusy fault.

The transfer results representation can be retrieved directly from the
link reported in the Results List, available either from the results end-
point – http://rest-endpoint/transfers/(jobid)/results – or as part of the
full Job representation for the completed transfer available from http://rest-
endpoint/transfers/(jobid). The result element in the Results List SHALL
have an id of “transferDetails”:
<uws:job>
...

<uws:results>
<uws:result id="transferDetails" xlink:href="http://rest-endpoint/transfers/(
jobid)/results/transferDetails"/>

</uws:results>
...
</uws:job>

For synchronous job postings:

• A HTTP 303 status code with the Location header keyword assigned to
the endpoint: http://rest-endpoint/transfers/(jobid)/results/transferDetails.

The HTTP 303 redirect points to a transfer representation with the required
transfer details and endpoints.

For parameter based transfers, the transfer representation with the re-
quired transfer details and endpoints is returned directly in the response–no
redirect is issued.

59

Faults For all faults using the UWS mode, the service shall set the PHASE
to “ERROR” in the Job representation. The <errorSummary> element
in the Job representation shall be set to the appropriate value for the fault
type and the appropriate fault representation provided at the error URI:
http://rest-endpoint/transfers/(jobid)/error.

Fault description errorSummary Fault representation
Operation not supported Operation Not Supported OperationNotSupported
Operation fails Internal Fault InternalFault
User does not have permis-
sions to perform the operation

Permission Denied PermissionDenied

Service does not support the
requested View

View Not Supported ViewNotSupported

Service supports none of the
requested Protocols

Protocol Not Supported ProtocolNotSupported

A View parameter is invalid Invalid Argument InvalidArgument
A Protocol parameter is in-
valid

Invalid Argument InvalidArgument

The busy flag of the Node is
true

Node Busy NodeBusy

If an error occurs with the synchronous convenience mode, the resulting
transfers document SHOULD have no protocols. The client can then retrieve
the Job representation for error information as with asynchronous transfers.

Example 1 pushToVoSpace over the asynchronous endpoint

The Job to be submitted (pushToVoSpace.xml):
<vos:transfer xmlns:vos="http://www.ivoa.net/xml/VOSpace/v2.0" version="2.1">

<vos:target>vos://example.com!vospace/mydata1</vos:target>
<vos:direction>pushToVoSpace</vos:direction>
<vos:view uri="ivo://ivoa.net/vospace/core#fits"/>
<vos:protocol uri="ivo://ivoa.net/vospace/core#httpput" />
<vos:param uri="ivo://ivoa.net/vospace/core#length">388943</vos:param>

</vos:transfer>

Request:
> curl -v -X POST -d @pushToVoSpace.xml -H "Content-type: text/xml" "http://server

.example.com/vospace/transfers"

Response:
> POST /vospace/transfers HTTP/1.1
> Content-type: text/xml
>
< HTTP/1.1 303 See Other
< Location: http://server.example.com/vospace/transfers/zkqzpftmufdi8luh
< Content-Type: text/plain
<

60

The PENDING job can be seen by following the redirect to:
> curl -v http://server.example.com/vospace/transfers/zkqzpftmufdi8luh

Response:
> GET /vospace/transfers/zkqzpftmufdi8luh HTTP/1.1
>
< HTTP/1.1 200 OK
< Content-Type: text/xml
<
<?xml version="1.0" encoding="UTF-8"?>
<uws:job xmlns:uws="http://www.ivoa.net/xml/UWS/v1.0" xmlns:xlink="http://www.w3.

org/1999/xlink">
<uws:jobId>zkqzpftmufdi8luh</uws:jobId>
<uws:phase>PENDING</uws:phase>
<uws:quote>2015-05-26T11:06:45.713</uws:quote>
<uws:startTime xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xs:nil="

true" />
<uws:endTime xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xs:nil="true"

/>
<uws:executionDuration>43200</uws:executionDuration>
<uws:destruction>2015-06-01T23:06:45.713</uws:destruction>
<uws:parameters />
<uws:results />
<uws:jobInfo>

<vos:transfer xmlns:vos="http://www.ivoa.net/xml/VOSpace/v2.0" version="2.1">
<vos:target>vos://example.com!vospace/mydata1</vos:target>
<vos:direction>pushToVoSpace</vos:direction>
<vos:view uri="ivo://ivoa.net/vospace/core#fits" />
<vos:protocol uri="ivo://ivoa.net/vospace/core#httpput" />

</vos:transfer>
</uws:jobInfo>

</uws:job>

The job can now be started by posting PHASE=RUN:
curl -v -X POST -d "PHASE=RUN" http://server.example.com/vospace/transfers/

zkqzpftmufdi8luh/phase

Response:
> POST /vospace/transfers/zkqzpftmufdi8luh/phase HTTP/1.1
> Content-Type: text/xml
>
< HTTP/1.1 303 See Other
< Location: http://server.examle.com/vospace/transfers/zkqzpftmufdi8luh
< Content-Type: text/plain
<

The EXECUTING job can be seen by following the redirect to:
http://server.examle.com/vospace/transfers/zkqzpftmufdi8luh

Response:
> GET /vospace/transfers/zkqzpftmufdi8luh HTTP/1.1
>
< HTTP/1.1 200 OK
< Content-Type: text/xml
<
<?xml version="1.0" encoding="UTF-8"?>
<uws:job xmlns:uws="http://www.ivoa.net/xml/UWS/v1.0" xmlns:xlink="http://www.w3.

org/1999/xlink">

61

<uws:jobId>zkqzpftmufdi8luh</uws:jobId>
<uws:phase>EXECUTING</uws:phase>
<uws:quote>2015-05-26T11:06:45.713</uws:quote>
<uws:startTime>2015-05-25T23:17:41.217</uws:startTime>
<uws:endTime xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xs:nil="true"

/>
<uws:executionDuration>43200</uws:executionDuration>
<uws:destruction>2015-06-01T23:06:45.713</uws:destruction>
<uws:parameters />
<uws:results>

<uws:result id="transferDetails" xlink:href="http://server.example.com/vospace
/transfers/zkqzpftmufdi8luh/results/transferDetails" />
<uws:result id="dataNode" xlink:href="vos://example.com!vospace/mydata1" />

</uws:results>
<uws:jobInfo>

<vos:transfer xmlns:vos="http://www.ivoa.net/xml/VOSpace/v2.0" version="2.1">
<vos:target>vos://example.com!vospace/mydata1</vos:target>
<vos:direction>pushToVoSpace</vos:direction>
<vos:view uri="ivo://ivoa.net/vospace/core#fits" />
<vos:protocol uri="ivo://ivoa.net/vospace/core#httpput" />

</vos:transfer>
</uws:jobInfo>

</uws:job>

The details of the transfer negotiation can be see by following the transfer-
Details result:
> curl -v http://server.example.com/vospace/transfers/zkqzpftmufdi8luh/results/

transferDetails

Response:
> GET /vospace/transfers/zkqzpftmufdi8luh/results/transferDetails HTTP/1.1
>
< HTTP/1.1 200 OK
< Content-Type: text/xml
<
<?xml version="1.0" encoding="UTF-8"?>
<vos:transfer xmlns:vos="http://www.ivoa.net/xml/VOSpace/v2.0" version="2.1">

<vos:target>vos://example.com!vospace/mydata1</vos:target>
<vos:direction>pushToVoSpace</vos:direction>
<vos:protocol uri="ivo://ivoa.net/vospace/core#httpput">

<vos:endpoint>http://storage1.example.com/trans/mydata1</vos:endpoint>
</vos:protocol>
<vos:protocol uri="ivo://ivoa.net/vospace/core#httpput">

<vos:endpoint>http://storage2.example.com/mydata1</vos:endpoint>
</vos:protocol>

</vos:transfer>

The FITS file can now be pushed over HTTP PUT to one of the endpoints
listed in the transfer details.
> curl -v -T mydata1 "http://storage1.example.com/mydata1"

Response:
> PUT /trans/mydata1 HTTP/1.1
>
< HTTP/1.1 100 Continue
< HTTP/1.1 200 OK
< Content-Type: text/plain
<

62

On successful file transfer completion the job will be COMPLETED:
curl -v http://server.examle.com/vospace/transfers/zkqzpftmufdi8luh/phase

Response:
> GET /vospace/transfers/zkqzpftmufdi8luh/phase HTTP/1.1
>
< HTTP/1.1 200 OK
< Content-Type: text/plain
<
COMPLETED

Example 2 pushToVoSpace over the synchronous endpoint

The Job to be submitted (pushToVoSpace.xml):
<vos:transfer xmlns:vos="http://www.ivoa.net/xml/VOSpace/v2.0" version="2.1">

<vos:target>vos://example.com!vospace/mydata1</vos:target>
<vos:direction>pushToVoSpace</vos:direction>
<vos:view uri="ivo://ivoa.net/vospace/core#fits"/>
<vos:protocol uri="ivo://ivoa.net/vospace/core#httpput" />

</vos:transfer>

Request:
> curl -v -X POST -d @pushToVoSpace.xml -H "Content-type: text/xml" "http://server

.example.com/vospace/synctrans"

Response:
> POST /vospace/synctrans HTTP/1.1
> Content-Type: text/xml
>
< HTTP/1.1 303 See Other
< Location: http://server.example.com/vospace/transfers/zkqzpftmufdi8luh/results/

transferDetails
< Content-Type: text/plain
<

The negotiated transfer details can be seen by following the redirect to:
http://server.examlpe.com/vospace/transfers/zkqzpftmufdi8luh/results/

transferDetails

Request:
> curl -v http://server.example.com/vospace/transfers/zkqzpftmufdi8luh/results/

transferDetails

Response:
> GET /vospace/transfers/zkqzpftmufdi8luh/results/transferDetails HTTP/1.1
>
< HTTP/1.1 200 OK
< Content-Type: text/xml;UTF-8
<
<?xml version="1.0" encoding="UTF-8"?>
<vos:transfer xmlns:vos="http://www.ivoa.net/xml/VOSpace/v2.0" version="2.1">

<vos:target>vos://example.com!vospace/mydata1</vos:target>
<vos:direction>pushToVoSpace</vos:direction>
<vos:protocol uri="ivo://ivoa.net/vospace/core#httpput">

<vos:endpoint>http://storage1.example.com/trans/mydata1</vos:endpoint>

63

</vos:protocol>
<vos:protocol uri="ivo://ivoa.net/vospace/core#httpput">
<vos:endpoint>http://storage2.example.com/mydata1</vos:endpoint>

</vos:protocol>
</vos:transfer>

Example 3 pushToVoSpace over the synchronous endpoint with securi-
tyMethod

A transfer request for endpoints supporting basic authentication over HTTP
or TLS with a client certificate over SSL.
The Job to be submitted (pushToVoSpace.xml):
<vos:transfer xmlns:vos="http://www.ivoa.net/xml/VOSpace/v2.0" version="2.1">

