
Table Access Protocol V0.2

 - 1 -

 International

 Virtual

 Observatory

Alliance

Table Access Protocol

Version 0.02
IVOA Working Draft 2008 May 11

This version:
 ThisVersion-YYYYMMDD
Latest version:
 http://www.ivoa.net/Documents/latest/latest-version-name
Previous version(s):

Author(s):
 Author1
 Author2
 …

Abstract
The table access protocol (TAP) defines a service protocol for accessing general
table data, including astronomical catalogs as well as general database tables.
Access is provided for both database and table metadata as well as actual table
data. Both simple filtering operations on individual tables as well as more
general multi-table operations such as relational joins are supported. This
version of the protocol includes support for parameterized queries (TAP/Param)
but also supports ADQL-based queries within an integrated interface, and
includes support for asynchronous queries and VOSpace.

Table Access Protocol V0.2

 - 2 -

Status of This Document
This is a working draft. This is not yet a complete specification and may contain
discussion and comments intended for use within the design team and working
group to advance the TAP interface design. Some aspects of the interface are
not yet fully detailed and may be discussed here only in general terms.

This is an IVOA Working Draft for review by IVOA members and other interested
parties. It is a draft document and may be updated, replaced, or obsoleted by
other documents at any time. It is inappropriate to use IVOA Working Drafts as
reference materials or to cite them as other than “work in progress”.

A list of current IVOA Recommendations and other technical documents can be
found at http://www.ivoa.net/Documents/.

Acknowledgements
“Ack here, if any”

Contents

1 Introduction 3
1.1 Basic Usage 3
1.2 Requirements for Compliance 4

2 Interface Overview 4
2.1 Architecture 4
2.2 Service Operations 5
2.3 Basic Service Elements 6

2.3.1 Request Format 6
2.3.2 Parameters 6
2.3.3 Parameter Values 7
2.3.4 Use of GET and POST 7
2.3.5 URL Encoding 8
2.3.6 Error Response 8

3 TAP Service Operations 8
3.1 Common Query Elements 8

3.1.1 Table Names 8
3.1.2 Table Field Names 9
3.1.3 Inline Table Uploads 10
3.1.4 VOSpace Usage 10
3.1.5 Asynchronous Execution 12

Table Access Protocol V0.2

 - 3 -

3.1.6 Output Formats 12
3.2 AdqlQuery Operation 13

3.2.1 Input Parameters 13
3.2.2 Query Response 15

3.3 ParamQuery Operation 16
3.3.1 Input Parameters 17
3.3.2 Query Response 21
3.3.3 Table Data Queries 21
3.3.4 Table Metadata Queries 21
3.3.5 Cone Search Query 23
3.3.6 Multi-Position Queries 23

3.4 GetCapabilities Operation 24
3.5 GetAvailability Operation 24

4 Table Metadata 24
4.1 TAP Core Schema 24
4.2 Table Sets 25

5 Basic Service Elements 26
Appendix A: “Appendix Title” 26
References 26

1 Introduction
The table access protocol (TAP) defines a service protocol for accessing general
table data, including astronomical catalogs as well as general database tables.
Access is provided for both database and table metadata as well as actual table
data. Both simple filtering operations on individual tables as well as more
general multi-table operations such as relational joins are supported. A
parameter-based query operation is provided for simple table data and metadata
queries of single tables, as well as a more general SQL-based query operation
for general database queries. SQL queries are based upon the Astronomical
Data Query Language (ADQL), to provide a uniform query interface regardless of
the database management system (DBMS) used to implement the service, while
providing additional astronomy-specific functionality such as for spatial region
based queries. Simple Web-friendly synchronous queries as well as Grid-
enabled capabilities for large asynchronous queries are both supported.

1.1 Basic Usage
Provide some examples of simple synchronous GET-based table data and
metadata queries, using both ParamQuery as well as a simple SELECT using
AdqlQuery.

Table Access Protocol V0.2

 - 4 -

1.2 Requirements for Compliance
Define the minimum requirements for a TAP service, e.g., provide ParamQuery
supporting both table data and metadata queries, with metadata queries
supporting the core TAP schema. Define usage of should, must, may.

2 Interface Overview

2.1 Architecture
A TAP service provides access to one or more tables, normally at a single site.
Multi-table operations such as joins or cross matches are possible provided the
tables are all managed by the TAP service, and provided the service supports
these capabilities. Larger scale operations such as a distributed cross match are
also possible, but require combining the results of multiple TAP services. In the
most general case table operations might make use of any of the following
components:

• A top level application, for example a cross-match portal capable of multi-

parameter statistical cross-matching of distributed tables. Access to remote
tables is via TAP services running locally where the table data is stored. The
remote TAP service might perform a first order spatial cross match or apply
other constraints to filter the data at access time, thereby reducing the volume
of data which has to be passed back to the portal.

• One or more TAP services, each providing access to one or more tables via

a range of query capabilities, similar to what is typically provided by an
individual DBMS. Both table data and metadata can be accessed via the
same query interface.