<vos:target>vos://example.com!vospace/mydata1</vos:target>
<vos:direction>pushToVoSpace</vos:direction>
<vos:view uri="ivo://ivoa.net/vospace/core#fits"/>
<vos:protocol uri="ivo://ivoa.net/vospace/core#httpsput">

<vos:securityMethod uri="ivo://ivoa.net/sso#tls-with-certificate"/>
</vos:protocol>
<vos:protocol uri="ivo://ivoa.net/vospace/core#httpput">

<vos:securityMethod uri="uri="http://www.w3.org/Protocols/HTTP/1.0/spec/html
#BasicAA"/>

</vos:protocol>
</vos:transfer>

Request:
> curl -v -X POST -d @pushToVoSpace.xml -H "Content-type: text/xml" "http://server

.example.com/vospace/synctrans"

Response:
> POST /vospace/synctrans HTTP/1.1
> Content-Type: text/xml
>
< HTTP/1.1 303 See Other
< Location: http://server.example.com/vospace/transfers/zkqzpftmufdi8luh/results/

transferDetails
< Content-Type: text/plain
<

The negotiated transfer details can be seen by following the redirect to:
http://server.example.com/vospace/transfers/zkqzpftmufdi8luh/results/

transferDetails

Request:
> curl -v http://server.example.come/vospace/transfers/zkqzpftmufdi8luh/results/

transferDetails

Response:
> GET /vospace/transfers/zkqzpftmufdi8luh/results/transferDetails HTTP/1.1
>
< HTTP/1.1 200 OK
< Content-Type: text/xml
<
<?xml version="1.0" encoding="UTF-8"?>
<vos:transfer xmlns:vos="http://www.ivoa.net/xml/VOSpace/v2.0" version="2.1">

64

<vos:target>vos://example.com!vospace/mydata1</vos:target>
<vos:direction>pushToVoSpace</vos:direction>
<vos:protocol uri="ivo://ivoa.net/vospace/core#httpsput">
<vos:endpoint>https://storage1.example.com/trans/mydata1</vos:endpoint>
<vos:securityMethod uri="ivo://ivoa.net/sso#tls-with-certificate"/>

</vos:protocol>
</vos:transfer>

The service has replied with a single HTTPS endpoint that support TLS
with client certificates.

Example 4 pushToVoSpace over the synchronous endpoint with URL pa-
rameters

Request:
curl -v -X POST "http://server.example.com/vospace/synctrans?TARGET=vos://example.

com~vospace/mydata1&DIRECTION=pushToVoSpace&PROTOCOL=ivo://ivoa.net/vospace/
core%23httpput"

(Note that the # sign in PROTOCOL is URL encoded as %23 and that the
alternate separator ‘∼’ is used instead of ‘ !’ in the TARGET)

Response:
> POST /vospace/synctrans?TARGET=vos://example.com~vospace/mydata1&DIRECTION=

pushToVoSpace&PROTOCOL=ivo://ivoa.net/vospace/core\%23httpput HTTP/1.1
>
< HTTP/1.1 200 OK
< Content-Type: text/xml
<
<?xml version="1.0" encoding="UTF-8"?>
<vos:transfer xmlns:vos="http://www.ivoa.net/xml/VOSpace/v2.0" version="2.1">

<vos:target>vos://example.com!vospace/mydata1</vos:target>
<vos:direction>pushToVoSpace</vos:direction>
<vos:protocol uri="ivo://ivoa.net/vospace/core#httpput">

<vos:endpoint>http://storage1.example.com/trans/mydata1</vos:endpoint>
</vos:protocol>
<vos:protocol uri="ivo://ivoa.net/vospace/core#httpput">

<vos:endpoint>http://storage2.example.com/mydata1</vos:endpoint>
</vos:protocol>

</vos:transfer>

6.4.2 pullToVoSpace

Import data into a VOSpace node.
This method asks the server to fetch data from a remote location.
The data transfer is initiated by the VOSpace service and transferred

direct into the target Node.
The data source can be another VOSpace service, or a standard HTTP

or FTP server.
The primary use case for this method is transferring data from one server

or service to another.
This operation is OPTIONAL.

65

Request A HTTP POST of a Job representation for the transfer to
http://rest-endpoint/transfers

If a Node already exists at the target URI, then the data SHALL be
imported into the existing Node and the Node properties SHALL be cleared
unless the node is a ContainerNode.

If there is no Node at the target URI, then the service SHALL create a
new Node using the URI, and the default xsi:type for the space.

Response The initial response is a HTTP 303 status code with the Location
header keyword assigned to the created job.

During the byte transfer for the pullToVoSpace operation, the service
SHOULD set the busy flag of the Node to true.

If the busy flag of the Node is already set to true, the service SHOULD
respond with a NodeBusy fault.

Faults For all faults, the service shall set the PHASE to “ERROR” in
the Job representation. The <errorSummary> element in the Job rep-
resentation shall be set to the appropriate value for the fault type and
the appropriate fault representation provided at the error URI: http://rest-
endpoint/transfers/(jobid)/error.

Fault description errorSummary Fault representation
Operation not supported Operation Not Supported OperationNotSupported
Operation fails Internal Fault InternalFault
User does not have permis-
sions to perform the operation

Permission Denied PermissionDenied

Service does not support the
requested View

View Not Supported ViewNotSupported

Service supports none of the
requested Protocols

Protocol Not Supported ProtocolNotSupported

Destination URI is invalid Invalid URI InvalidURI
A View parameter is invalid Invalid Argument InvalidArgument
A Protocol parameter is in-
valid

Invalid Argument InvalidArgument

Data format does not match
the requested View

Invalid Data InvalidData

The busy flag of the Node is
true

Node Busy NodeBusy

Notes If the Job request contains more than one protocol parameter, then
the service MAY fail over to use one or more of the options if the first

66

one fails. The service SHOULD try each protocol option in turn until one
succeeds or all have been tried.

Example pullToVoSpace

The Job to be submitted (pullToVoSpace.xml):
<vos:transfer xmlns:vos="http://www.ivoa.net/xml/VOSpace/v2.0" version="2.1">

<vos:target>vos://example.com!vospace/mydata1</vos:target>
<vos:direction>pullToVoSpace</vos:direction>
<vos:protocol uri="ivo://ivoa.net/vospace/core#httpput">
<vos:endpoint>http://anotherserver.example.com/here/is/the/data</vos:endpoint>

</vos:protocol>
</vos:transfer>

Request:
> curl -v -X POST -d @pullToVoSpace.xml -H "Content-type: text/xml" "http://server

.example.com/vospace/transfers"

Response:
> POST /vospace/transfers HTTP/1.1
> Content-type: text/xml
>
< HTTP/1.1 303 See Other
< Location: http://server.example.com/vospace/transfers/m4ipu36gairz0dnl
< Content-Type: text/plain
<

* Closing connection #0

The PENDING job can be seen by following the redirect to:
> curl -v http://server.example.com/vospace/transfers/m4ipu36gairz0dnl

Response:
> GET /vospace/transfers/m4ipu36gairz0dnl HTTP/1.1
>
< HTTP/1.1 200 OK
< Content-Type: text/xml
<
<?xml version="1.0" encoding="UTF-8"?>
<uws:job xmlns:uws="http://www.ivoa.net/xml/UWS/v1.0" xmlns:xlink="http://www.w3.

org/1999/xlink">
<uws:jobId>m4ipu36gairz0dnl</uws:jobId>
<uws:phase>PENDING</uws:phase>
<uws:quote>2015-05-26T11:06:45.713</uws:quote>
<uws:startTime xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xs:nil="

true" />
<uws:endTime xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xs:nil="true"

/>
<uws:executionDuration>43200</uws:executionDuration>
<uws:destruction>2015-06-01T23:06:45.713</uws:destruction>
<uws:parameters />
<uws:results />
<uws:jobInfo>

<vos:transfer xmlns:vos="http://www.ivoa.net/xml/VOSpace/v2.0" version="2.1">
<vos:target>vos://example.com!vospace/mydata1</vos:target>
<vos:direction>pullToVoSpace</vos:direction>
<vos:protocol uri="ivo://ivoa.net/vospace/core#httpput">

67

<vos:endpoint>http://anotherserver.example.com/here/is/the/data</vos:
endpoint>
</vos:protocol>

</vos:transfer>
</uws:jobInfo>

</uws:job>

The job can now be started by posting PHASE=RUN:
curl -v -X POST -d "PHASE=RUN" http://server.example.com/vospace/transfers/

m4ipu36gairz0dnl/phase

Response:
> POST /vospace/transfers/m4ipu36gairz0dnl/phase HTTP/1.1
> Content-Type: text/xml
>
< HTTP/1.1 303 See Other
< Location: http://server.examle.com/vospace/transfers/m4ipu36gairz0dnl
< Content-Type: text/plain
<

The EXECUTING job can be seen by following the redirect to:
http://server.examle.com/vospace/transfers/m4ipu36gairz0dnl

Response:
> GET /vospace/transfers/m4ipu36gairz0dnl HTTP/1.1
>
< HTTP/1.1 200 OK
< Content-Type: text/xml
<
<?xml version="1.0" encoding="UTF-8"?>
<uws:job xmlns:uws="http://www.ivoa.net/xml/UWS/v1.0" xmlns:xlink="http://www.w3.

org/1999/xlink">
<uws:jobId>m4ipu36gairz0dnl</uws:jobId>
<uws:phase>EXECUTING</uws:phase>
<uws:quote>2015-05-26T11:06:45.713</uws:quote>
<uws:startTime>2015-05-25T23:17:41.217</uws:startTime>
<uws:endTime xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xs:nil="true"

/>
<uws:executionDuration>43200</uws:executionDuration>
<uws:destruction>2015-06-01T23:06:45.713</uws:destruction>
<uws:parameters />
<uws:results>

<uws:result id="transferDetails" xlink:href="http://server.example.com/vospace
/transfers/m4ipu36gairz0dnl/results/transferDetails" />
<uws:result id="dataNode" xlink:href="vos://example.com!vospace/mydata1" />

</uws:results>
<uws:jobInfo>

<vos:transfer xmlns:vos="http://www.ivoa.net/xml/VOSpace/v2.0" version="2.1">
<vos:target>vos://example.com!vospace/mydata1</vos:target>
<vos:direction>pullToVoSpace</vos:direction>
<vos:protocol uri="ivo://ivoa.net/vospace/core#httpput">

<vos:endpoint>http://anotherserver.example.com/here/is/the/data</vos:
endpoint>
</vos:protocol>

</vos:transfer>
</uws:jobInfo>

</uws:job>

68

6.4.3 pullFromVoSpace

Request a set of URLs that the client can read data from.
The client requests access to the data in a Node, and the server SHALL

respond with a set of URLs that the client can read the data from.

Request A HTTP POST of a Job representation for the transfer to
http://rest-endpoint/transfers or http://rest-endpoint/synctrans. The trans-
fer representation SHOULD contain details of the View and a list of the
Protocols that the client would like to use.

The list of Protocols SHOULD not contain endpoint addresses; the ser-
vice SHALL supply the endpoint addresses in the response.

The service SHALL ignore any of the requested protocols and security
methods that it does not understand or is unable to support.

A pullFromVoSpace transfer may be initiated with an HTTP POST of a
Job representation of the transfer to http://rest-endpoint/transfers. The ser-
vice SHALL respond with a redirect to the newly created job. (See Example
1)

A pullFromVoSpace transfer may be initiated with an HTTP POST of
a Job representation of the transfer to http://rest-endpoint/synctrans. The
service SHALL respond with a redirect to the transfer details of the job.
(See Example 2)

A pullFromVoSpace transfer may be initiated with an HTTP POST or
GET to http://rest-endpoint/synctrans with the following URL query pa-
rameters:

• TARGET : The value is the URI of the target node

– Example: vos://example.com∼vospace/mydata1

• DIRECTION : pullFromVoSpace

• PROTOCOL: The standard URI of the protocol to use (see section
3.5.3)

– Example: ivo://ivoa.net/vospace/core#httpget

The following optional parameters may also be included:

• VIEW : The standard URI of the view to use

– Example: ivo://ivoa.net/vospace/core#cutoutview

• SECURITYMETHOD : The standard URI of the security method to
use

– Example: ivo://ivoa.net/sso#tls-with-certificate

69

• REQUEST=redirect : If supplied, the service will issue an immediate
redirect to the preferred endpoint matching the transfer request.

The service SHALL respond with the job containing the transfer results
in the response body. (See Example 3) If the parameter key value RE-
QUEST=redirect is included with the other transfer parameters, the service
SHALL respond with an immediate redirect to the preferred protocol end-
point for data download. (See Example 4)

There is also an alternate convenience mode of for full data download us-
ing view=data on the http://rest-endpoint/nodes resource (This alternative
is now deprecated and will be removed in v3.0. This convenience mode has
been replaced with the REQUEST=redirect functionality)

• A HTTP GET to the node URL that wants to be read with a parameter
of "view = data":
http://rest-endpoint/nodes/path?view=data

Clients may also use the "view" parameter on the getNode operation.
Services may support different types of views for particular purposes. e.g.,
"view=rss" to identify a RSS feed on the resource.

Response The initial response for the UWS mode is a HTTP 303 status
code with the Location header keyword assigned to the created job The ser-
vice SHALL select which of the requested Protocols it is willing to provide
and fill in the operational details for each one in the transfer result represen-
tation – this SHOULD normally include specifying the source URL of the
transfer protocol endpoint.

The service response SHOULD not include any Protocols that it is unable
to support.

If the busy flag of the Node is set to true, the service MAY respond with
a NodeBusy fault.

The transfer results representation can be retrieved directly from the
link reported in the Results List, available either from the results end-
point – http://rest-endpoint/transfers/(jobid)/results – or as part of the
full Job representation for the completed transfer available from http://rest-
endpoint/transfers/(jobid). In the latter case, the result element in the Re-
sults List SHALL have an id of “transferDetails”:
<uws:job>
...

<uws:results>
<uws:result id="transferDetails" xlink:href="http://rest-endpoint/transfers/(
jobid)/results/transferDetails"/>

</uws:results>
...
< /uws:job>

70

If the transfer was initiated with a HTTP POST to http://rest-endpoint/sync
then the response is:

• A HTTP 303 status code with the Location header keyword assigned to
the endpoint: http://rest-endpoint/transfers/(jobid)/results/transferDetails.

The HTTP 303 redirect points to a transfer representation with the re-
quired transfer details and endpoints. If the transfer was initiated with a
HTTP POST to http://rest-endpoint/sync with transfer information TAR-
GET, DIRECTION, and PROTOCOL supplied as query string parameters,
the service may respond with the transfer details directly. If the parameter
REQUEST=redirect is also provided in this POST, then the service may
respond with a redirect to a preferred endpoint (example below).

Faults For all faults using the UWS mode, the service shall set the PHASE
to “ERROR” in the Job representation. The <errorSummary> element
in the Job representation shall be set to the appropriate value for the fault
type and the appropriate fault representation provided at the error URI:
http://rest-endpoint/transfers/(jobid)/error.

Fault description errorSummary Fault representation
Operation fails Internal Fault InternalFault
User does not have permis-
sions to perform the operation

Permission Denied PermissionDenied

Source Node does not exist Node Not Found NodeNotFound
Service does not support the
requested View

View Not Supported ViewNotSupported

Service supports none of the
requested Protocols

Protocol Not Supported ProtocolNotSupported

Destination URI is invalid Invalid URI InvalidURI
A View parameter is invalid Invalid Argument InvalidArgument
A Protocol parameter is in-
valid

Invalid Argument InvalidArgument

The busy flag of the Node is
true

Node Busy NodeBusy

If an error occurs with the synchronous convenience mode, the resulting
transfers document SHOULD have no protocols. The client can then retrieve
the Job representation for error information as with asynchronous transfers.

If an error occurs with the synchronous convenience mode where the pre-
ferred endpoint is immediately returned as a redirect, the error information
is returned directly in the response body with the associated HTTP status
code.

71

Notes The endpoint URLs supplied in the UWS response SHOULD be
considered as ’one shot’ URLs. A VOSpace service connected to a standard
web server MAY return the public URL for the data. However, a different
implementation MAY create a unique single use URL specifically for this
transfer.

Example 1 pullFromVoSpace over the asynchronous endpoint

The Job to be submitted (pullFromVoSpace.xml):
<vos:transfer xmlns:vos="http://www.ivoa.net/xml/VOSpace/v2.0" version="2.1">

<vos:target>vos://example.com!vospace/mydata1</vos:target>
<vos:direction>pullFromVoSpace</vos:direction>
<vos:protocol uri="ivo://ivoa.net/vospace/core#httpget" />

</vos:transfer>

Request:
> curl -v -X POST -d @pullFromVoSpace.xml -H "Content-type: text/xml" "http://

server.example.com/vospace/transfers"

Response:
> POST /vospace/transfers HTTP/1.1
> Content-type: text/xml
>
< HTTP/1.1 303 See Other
< Location: http://server.example.com/vospace/transfers/m4ipu36gairz0dnl
< Content-Type: text/plain
<

* Closing connection #0

The PENDING job can be seen by following the redirect to:
> curl -v http://server.example.com/vospace/transfers/m4ipu36gairz0dnl

Response:
> GET /vospace/transfers/m4ipu36gairz0dnl HTTP/1.1
>
< HTTP/1.1 200 OK
< Content-Type: text/xml
<
<?xml version="1.0" encoding="UTF-8"?>
<uws:job xmlns:uws="http://www.ivoa.net/xml/UWS/v1.0" xmlns:xlink="http://www.w3.

org/1999/xlink">
<uws:jobId>m4ipu36gairz0dnl</uws:jobId>
<uws:phase>PENDING</uws:phase>
<uws:quote>2015-05-26T11:06:45.713</uws:quote>
<uws:startTime xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xs:nil="

true" />
<uws:endTime xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xs:nil="true"

/>
<uws:executionDuration>43200</uws:executionDuration>
<uws:destruction>2015-06-01T23:06:45.713</uws:destruction>
<uws:parameters />
<uws:results />
<uws:jobInfo>

<vos:transfer xmlns:vos="http://www.ivoa.net/xml/VOSpace/v2.0" version="2.1">
<vos:target>vos://example.com!vospace/mydata1</vos:target>
<vos:direction>pullFromVoSpace</vos:direction>

72

<vos:protocol uri="ivo://ivoa.net/vospace/core#httpget" />
</vos:transfer>

</uws:jobInfo>
</uws:job>

The job can now be started by posting PHASE=RUN:
curl -v -X POST -d "PHASE=RUN" http://server.example.com/vospace/transfers/

m4ipu36gairz0dnl/phase

Response:
> POST /vospace/transfers/m4ipu36gairz0dnl/phase HTTP/1.1
> Content-Type: text/xml
>
< HTTP/1.1 303 See Other
< Location: http://server.examle.com/vospace/transfers/m4ipu36gairz0dnl
< Content-Type: text/plain
<

The EXECUTING job can be seen by following the redirect to:
http://server.examle.com/vospace/transfers/m4ipu36gairz0dnl

Response:
> GET /vospace/transfers/m4ipu36gairz0dnl HTTP/1.1
>
< HTTP/1.1 200 OK
< Content-Type: text/xml
<
<?xml version="1.0" encoding="UTF-8"?>
<uws:job xmlns:uws="http://www.ivoa.net/xml/UWS/v1.0" xmlns:xlink="http://www.w3.

org/1999/xlink">
<uws:jobId>m4ipu36gairz0dnl</uws:jobId>
<uws:phase>EXECUTING</uws:phase>
<uws:quote>2015-05-26T11:06:45.713</uws:quote>
<uws:startTime>2015-05-25T23:17:41.217</uws:startTime>
<uws:endTime xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xs:nil="true"

/>
<uws:executionDuration>43200</uws:executionDuration>
<uws:destruction>2015-06-01T23:06:45.713</uws:destruction>
<uws:parameters />
<uws:results>

<uws:result id="transferDetails" xlink:href="http://server.example.com/vospace
/transfers/m4ipu36gairz0dnl/results/transferDetails" />
<uws:result id="dataNode" xlink:href="vos://example.com!vospace/mydata1" />

</uws:results>
<uws:jobInfo>

<vos:transfer xmlns:vos="http://www.ivoa.net/xml/VOSpace/v2.0" version="2.1">
<vos:target>vos://example.com!vospace/mydata1</vos:target>
<vos:direction>pullFromVoSpace</vos:direction>
<vos:protocol uri="ivo://ivoa.net/vospace/core#httpget" />

</vos:transfer>
</uws:jobInfo>

</uws:job>

The details of the transfer negotiation can be see by following the transfer-
Details result:
> curl -v http://server.example.com/vospace/transfers/m4ipu36gairz0dnl/results/

transferDetails

73

Response:
> GET /vospace/transfers/m4ipu36gairz0dnl/results/transferDetails HTTP/1.1
>
< HTTP/1.1 200 OK
< Content-Type: text/xml
<
<?xml version="1.0" encoding="UTF-8"?>
<vos:transfer xmlns:vos="http://www.ivoa.net/xml/VOSpace/v2.0" version="2.1">

<vos:target>vos://example.com!vospace/mydata1</vos:target>
<vos:direction>pullFromVoSpace</vos:direction>
<vos:protocol uri="ivo://ivoa.net/vospace/core#httpget">

<vos:endpoint>http://storage1.example.com/trans/mydata1</vos:endpoint>
</vos:protocol>
<vos:protocol uri="ivo://ivoa.net/vospace/core#httpget">

<vos:endpoint>http://storage2.example.com/mydata1</vos:endpoint>
</vos:protocol>

</vos:transfer>

The file can now be retrieved over HTTP GET from one of the endpoints
listed in the transfer details.
> curl -v -o mydata1 "http://storage1.example.com/mydata1"

Response:
> GET /mydata1 HTTP/1.1
>
< HTTP/1.1 200 OK
< Content-Type: text/plain
<
[data not shown]

On successful file transfer completion the job will be COMPLETED:
curl -v http://server.examle.com/vospace/transfers/m4ipu36gairz0dnl/phase

Response:
> GET /vospace/transfers/m4ipu36gairz0dnl/phase HTTP/1.1
>
< HTTP/1.1 200 OK
< Content-Type: text/plain
<
COMPLETED

Example 2 pullFromVoSpace over the synchronous endpoint

The Job to be submitted (pullFromVoSpace.xml):
<vos:transfer xmlns:vos="http://www.ivoa.net/xml/VOSpace/v2.0" version="2.1">

<vos:target>vos://example.com!vospace/mydata1</vos:target>
<vos:direction>pullFromVoSpace</vos:direction>
<vos:protocol uri="ivo://ivoa.net/vospace/core#httpget" />

</vos:transfer>

Request:
> curl -v -X POST -d @pullFromVoSpace.xml -H "Content-type: text/xml" "http://

server.example.com/vospace/synctrans"

Response:

74

> POST /vospace/synctrans HTTP/1.1
> Content-Type: text/xml
>
< HTTP/1.1 303 See Other
< Location: http://server.example.com/vospace/transfers/m4ipu36gairz0dnl/results/

transferDetails
< Content-Type: text/plain
<

The negotiated transfer details can be seen by following the redirect to:
http://server.examlpe.com/vospace/transfers/m4ipu36gairz0dnl/results/

transferDetails

Request:
> curl -v http://server.example.com/vospace/transfers/m4ipu36gairz0dnl/results/

transferDetails

Response:
> GET /vospace/transfers/m4ipu36gairz0dnl/results/transferDetails HTTP/1.1
>
< HTTP/1.1 200 OK
< Content-Type: text/xml
<
<?xml version="1.0" encoding="UTF-8"?>
<vos:transfer xmlns:vos="http://www.ivoa.net/xml/VOSpace/v2.0" version="2.1">

<vos:target>vos://example.com!vospace/mydata1</vos:target>
<vos:direction>pullFromVoSpace</vos:direction>
<vos:protocol uri="ivo://ivoa.net/vospace/core#httpget">

<vos:endpoint>http://storage1.example.com/trans/mydata1</vos:endpoint>
</vos:protocol>
<vos:protocol uri="ivo://ivoa.net/vospace/core#httpget">

<vos:endpoint>http://storage2.example.com/mydata1</vos:endpoint>
</vos:protocol>

</vos:transfer>

The file can be retrieved with an HTTP GET to one of the endpoints:
curl -v -o mydata1 http://storage1.example.com/mydata1

Response:
> GET /mydata1 HTTP/1.1
>
< HTTP/1.1 200 OK
< Content-Type: text/plain
<
[data not shown]

Example 3 pullFromVoSpace over the synchronous endpoint with securi-
tyMethod

A transfer request for endpoints supporting basic authentication over HTTP
or TLS with a client certificate over SSL.
The Job to be submitted (pullFromVoSpace.xml):
<vos:transfer xmlns:vos="http://www.ivoa.net/xml/VOSpace/v2.0" version="2.1">

<vos:target>vos://example.com!vospace/mydata1</vos:target>
<vos:direction>pullFromVoSpace</vos:direction>

75

<vos:protocol uri="ivo://ivoa.net/vospace/core#httpsget">
<vos:securityMethod uri="ivo://ivoa.net/sso#tls-with-certificate"/>

</vos:protocol>
<vos:protocol uri="ivo://ivoa.net/vospace/core#httpget">

<vos:securityMethod uri="uri="http://www.w3.org/Protocols/HTTP/1.0/spec/html
#BasicAA"/>

</vos:protocol>
</vos:transfer>

Request:
> curl -v -X POST -d @pullFromVoSpace.xml -H "Content-type: text/xml" "http://

server.example.com/vospace/synctrans"

Response:
> POST /vospace/synctrans HTTP/1.1
> Content-Type: text/xml
>
< HTTP/1.1 303 See Other
< Location: http://server.example.com/vospace/transfers/zkqzpftmufdi8luh/results/

transferDetails
< Content-Type: text/plain
<

The negotiated transfer details can be seen by following the redirect to:
http://server.examlpe.com/vospace/transfers/zkqzpftmufdi8luh/results/

transferDetails

Request:
> curl -v http://server.example.com/vospace/transfers/zkqzpftmufdi8luh/results/

transferDetails

Response:
> GET /vospace/transfers/zkqzpftmufdi8luh/results/transferDetails HTTP/1.1
>
< HTTP/1.1 200 OK
< Content-Type: text/xml
<
<?xml version="1.0" encoding="UTF-8"?>
<vos:transfer xmlns:vos="http://www.ivoa.net/xml/VOSpace/v2.0" version="2.1">

<vos:target>vos://example.com!vospace/mydata1</vos:target>
<vos:direction>pullFromVoSpace</vos:direction>
<vos:protocol uri="ivo://ivoa.net/vospace/core#httpsget">

<vos:endpoint>https://storage1.example.com/trans/mydata1</vos:endpoint>
<vos:securityMethod uri="ivo://ivoa.net/sso#tls-with-certificate"/>

</vos:protocol>
</vos:transfer>

The service has replied with a single HTTPS endpoint that support TLS
with client certificates.
The file can be retrieved with an HTTPS GET to the endpoint:
curl -v -o mydata1 -E mycert.pem https://storage1.example.com/mydata1

Response:
> GET /mydata1 HTTP/1.1
>
< HTTP/1.1 200 OK

76

< Content-Type: text/plain
<
[data not shown]

Example 4 pullFromVoSpace over the synchronous endpoint with URL pa-
rameters

Request:
curl -v -X POST "http://server.example.com/vospace/synctrans?TARGET=vos://example.

com~vospace/mydata1&DIRECTION=pullFromVoSpace&PROTOCOL=ivo://ivoa.net/vospace/
core%23httpget"

(Note that the # sign in PROTOCOL is URL encoded as %23 and that the
alternate separator ‘∼’ is used instead of ‘ !’ in the TARGET)

Response:
> POST /vospace/synctrans?TARGET=vos://example.com~vospace/mydata1&DIRECTION=

pullFromVoSpace&PROTOCOL=ivo://ivoa.net/vospace/core\%23httpget HTTP/1.1
>
< HTTP/1.1 200 OK
< Content-Type: text/xml
<
<?xml version="1.0" encoding="UTF-8"?>
<vos:transfer xmlns:vos="http://www.ivoa.net/xml/VOSpace/v2.0" version="2.1">

<vos:target>vos://example.com!vospace/mydata1</vos:target>
<vos:direction>pullFromVoSpace</vos:direction>
<vos:protocol uri="ivo://ivoa.net/vospace/core#httpget">

<vos:endpoint>http://storage1.example.com/trans/mydata1</vos:endpoint>
</vos:protocol>
<vos:protocol uri="ivo://ivoa.net/vospace/core#httpget">

<vos:endpoint>http://storage2.example.com/mydata1</vos:endpoint>
</vos:protocol>

</vos:transfer>

The file can be retrieved with an HTTP GET to one of the endpoints:
curl -v -o mydata1 http://storage1.example.com/mydata1

Response:
> GET /mydata1 HTTP/1.1
>
< HTTP/1.1 200 OK
< Content-Type: text/plain
<
[data not shown]

Example 5 pullFromVoSpace over the synchronous endpoint with URL pa-
rameters and REQUEST=redirect

Request:
curl -v -X POST "http://server.example.com/vospace/synctrans?TARGET=vos://example.

com~vospace/mydata1&DIRECTION=pullFromVoSpace&PROTOCOL=ivo://ivoa.net/vospace/
core%23httpget&REQUEST=redirect"

77

(Note that the # sign in PROTOCOL is URL encoded as %23 and the al-
ternate separator ‘∼’ is used instead of ‘ !’ in the TARGET)

Response:
> POST /vospace/synctrans?TARGET=vos://example.com~vospace/mydata1&DIRECTION=

pullFromVoSpace&PROTOCOL=ivo://ivoa.net/vospace/core\%23httpget&REQUEST=
redirect HTTP/1.1

<
< HTTP/1.1 303 See Other
< Location: http://storage1.example.com/mydata1
< Content-Type: text/plain
<

The file can be retrieved by following the redirect:
curl -v -o mydata1 http://storage1.example.com/mydata1

Response:
> GET /mydata1 HTTP/1.1
>
< HTTP/1.1 200 OK
< Content-Type: text/plain
<
[data not shown]

Example 6 pullFromVoSpace over the synchronous endpoint with URL pa-
rameters, REQUEST=redirect and securityMethod

Request:
curl -v -X POST -E mycert.pem "https://server.example.com/vospace/synctrans?TARGET

=vos://example.com~vospace/mydata1&DIRECTION=pullFromVoSpace&PROTOCOL=ivo://
ivoa.net/vospace/core%23httpsget&REQUEST=redirect&SECURITYMETHOD=ivo://ivoa.
net/sso%23tls-with-certificate"

Since the expected response is a redirect, the initial protocol on the post is
HTTPS and the certificate is supplied.
(Note that the # sign in PROTOCOL is URL encoded as %23 and that the
alternate separator ‘∼’ is used instead of ‘ !’ in the TARGET)

Response:
> POST /vospace/synctrans?TARGET=vos://example.com~vospace/mydata1&DIRECTION=

pullFromVoSpace&PROTOCOL=ivo://ivoa.net/vospace/core\%23httpget&REQUEST=
redirect&SECURITYMETHOD=ivo://ivoa.net/sso%23tls-with-certificate HTTP/1.1

>
< HTTP/1.1 303 See Other
< Location: https://storage1.example.com/mydata1
< Content-Type: text/plain
<

The file can be retrieved by following the redirect:
curl -v -o mydata1 -E mycert.pem https://storage1.example.com/mydata1

Response:

78

> GET /mydata1 HTTP/1.1
>
< HTTP/1.1 200 OK
< Content-Type: text/plain
<
[data not shown]

6.4.4 pushFromVoSpace

Ask the server to send data to a remote location.
The client supplies a list of URLs and asks the server to send the data

to the remote location.
The transfer is initiated by the server, and the data transferred direct

from the server to the remote location.
This operation is OPTIONAL.

Request A HTTP POST of a Job representation for the transfer to
http://rest-endpoint/transfers

Response The initial response is a HTTP 303 status code with the Location
header keyword assigned to the created job.

If the busy flag of the target Node is set to true, the service MAY respond
with a NodeBusy fault.

5.4.4.3 Faults

Fault description errorSummary Fault representation
Operation not supported Operation Not Supported OperationNotSupported
Operation fails Internal Fault InternalFault
User does not have permis-
sions to perform the operation

Permission Denied PermissionDenied

Source Node does not exist Node Not Found NodeNotFound
Service does not support the
requested View

View Not Supported ViewNotSupported

Service supports none of the
requested Protocols

Protocol Not Supported ProtocolNotSupported

Destination URI is invalid Invalid URI InvalidURI
A View parameter is invalid Invalid Argument InvalidArgument
A Protocol parameter is in-
valid

Invalid Argument InvalidArgument

Data transfer does not com-
plete

Transfer Failed TransferFailed

The busy flag of the Node is
true

Node Busy NodeBusy

79

Notes If the Job request contains more than one protocol parameter then
the service MAY fail over to use one or more of the options if the first
one fails. The service SHOULD try each protocol option in turn until one
succeeds or all have been tried.

Example pushFromVoSpace

The Job to be submitted (pushFromVoSpace.xml):
<vos:transfer xmlns:vos="http://www.ivoa.net/xml/VOSpace/v2.0" version="2.1">

<vos:target>vos://example.com!vospace/mydata1</vos:target>
<vos:direction>pushFromVoSpace</vos:direction>
<vos:protocol uri="ivo://ivoa.net/vospace/core#httpput">
<vos:endpoint>http://anotherserver1.example.com/put/the/data/here</vos:
endpoint>

</vos:protocol>
<vos:protocol uri="ivo://ivoa.net/vospace/core#httpput">

<vos:endpoint>http://anotherserver2.example.com/put/the/data/here</vos:
endpoint>

</vos:protocol>
</vos:transfer>

Request:
> curl -v -X POST -d @pushFromVoSpace.xml -H "Content-type: text/xml" "http://

server.example.com/vospace/transfers"

Response:
> POST /vospace/transfers HTTP/1.1
> Content-type: text/xml
>
< HTTP/1.1 303 See Other
< Location: http://server.example.com/vospace/transfers/m4ipu36gairz0dnl
< Content-Type: text/plain
<

* Closing connection #0

The PENDING job can be seen by following the redirect to:
> curl -v http://server.example.com/vospace/transfers/m4ipu36gairz0dnl

Response:
> GET /vospace/transfers/m4ipu36gairz0dnl HTTP/1.1
>
< HTTP/1.1 200 OK
< Content-Type: text/xml
<
<?xml version="1.0" encoding="UTF-8"?>
<uws:job xmlns:uws="http://www.ivoa.net/xml/UWS/v1.0" xmlns:xlink="http://www.w3.

org/1999/xlink">
<uws:jobId>m4ipu36gairz0dnl</uws:jobId>
<uws:phase>PENDING</uws:phase>
<uws:quote>2015-05-26T11:06:45.713</uws:quote>
<uws:startTime xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xs:nil="

true" />
<uws:endTime xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xs:nil="true"

/>
<uws:executionDuration>43200</uws:executionDuration>
<uws:destruction>2015-06-01T23:06:45.713</uws:destruction>

80

<uws:parameters />
<uws:results />
<uws:jobInfo>
<vos:transfer xmlns:vos="http://www.ivoa.net/xml/VOSpace/v2.0" version="2.1">

<vos:target>vos://example.com!vospace/mydata1</vos:target>
<vos:direction>pushFromVoSpace</vos:direction>
<vos:protocol uri="ivo://ivoa.net/vospace/core#httpput">
<vos:endpoint>http://anotherserver1.example.com/put/the/data/here</vos:

endpoint>
</vos:protocol>
<vos:protocol uri="ivo://ivoa.net/vospace/core#httpput">
<vos:endpoint>http://anotherserver2.example.com/put/the/data/here</vos:

endpoint>
</vos:protocol>

</vos:transfer>
</uws:jobInfo>

</uws:job>

The job can now be started by posting PHASE=RUN:
curl -v -X POST -d "PHASE=RUN" http://server.example.com/vospace/transfers/

m4ipu36gairz0dnl/phase

Response:
> POST /vospace/transfers/m4ipu36gairz0dnl/phase HTTP/1.1
> Content-Type: text/xml
>
< HTTP/1.1 303 See Other
< Location: http://server.examle.com/vospace/transfers/m4ipu36gairz0dnl
< Content-Type: text/plain
<

The EXECUTING job can be seen by following the redirect to:
http://server.examle.com/vospace/transfers/m4ipu36gairz0dnl

Response:
> GET /vospace/transfers/m4ipu36gairz0dnl HTTP/1.1
>
< HTTP/1.1 200 OK
< Content-Type: text/xml
<
<?xml version="1.0" encoding="UTF-8"?>
<uws:job xmlns:uws="http://www.ivoa.net/xml/UWS/v1.0" xmlns:xlink="http://www.w3.

org/1999/xlink">
<uws:jobId>m4ipu36gairz0dnl</uws:jobId>
<uws:phase>EXECUTING</uws:phase>
<uws:quote>2015-05-26T11:06:45.713</uws:quote>
<uws:startTime>2015-05-25T23:17:41.217</uws:startTime>
<uws:endTime xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xs:nil="true"

/>
<uws:executionDuration>43200</uws:executionDuration>
<uws:destruction>2015-06-01T23:06:45.713</uws:destruction>
<uws:parameters />
<uws:results>

<uws:result id="transferDetails" xlink:href="http://server.example.com/vospace
/transfers/m4ipu36gairz0dnl/results/transferDetails" />
<uws:result id="dataNode" xlink:href="vos://example.com!vospace/mydata1" />

</uws:results>
<uws:jobInfo>

<vos:transfer xmlns:vos="http://www.ivoa.net/xml/VOSpace/v2.0" version="2.1">

81

<vos:target>vos://example.com!vospace/mydata1</vos:target>
<vos:direction>pushFromVoSpace</vos:direction>
<vos:protocol uri="ivo://ivoa.net/vospace/core#httpput">
<vos:endpoint>http://anotherserver1.example.com/put/the/data/here</vos:

endpoint>
</vos:protocol>
<vos:protocol uri="ivo://ivoa.net/vospace/core#httpput">
<vos:endpoint>http://anotherserver2.example.com/put/the/data/here</vos:

endpoint>
</vos:protocol>

</vos:transfer>
</uws:jobInfo>

</uws:job>

6.5 Fault arguments

Faults reported by a VOSpace service SHALL contain the following infor-
mation:

InternalFault This is thrown with a description of the cause of the fault.

PermissionDenied This is thrown with a description of why the credentials
(if any were provided) were rejected.

InvalidURI This is thrown with details of the invalid URI.

NodeNotFound This is thrown with the URI of the missing Node.

DuplicateNode This is thrown with the URI of the duplicate Node.

InvalidToken This is thrown with the invalid token.

InvalidArgument This is thrown with a description of the invalid argument,
including the View or Protocol URI and the name and value of the parameter
that caused the fault.

TypeNotSupported This is thrown with the QName of the unsupported
type.

ViewNotSupported This is thrown with the URI of the View.

InvalidData This is thrown with any error message that the data parser
produced.

82

LinkFoundFault The fault details must contain the full details of the Lin-
kNode.

NodeBusy This is thrown when a node is not in a state to perform the
requested operation.

A Machine readable definitions

A.1 Message schema

XML Schema The requests and responses of a VOSpace 2.1 service shall
adhere to the following XML Schema:
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.ivoa.net/xml/VOSpace/v2.0"

elementFormDefault="qualified"
attributeFormDefault="unqualified"
version="2.1-PR-20170924"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:vos="http://www.ivoa.net/xml/VOSpace/v2.0"
xmlns:uws="http://www.ivoa.net/xml/UWS/v1.0"
xmlns:xlink="http://www.w3.org/1999/xlink"
version="2.1">

<xs:import namespace="http://www.ivoa.net/xml/UWS/v1.0" schemaLocation="http://
www.ivoa.net/xml/UWS/v1.0"/>

<!-- VOSpace 2.1 (as noted with the "version" tag) - targetNamespace remains
2.0
for backwards compatibility -->

<xs:simpleType name="VOSVersion">
<xs:annotation>

<xs:documentation>The version of the VOSpace standard. </xs:documentation>
</xs:annotation>
<xs:restriction base="xs:string"/>

</xs:simpleType>

<!-- ======== Node types ======== -->

<xs:complexType name="Node">
<xs:annotation>
<xs:documentation>

The base class for all nodes.
</xs:documentation>

</xs:annotation>
<xs:sequence>
<xs:element name="properties" type="vos:PropertyList" minOccurs="0"

maxOccurs="1">
<xs:annotation>
<xs:documentation>
The list of node properties.

</xs:documentation>
</xs:annotation>

</xs:element>
</xs:sequence>
<xs:attribute name="uri" type="xs:anyURI" use="required">
<xs:annotation>

83

<xs:documentation>
The node identifier URI.

</xs:documentation>
</xs:annotation>

</xs:attribute>
<xs:attribute name="version" type="vos:VOSVersion" use="optional">

<xs:annotation>
<xs:documentation>The version of this VOSpace document.</xs:

documentation>
</xs:annotation>

</xs:attribute>
</xs:complexType>

<xs:complexType name="DataNode">
<xs:annotation>

<xs:documentation>
The base class for data nodes.

</xs:documentation>
</xs:annotation>
<xs:complexContent>

<xs:extension base="vos:Node">
<xs:sequence>
<xs:element name="accepts" type="vos:ViewList" minOccurs="0" maxOccurs

="1">
<xs:annotation>
<xs:documentation>
The list of views or data formats that this node can accept.
A simple unstructured node may accept data in any format.
A structured node may only accept data in specific formats.

</xs:documentation>
</xs:annotation>

</xs:element>
<xs:element name="provides" type="vos:ViewList" minOccurs="0" maxOccurs

="1">
<xs:annotation>
<xs:documentation>
The list of views or data formats that this node can provide.
A simple unstructured node may only provide access to the data in

the original format.
A structured node may provide different views of the data

generated by the service.
</xs:documentation>

</xs:annotation>
</xs:element>
<xs:element name="capabilities" type="vos:CapabilityList" minOccurs="0"

maxOccurs="1">
<xs:annotation>
<xs:documentation>
The list of capabilities that this node can support.

</xs:documentation>
</xs:annotation>

</xs:element>
</xs:sequence>
<xs:attribute name="busy" type="xs:boolean" use="optional" default="false

">
<xs:annotation>
<xs:documentation>
A flag to indicate if the node content is available.
This will be set to true while the data is being imported,
or if the underlying service is busy.

</xs:documentation>
</xs:annotation>

84

</xs:attribute>
</xs:extension>

</xs:complexContent>
</xs:complexType>

<xs:complexType name="UnstructuredDataNode">
<xs:annotation>

<xs:documentation>
An unstructured data node, containing unspecified content.
The service does not need to understand or interpret the content.
This type of node can accept any format, and only provides one view

returning the original data.
</xs:documentation>

</xs:annotation>
<xs:complexContent>

<xs:extension base="vos:DataNode"/>
</xs:complexContent>

</xs:complexType>

<xs:complexType name="StructuredDataNode">
<xs:annotation>

<xs:documentation>
A structured data node, containing a specific data format that the service

has understands.
This type of node may only accept specific data formats, and provide

different views of the
data generated by the service.

</xs:documentation>
</xs:annotation>
<xs:complexContent>

<xs:extension base="vos:DataNode"/>
</xs:complexContent>

</xs:complexType>

<xs:complexType name="ContainerNode">
<xs:annotation>

<xs:documentation>
A container node containing any type of node.

</xs:documentation>
</xs:annotation>
<xs:complexContent>

<xs:extension base="vos:DataNode">
<xs:sequence>
<xs:element name="nodes" minOccurs="1" maxOccurs="1">
<xs:annotation>
<xs:documentation>
A list of the direct children that the container has.

</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="node" type="vos:Node" minOccurs="0" maxOccurs="

unbounded"/>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:extension>

</xs:complexContent>
</xs:complexType>

<xs:complexType name="LinkNode">

85

<xs:annotation>
<xs:documentation>
A node that points to another resource.

</xs:documentation>
</xs:annotation>
<xs:complexContent>

<xs:extension base="vos:Node">
<xs:sequence>
<xs:element name="target" type="xs:anyURI" minOccurs="1" maxOccurs="1">
<xs:annotation>
<xs:documentation>
The identifier for the object that the LinkNode points to.

</xs:documentation>
</xs:annotation>

</xs:element>
</xs:sequence>

</xs:extension>
</xs:complexContent>

</xs:complexType>

<!-- ======== Property types ======== -->

<xs:complexType name="Property">
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attributeGroup ref="vos:PropertyAttributeGroup"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>

<xs:complexType name="PropertyList">
<xs:annotation>

<xs:documentation>
A container element for a list of properties.

</xs:documentation>
</xs:annotation>
<xs:sequence>

<xs:element name="property" type="vos:Property" minOccurs="0" maxOccurs="
unbounded" nillable="true"/>
</xs:sequence>
<xs:attribute name="version" type="vos:VOSVersion" use="optional">

<xs:annotation>
<xs:documentation>The version of this VOSpace document.</xs:

documentation>
</xs:annotation>

</xs:attribute>
</xs:complexType>

<xs:complexType name="PropertyReference">
<xs:annotation>

<xs:documentation>
A reference to a property description.

</xs:documentation>
</xs:annotation>
<xs:attributeGroup ref="vos:PropertyAttributeGroup"/>

</xs:complexType>

<xs:complexType name="PropertyReferenceList">
<xs:annotation>

<xs:documentation>
A container element for a list of property references.

</xs:documentation>

86

</xs:annotation>
<xs:sequence>

<xs:element name="property" type="vos:PropertyReference" minOccurs="0"
maxOccurs="unbounded" nillable="true"/>
</xs:sequence>

</xs:complexType>

<xs:attributeGroup name="PropertyAttributeGroup">
<xs:attribute name="uri" type="xs:anyURI" use="required">

<xs:annotation>
<xs:documentation>

If the property has been registered, then the URI should point to the
registration document. Third party

tools may use the urn:xxxx syntax to add unregistered properties.
</xs:documentation>

</xs:annotation>
</xs:attribute>
<xs:attribute name="readOnly" type="xs:boolean" use="optional" default="false
">
<xs:annotation>
<xs:documentation>
A flag to indicate if the property is considered read-only. Attempting

to modify a read-only property
should generate a PermissionDenied fault.

</xs:documentation>
</xs:annotation>

</xs:attribute>
<!--
<xs:attribute name="xs:nil" type="xs:boolean" use="optional" default="false">

<xs:annotation>
<xs:documentation>
A flag to indicate if the property is null and should be deleted.

</xs:documentation>
</xs:annotation>

</xs:attribute>
-->

</xs:attributeGroup>

<xs:complexType name="GetPropertiesResponse">
<xs:sequence>

<xs:element name="accepts" type="vos:PropertyReferenceList">
<xs:annotation>
<xs:documentation>
A list of identifiers for the properties that the service accepts and

understands.
</xs:documentation>

</xs:annotation>
</xs:element>
<xs:element name="provides" type="vos:PropertyReferenceList">
<xs:annotation>
<xs:documentation>
A list of identifiers for the properties that the service provides.

</xs:documentation>
</xs:annotation>

</xs:element>
<xs:element name="contains" type="vos:PropertyReferenceList">
<xs:annotation>
<xs:documentation>
A list of identifiers for all the properties currently used by nodes

within the service.
</xs:documentation>

</xs:annotation>

87

</xs:element>
</xs:sequence>

</xs:complexType>

<!-- ======== View types ======== -->

<xs:complexType name="Param">
<xs:annotation>

<xs:documentation>
A view, protocol, or transfer parameter.

</xs:documentation>
</xs:annotation>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="uri" type="xs:anyURI" use="required"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>

<xs:complexType name="View">
<xs:annotation>

<xs:documentation>
An element describing a view of a data-set.
A view may just provide the original data, or it could be server generated

.
Examples of server generated views could include a votable view of data in

a database table,
or a conversion from one image format to another.

</xs:documentation>
</xs:annotation>
<xs:sequence>

<xs:element name="param" type="vos:Param" minOccurs="0" maxOccurs="unbounded
" nillable="true">

<xs:annotation>
<xs:documentation>
A list of parameters for the view.

</xs:documentation>
</xs:annotation>

</xs:element>
</xs:sequence>
<xs:attribute name="uri" type="xs:anyURI" use="required">

<xs:annotation>
<xs:documentation>
The view URI.
This should point to a resource describing the view format and what

parameters it requires.
</xs:documentation>

</xs:annotation>
</xs:attribute>
<xs:attribute name="original" type="xs:boolean" use="optional" default="true">

<xs:annotation>
<xs:documentation>
A flag to indicate if the view provides access to the original data

content or a derived form.
</xs:documentation>

</xs:annotation>
</xs:attribute>

</xs:complexType>

<xs:complexType name="ViewList">
<xs:annotation>

<xs:documentation>

88

A container element for a list of views.
</xs:documentation>

</xs:annotation>
<xs:sequence>

<xs:element name="view" type="vos:View" minOccurs="0" maxOccurs="unbounded"
nillable="true"/>
</xs:sequence>
<xs:attribute name="version" type="vos:VOSVersion" use="optional">

<xs:annotation>
<xs:documentation>The version of this VOSpace document.</xs:

documentation>
</xs:annotation>

</xs:attribute>
</xs:complexType>

<xs:complexType name="GetViewsResponse">
<xs:sequence>

<xs:element name="accepts" type="vos:ViewList">
<xs:annotation>
<xs:documentation>
A list of identifiers for the views that the service can accept.
A simple file based system may accept data in ’any’ format.

</xs:documentation>
</xs:annotation>

</xs:element>
<xs:element name="provides" type="vos:ViewList">
<xs:annotation>
<xs:documentation>
A list of identifiers for the views that the service can provide.
A simple file based system may only provide data in the original

format.
</xs:documentation>

</xs:annotation>
</xs:element>

</xs:sequence>
</xs:complexType>

<!-- ======== Protocol types ======== -->

<xs:complexType name="Protocol">
<xs:annotation>

<xs:documentation>
A protocol element, containing the protocol URI, the endpoint and any

protocol specific parameters.
</xs:documentation>

</xs:annotation>
<xs:sequence>

<xs:element name="endpoint" type="xs:anyURI" minOccurs="0" maxOccurs="1">
<xs:annotation>
<xs:documentation>
The target endpoint to use for a data transfer.

</xs:documentation>
</xs:annotation>

</xs:element>
<xs:element name="param" type="vos:Param" minOccurs="0" maxOccurs="unbounded

" nillable="true">
<xs:annotation>
<xs:documentation>
Any additional protocol specific parameters required to use the

endpoint.
For example, the user name or password to use for ftp access.

</xs:documentation>

89

</xs:annotation>
</xs:element>
<xs:element name="securityMethod" type="vos:SecurityMethod" minOccurs="0"

maxOccurs="unbounded" nillable="true">
<xs:annotation>
<xs:documentation>
the mechanism the client must employ to gain secure access to the

service.
</xs:documentation>

</xs:annotation>
</xs:element>

</xs:sequence>
<xs:attribute name="uri" type="xs:anyURI" use="required">

<xs:annotation>
<xs:documentation>
The protocol identifier.

</xs:documentation>
</xs:annotation>

</xs:attribute>
</xs:complexType>

<xs:complexType name="SecurityMethod">
<xs:annotation>

<xs:documentation>
a description of a security mechanism.

</xs:documentation>
<xs:documentation>
this type only allows one to refer to the mechanism via a
URI. Derived types would allow for more metadata.

</xs:documentation>
</xs:annotation>
<xs:attribute name="uri" type="xs:anyURI">

<xs:annotation>
<xs:documentation>
A URI identifier for a standard security mechanism.

</xs:documentation>
<xs:documentation>
This provides a unique way to refer to a security
specification standard.

</xs:documentation>
</xs:annotation>

</xs:attribute>
</xs:complexType>

<xs:complexType name="ProtocolList">
<xs:annotation>
<xs:documentation>
A container element for a list of protocols.

</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="protocol" type="vos:Protocol" minOccurs="0" maxOccurs="

unbounded" nillable="true"/>
</xs:sequence>
<xs:attribute name="version" type="vos:VOSVersion" use="optional">

<xs:annotation>
<xs:documentation>The version of this VOSpace document.</xs:

documentation>
</xs:annotation>

</xs:attribute>
</xs:complexType>

90

<xs:complexType name="GetProtocolsResponse">
<xs:sequence>

<xs:element name="accepts" type="vos:ProtocolList">
<xs:annotation>
<xs:documentation>
A list of identifiers for the protocols that the service can accept.
This means that the service can act as a client for the protocol.

</xs:documentation>
</xs:annotation>

</xs:element>
<xs:element name="provides" type="vos:ProtocolList">
<xs:annotation>
<xs:documentation>
A list of identifiers for the protocols that the service can provide.
This means that the service can act as a server for the protocol.

</xs:documentation>
</xs:annotation>

</xs:element>
</xs:sequence>

</xs:complexType>

<!-- ======== Capability types ======== -->

<xs:complexType name="Capability">
<xs:annotation>

<xs:documentation>
A capability element, containing the capability URI, the

endpoint and any capability specific parameters(?).
</xs:documentation>

</xs:annotation>
<xs:sequence>

<xs:element name="endpoint" type="xs:anyURI" minOccurs="0" maxOccurs="1">
<xs:annotation>
<xs:documentation>
The target endpoint to use for the third-part interface.

</xs:documentation>
</xs:annotation>

</xs:element>
<!--+
| Uncommented Capability params.
+-->
<xs:element name="param" type="vos:Param" minOccurs="0" maxOccurs="unbounded

" nillable="true">
<xs:annotation>
<xs:documentation>
Any additional capability specific parameters required to use the

endpoint.
For example, the user name or password to use for access.

</xs:documentation>
</xs:annotation>

</xs:element>
</xs:sequence>
<xs:attribute name="uri" type="xs:anyURI" use="required">
<xs:annotation>
<xs:documentation>
The capability identifier.

</xs:documentation>
</xs:annotation>

</xs:attribute>
</xs:complexType>

<xs:complexType name="CapabilityList">

91

<xs:annotation>
<xs:documentation>
A container element for a list of capabilities.

</xs:documentation>
</xs:annotation>
<xs:sequence>

<xs:element name="capability" type="vos:Capability" minOccurs="0" maxOccurs
="unbounded" nillable="true"/>
</xs:sequence>
<xs:attribute name="version" type="vos:VOSVersion" use="optional">

<xs:annotation>
<xs:documentation>The version of this VOSpace document.</xs:

documentation>
</xs:annotation>

</xs:attribute>
</xs:complexType>

<!-- ======== Node list type ======== -->

<xs:complexType name="NodeList">
<xs:annotation>

<xs:documentation>
A container element for search responses.

</xs:documentation>
</xs:annotation>
<xs:sequence>

<xs:element name="nodes" minOccurs="0" maxOccurs="1">
<xs:annotation>
<xs:documentation>
The list of nodes.

</xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="node" type="vos:Node" minOccurs="0" maxOccurs="

unbounded">
<xs:annotation>
<xs:documentation>
At the maximum level of detail this will be replaced by the full

element for the extended type,
using xsi:type to indicate the node type/
</xs:documentation>

</xs:annotation>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>

<!-- ======== Transfer type ======== -->

<xs:complexType name="Transfer">
<xs:annotation>

<xs:documentation>
A container element for transfer operations.

</xs:documentation>
</xs:annotation>
<xs:sequence>

<xs:element name="target" type="xs:anyURI" minOccurs="1" maxOccurs="1">
<xs:annotation>
<xs:documentation>

92

The target of a transfer operation - the node to/from which data is to
be transferred.

</xs:documentation>
</xs:annotation>

</xs:element>
<xs:element name="direction" minOccurs="0" maxOccurs="1">
<xs:annotation>
<xs:documentation>
The direction of a data transfer - either a URI or one of the

specified directions
</xs:documentation>

</xs:annotation>
<xs:simpleType>
<xs:union>
<xs:simpleType>
<xs:restriction base="xs:anyURI"/>

</xs:simpleType>
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="pushToVoSpace"/>
<xs:enumeration value="pushFromVoSpace"/>
<xs:enumeration value="pullToVoSpace"/>
<xs:enumeration value="pullFromVoSpace"/>

</xs:restriction>
</xs:simpleType>

</xs:union>
</xs:simpleType>

</xs:element>
<xs:element name="view" type="vos:View" minOccurs="0" maxOccurs="1">
<xs:annotation>
<xs:documentation>
The requested view for the transfer.

</xs:documentation>
</xs:annotation>

</xs:element>
<xs:element name="protocol" type="vos:Protocol" minOccurs="0" maxOccurs="

unbounded">
<xs:annotation>
<xs:documentation>
The transfer protocol(s) to use.

</xs:documentation>
</xs:annotation>

</xs:element>
<xs:element name="keepBytes" type="xs:boolean" minOccurs="0" maxOccurs="1">
<xs:annotation>
<xs:documentation>
Indicates whether the source object is to be kept in an internal

transfer, i.e., distinguishes between a move and a copy.
</xs:documentation>

</xs:annotation>
</xs:element>
<xs:element name="param" type="vos:Param" minOccurs="0" maxOccurs="unbounded

" nillable="true">
<xs:annotation>
<xs:documentation>
Any additional transfer specific parameters required to use the

endpoint.
For example, the size of the file on a pushToVoSpace transfer.

</xs:documentation>
</xs:annotation>

</xs:element>
</xs:sequence>

93

<xs:attribute name="version" type="vos:VOSVersion" use="optional">
<xs:annotation>

<xs:documentation>The version of this VOSpace document.</xs:
documentation>

</xs:annotation>
</xs:attribute>

</xs:complexType>

<!-- ======== Response representations ======== -->

<xs:element name="protocols" type="vos:ProtocolList"/>

<xs:element name="views" type="vos:ViewList"/>

<xs:element name="properties" type="vos:PropertyList"/>

<xs:element name="transfer" type="vos:Transfer"/>

<xs:element name="searchDetails" type="vos:NodeList"/>
</xs:schema>

B Compliance matrix

This table summarizes the mandatory behaviour required of a fully compliant
VOSpace 2.1 service, i.e., those operations denoted as SHALL and MUST
occurring. Note that for faults the general condition is specified but specific
details should be checked in the relevant sections. Those associated with
optional features are marked with an asterisk in the appropriate section
reference – if the service implements an optional feature then it must show
this mandatory behaviour.

94

Item Description Occurs in section(s)
1 VOSpace node identifiers are a URI with the scheme vos:// 2
2 The naming authority for a VOSpace node URI is the VOSpace

service through which the node was created
2

3 "!" or "∼" are used consistently in VOSpace node URIs 2
4 "!" or "∼" are valid separator characters in service requests 2
5 All ancestors in a node hierarchy are resolvable as containers 2
6 The bit pattern for data stored in an UnstructuredDataNode is

identical for read/write operations
3.1*

7 A Node has elements: uri, properties and capabilities 3.1
8 A DataNode has elements: uri, properties, capabilities, accepts,

provides
3.1

9 A LinkNode has elements: uri, properties, capabilities and target 3.1*
10 A ContainerNode and a LinkNode have no data bytes associated

with them
3.1*

11 A VOSpace service parses XML representations of all node types 3.1
12 A VOSpace services does not throw a XML parser error in response

to requests about unsupported node types
3.1

13 A Property has elements:uri, endpoint and optional readonly flag 3.2
14 URIs must be valid (and unique) 3.2.2, 3.3.2, 3.4.2,

3.5.1, 6.2.1, 6.4.1,
6.4.2

15 A Capability has elements: uri, endpoint and param 3.3
16 Standard capabilities are represented by the specified URIs 3.3.5
17 Each Property is identified by a unique URI 3.2.2
18 Each Capability is identified by a unique URI 3.3.2
19 Each View is identified by a unique URI 3.4.2
20 Each Protocol is identified by a unique URI 3.5.1
21 Standard views are represented by the specified URIs 3.4.4
xx Standard properties are represented by the specified URIs 3.2.4
22 Data imported with the default View is treated as a binary BLOB 3.4.4
23 Data exported with the default export View is returned in the most

appropriate format
3.4.4

24 An archive format View on a ContainerNode provides access to
the archive contents as children nodes of the container

3.4.5*

25 An archive format View specified in a data export operation on a
ContainerNode will package the contents of the container and all
its child nodes

3.4.5*

95

Item Description Occurs in section(s)
26 A Protocol has elements: uri and and endpoint 3.5
27 Standard Protocols are represented by the specified URIs 3.5.3
28 A Transfer UWS Job representation has elements: target, direc-

tion, view, protocol and keepBytes
3.6

29 A Transfer results representation has elements: target, direction,
view, and protocol

3.6

30 A server responds with a fault if it is unable to handle any of the
requested protocols in a data transfer

3.6.3, 3.6.4

31 A server uses each requested protocol only once in a data transfer 3.6.3, 3.6.4
32 A data transfer is complete once a specified protocol is successful 3.6.3, 3.6.4
33 A data transfer has failed if none of the specified protocols has

been successful
3.6.3, 3.6.4

34 A server updates the status flag in the UWS Job representation as
appropriate

3.6.3, 3.6.4

35 A VOSpace service has the REST bindings: properties, views,
protocols, nodes, and transfers

4

36 Access policies on a VOSpace service are declared in the registered
metadata for the service

5

37 VOSpace authentication employs IVOA SSO supported methods 5
38 A VOSpace service supports the operations: getProtocols,

getViews, getProperties, createNode, deleteNode, moveNode,
copyNode, getNode, setNode, pullFromVoSpace. The following
are optional operations: pushToVoSpace, pullToVoSpace, push-
FromVoSpace

6.1.1, 6.1.2, 6.1.3,
6.2.1, 6.2.2, 6.2.3,
6.2.4, 6.3.1, 6.3.2,
6.4.1*, 6.4.1*, 6.4.3,
6.4.4*

39 accepts and provides specify entities that the service supports 6.1.1, 6.1.2, 6.1.3
40 An autogenerated URI is specified as a result in the Results List 6.2.1*, 6.2.2*, 6.2.3*,

6.4.1*
41 Any data written to the reserved URI .null is discarded 4
42 accepts is filled in based on service capabilities 6.2.1
43 If a container is deleted then so are its children 6.2.4
44 If a container is listed, only direct children are listed 6.3.1
45 Results are drawn from the same ordered sequence in any ordering

imposed by the server
6.3.1

46 Regex expressions comply with POSIX conventions ??
47 Moving a container moves its children as well 6.2.2

96

Item Description Occurs in section(s)
48 Importing data into an existing container puts the new data within

the container
6.4.1

49 Node types are not changed when a node is moved or copied 6.2.2, 6.2.3
50 Copying a container copies its children as well 6.2.3
51 Importing data into an existing node overwrites any preexisting

data (unless it is a container)
6.4.1*, 6.4.2*

52 A HTTP 200 status code is returned if the operation completes
successfully

6.1.1, 6.1.2, 6.1.3,
6.2.1, 6.2.4, 6.3.1,
6.3.2

53 A HTTP 303 status code is returned if the operation completes
successfully

6.2.2, 6.2.3, ??*,
6.4.1*, 6.4.2*, 6.4.3,
6.4.4*

54 A HTTP 500 status code with an InternalFault fault in the body
is thrown if the operation fails

6.1.1, 6.1.2, 6.1.3,
6.2.1, 6.2.4, 6.3.1,
6.3.2, 6.4.3

55 A HTTP 400 status code with an InvalidArgument fault in the
body is thrown if a specified value is invalid

6.3.2

56 A HTTP 400 status code with an InvalidURI fault in the body is
thrown if the specified URI is invalid

6.2.1

57 A HTTP 400 status code with a TypeNotSupported fault in the
body is thrown if the specified type is not supported

6.2.1

58 A HTTP 403 status code with a PermissionDenied fault in the
body is thrown if the user does not have permission to perform
the operation

6.2.1, 6.2.4, 6.3.1,
6.3.2, 6.4.3

59 A HTTP 404 status code with a NodeNotFound fault in the body
is thrown if...

6.2.2, 6.3.1, 6.2.3,
6.4.3

60 A HTTP 409 status code with a DuplicateFault fault in the body
is thrown if the specified node already exists

6.2.1

61 A HTTP 404 status code with a ContainerNotFound fault in the
body is thrown if a container is not found

6.2.1, 6.2.4

62 A HTTP 400 status code with a LinkFound fault in the body is
thrown if a LinkNode is found

6.2.1, 6.2.4

63 The PHASE in the UWS Job representation is set to “ERROR” in
case of a fault occurring

6.2.2, ??*, 6.4.1*,
6.4.2*, 6.4.3, 6.4.4*

64 The errorSummary element in the UWS Job representation is set
to the appropriate value for the type of fault occurring

6.2.2, ??*, 6.4.1*,
6.4.2*, 6.4.3, 6.4.4*

65 The appropriate fault representation is provided at the error URI
for the job

6.2.2, ??*, 6.4.1*,
6.4.2*, 6.4.3, 6.4.4*

97

C Standard properties

This table summarizes the standard properties that SHALL be recognized
by a VOSpace service and are registered in the IVOA Registry of Registries.

98

Property Description Data type
ivo://ivoa.net/vospace/core#availableSpace the amount of space available within a container string
ivo://ivoa.net/vospace/core#btime the initial creation time string
ivo://ivoa.net/vospace/core#contributor an entity responsible for making contributions to

this resource
URI

ivo://ivoa.net/vospace/core#coverage a spatial or temporal topic of the resource, the
spatial applicability of the resource, or the juris-
diction under which the resource is relevant

string

ivo://ivoa.net/vospace/core#creator an entity primarily responsible for making the
resource

URI

ivo://ivoa.net/vospace/core#ctime the status change (aka metadata modification)
time

datetime

ivo://ivoa.net/vospace/core#date a point or period of time associated with an
event in the lifecycle of the resource

datetime

ivo://ivoa.net/vospace/core#description an account of the resource string
ivo://ivoa.net/vospace/core#format the file format, physical medium or dimensions

of the resource
string

ivo://ivoa.net/vospace/core#groupread the list of groups which can only read this re-
source

delimiter-
separated
list

ivo://ivoa.net/vospace/core#groupwrite the list of groups which can read and write to
this resource

delimiter-
separated
list

ivo://ivoa.net/vospace/core#identifier an unambiguous reference to the resource within
a given context

string/URI

ivo://ivoa.net/vospace/core#language a language of the resource string
ivo://ivoa.net/vospace/core#length the length or size of a resource float
ivo://ivoa.net/vospace/core#mtime the data modification time datetime
ivo://ivoa.net/vospace/core#publicread whether this resource is world readable boolean
ivo://ivoa.net/vospace/core#publisher an entity responsible for making the resource

available
URI

ivo://ivoa.net/vospace/core#quota the value of a system quota on the resource string
ivo://ivoa.net/vospace/core#relation a related resource URI
ivo://ivoa.net/vospace/core#rights information about rights held in and over the

resource
string

ivo://ivoa.net/vospace/core#source a related resource from which the described re-
source is derived

string

ivo://ivoa.net/vospace/core#subject the topic of the resource string
ivo://ivoa.net/vospace/core#title a name given to the resource string
ivo://ivoa.net/vospace/core#type the nature or genre of the resource string

99

D Changes from Previous Versions

From version 2.1-20170405:

• Replaced the dated Custom Protocols section with a new Public Share
Protocol section

• Updates from working group feedback

From version 2.1-20150601:

• Added REQUEST=redirect for further optimized pullFromVoSpace

• Removed “search” and “find nodes” until use cases and implementations
are presented

• Changed pullToVoSpace, pushFromVoSpace to be client orchestrated.

• Changed Transfer in XSD to accept parameters.

• Recreated and expanded all webservice operation examples

• Changed XSD element authType to SecurityMethod to match IVOA
standard.

• Fixed text inconsistencies

• Clarified role of the node busy flag

• Ported source to ivoatex format

From version 2.1-20140805:

• Addition of optimized HTTP GET method of data transfer for push-
ToVoSpace, pullFromVoSpace

• Addition of authType to Protocol in XML schema for transfer negoti-
ation.

• Added preliminary list of standard authType URIs

• Deprecated view=data convenience method of data transfer

• Corrections to minor XML format errors in the examples throughout
the document.

100

From version 2.00-20120824:

• Use of Resource Idenfifier and CDP in Architecture diagram clarified.

• StandardID defined for this version.

• Various formatting issues.

• Use of HTTP 500 status code clarified.

• HTTP response codes made consistent with RFC 2616.

From version 2.00-20111202:

• Clarified use of URI fragments

• Added appendix of standard properties

• Clarified multi-value properties

• Added 404 error codes to getNode and setNode for no parent container
ensuring consistent behaviour

• Adjusted pushToVoSpace and pullFromVoSpace convenience methods
for self consistency and closer matching to UWS Fault formatting.

From version 2.00-20110628:

• Corrected REST binding for synchronous transfer details

• Added endpoint for synchronous job POSTs

• Added properties mtime, ctime, btime

• Changed text to describe use of StandardsRegExt for standard prop-
erties, views, capabilities, tranfer protocols

• Changed error code on ContainerNotFound and LinkFound faults

• Added correct failure response for unsupported operations

From version 2.00-20101112:

• Examples amended with correct namespaces and root elements

• "∼" listed as a valid URI separator character along with "!"

• Core property list added to

• Properties with multiple values clarified

101

• Optional operations clarified and indicated in conformance matrix

• getNode and findNode operation arguments made consistent

• Synchronous HTTP PUT method added

• createNode response changed to HTTP 200 from HTTP 201

• /transferDetails endpoint added

• Support for .auto made optional

From version 2.00-20100323:

• Updated UWS details: use uws:jobInfo instead of uws:parameters

• Added IVOA architecture text

• Removed text about WSDL/WADL

References

Arviset, C., Gaudet, S. and the IVOA Technical Coordination Group (2010),
‘IVOA architecture’, IVOA Note.
http://www.ivoa.net/documents/Notes/IVOAArchitecture

Berners-Lee, T., Fielding, R. and Masinter, L. (2005), ‘Uniform Resource
Identifier (URI): Generic syntax’, RFC 3986.
http://www.ietf.org/rfc/rfc3986.txt

Bradner, S. (1997), ‘Key words for use in RFCs to indicate requirement
levels’, RFC 2119.
http://www.ietf.org/rfc/rfc2119.txt

Demleitner, M., Plante, R., Linde, T., Williams, R. and Noddle, K. (2015),
‘IVOA identifiers, version 2’, IVOA Recommendation.
http://www.ivoa.net/documents/IVOAIdentifiers/
20160523/

Demleitner, M., Plante, R., Linde, T., Williams, R. and Noddle, K. (2016),
‘IVOA Identifiers Version 2.0’, IVOA Recommendation 23 May 2016,
arXiv:1605.07501.
http://adsabs.harvard.edu/abs/2016ivoa.spec.0523D

Gray, N. (2012), ‘URI fragments in IVOA specifications’, IVOA Note.
http://www.ivoa.net/documents/Notes/URIFragments

102

http://www.ivoa.net/documents/Notes/IVOAArchitecture
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ivoa.net/documents/IVOAIdentifiers/20160523/
http://www.ivoa.net/documents/IVOAIdentifiers/20160523/
http://adsabs.harvard.edu/abs/2016ivoa.spec.0523D
http://www.ivoa.net/documents/Notes/URIFragments

Harrison, P., Burke, D., Plante, R., Rixon, G. and Morris, D. (2012),
‘StandardsRegExt: a VOResource schema extension for describing IVOA
standards, version 1.0’, IVOA Recommendation.
http://www.ivoa.net/documents/StandardsRegExt/
20120508/REC-StandardsRegExt-1.0-20120508.html

Harrison, P., Demleitner, M., Major, B. and Dowler, P. (2016), ‘XML schema
versioning policies’, IVOA Proposed Endorsed Note.
http://ivoa.net/documents/Notes/XMLVers

Harrison, P. and Rixon, G. (2010), ‘Universal worker service pattern, version
1.0’, IVOA Recommendation.
http://www.ivoa.net/documents/UWS/20101010/

Major, B., Rixon, G., Schaaff, A. and Taffoni, G. (2016), ‘IVOA single-
sign-on profile: Authentication mechanisms, version 2.0’, IVOA Proposed
Recommendation.
http://www.ivoa.net/documents/SSO/20160930/
PR-SSOAuthMech-2.0-20160930.html

Matthew Graham and Raymond Plante and Guy Rixon and Giuliano
Taffoni (2010), ‘IVOA credential delegation protocol’.
http://ivoa.net/Documents/CredentialDelegation/
20100218/

Moats, R. (1997), ‘URN syntax’, RFC 2141.
http://www.ietf.org/rfc/rfc2141.txt

103

http://www.ivoa.net/documents/StandardsRegExt/20120508/REC-StandardsRegExt-1.0-20120508.html
http://www.ivoa.net/documents/StandardsRegExt/20120508/REC-StandardsRegExt-1.0-20120508.html
http://ivoa.net/documents/Notes/XMLVers
http://www.ivoa.net/documents/UWS/20101010/
http://www.ivoa.net/documents/SSO/20160930/PR-SSOAuthMech-2.0-20160930.html
http://www.ivoa.net/documents/SSO/20160930/PR-SSOAuthMech-2.0-20160930.html
http://ivoa.net/Documents/CredentialDelegation/20100218/
http://ivoa.net/Documents/CredentialDelegation/20100218/
http://www.ietf.org/rfc/rfc2141.txt

	Introduction
	Previous Versions
	Typical use of a VOSpace service
	Role within the VO Architecture
	Document roadmap

	VOSpace identifiers
	Identifier resolution

	VOSpace data model
	Nodes and node types
	Properties
	Property values
	Property identifiers
	Property descriptions
	Standard properties

	Capabilities
	Example capability use cases
	Capability identifiers
	Capability descriptions
	UI display name
	Standard capabilities

	Views
	Example view use cases
	View identifiers
	View descriptions
	Default views
	Container views

	Protocols
	Protocol identifiers
	Protocol descriptions
	Standard protocols
	External standard protocols
	Security Methods

	Transfers
	XML Document Transfers
	URL Parameter Transfers
	Service-initiated transfers
	Client-initiated transfers

	REST bindings
	Access Control
	Web service operations
	Service metadata
	getProtocols
	getViews
	getProperties

	Creating and manipulating data nodes
	createNode
	moveNode
	copyNode
	deleteNode

	Accessing metadata
	getNode
	setNode

	Transferring data
	pushToVoSpace
	pullToVoSpace
	pullFromVoSpace
	pushFromVoSpace

	Fault arguments

	Machine readable definitions
	Message schema

	Compliance matrix
	Standard properties
	Changes from Previous Versions