• The ADQL query language [ref], provides an advanced query language

capability based upon SQL, enhanced with astronomy specific extensions,
e.g., for applying spatial query constraints.

• A table data model, if supported by a service, can optionally be used to

access a table without having to understand the details of how information is
stored in the table. This is especially important when a client might access
many different tables from a variety of origins. For example, a source catalog
data model might define a number of standard attributes for a “source” object
(position, extent, morphology, brightness, etc.), which the TAP service would
map to a native data table on behalf of the client.

While we highlight the cross match portal here as a primary example of a TAP
client application, any variety of other client analysis applications are possible,
including custom applications written directly by end users, or incorporated
directly into analysis environments. All such applications share the same

Table Access Protocol V0.2

 - 5 -

underlying data access facilities, which provide a common interface profile and
semantics for access to tables or other types of astronomical data.

TAP also makes use of additional, less TAP-specific technology, in particular
VOTable provides a standard model and format for table interchange, VOSpace
is used for network table storage and transport, and UWS provides a standard
interface pattern for interacting with asynchronous services. Certain TAP
operations for determining the capabilities and runtime status of a service
instance are based upon the VOSI standard. VO standards for single sign-on
authentication are used to manage resources on behalf of a user and provide
secure access to data where necessary.

2.2 Service Operations
A TAP service implements multiple service operations, each of which performs
some well defined function when invoked by a client application. The service
operations described here use HTTP GET and POST as the low level
communications protocol. The functionality of each operation is however defined
independently of the low level communications protocol, and semantically
equivalent operations could be implemented in the future via other protocols.

TAP defines the following standard service operations:

• AdqlQuery. Execute an ADQL query (or a query in some other query
language if supported by the service). The query is passed as string,
which may be URL encoded if required by the low level protocol used.
General operations upon multiple tables are supported. Both synchronous
and asynchronous versions are provided. Data tables may be uploaded
or may optionally be staged to a VOSpace. AdqlQuery is an optional
advanced capability, required for a fully compliant service but optional for
a minimal TAP service.

• ParamQuery. Execute a parameterized query. The query is defined by a

set of parameters rather than by a free form language as for AdqlQuery.
Both table data and metadata can be queried with the same interface, and
ParamQuery provides the standard mechanism used to query table
metadata. Except for some well defined special cases (multi-position
queries, tableset queries), queries are limited to a single table. Both
synchronous and asynchronous versions are provided. Data tables may
be uploaded or may optionally be staged to a VOSpace.

• GetCapabilities. Return a standardized XML description of the

capabilities of the service instance, describing what the service is capable
of doing (VOSI compliant, registry cacheable and searchable).

Table Access Protocol V0.2

 - 6 -

• GetAvailability. Return a standardized XML description of the runtime
status of the service, describing the state and availability of the service
(VOSI compliant).

The AdqlQuery and ParamQuery operations provide two alternative ways to pose
queries against the service. These queries differ only in the way they are posed.
Once the query inputs (ADQL statement in the case of AdqlQuery, or parameter
set in the case of ParamQuery) are translated by the service into whatever form
the back-end DBMS requires, execution is the same for both types of query.
Hence table uploads, VOSpace integration, output formatting, asynchronous
execution facilities, table metadata, and so forth are identical for both forms of
query. In addition, the same query interface is used for both table data and
metadata, simplifying the service interface and providing uniform, fully featured
facilities for querying both types of data.

2.3 Basic Service Elements
The basic form of a TAP service (or any other second generation data service, all
of which share the same basic service interface) is specified in detail in section 5.
In the current section we merely summarize the elements of the basic service
interface. [This section is adapted from the SSA specification with minor
changes.]

2.3.1 Request Format
In general a service may implement multiple operations, such as ParamQuery;
altogether these define the interface to the service. Interfaces may change with
time hence are versioned. It is possible for a given service instance to
simultaneously expose multiple interfaces or versions of interfaces.
The TAP interface described in this document is based on a distributed
computing platform (DCP) comprising Internet hosts that support the Hypertext
Transfer Protocol (HTTP). Thus, the online representation of each operation
supported by a service is composed as a HTTP Uniform Resource Locator (URL).
A request URL is formed by concatenating a baseURL with zero or more
operation-defined request parameters. The baseURL defines the network
address to which request messages are to be sent for a particular operation of a
particular service instance on a particular server. Service operations generally
share the same baseURL but this is not required.

2.3.2 Parameters
Parameters may appear in any order. If the same parameter appears multiple
times in a request the operation is undefined (if alternate values for a parameter
are desired the range-list syntax may be used instead). Parameter names are
case-insensitive. Parameter values are case-sensitive unless defined otherwise
in the description of an individual parameter.
All operations define the following standard parameters:

Table Access Protocol V0.2

 - 7 -

REQUEST The request or operation name, e.g., “ParamQuery”
(mandatory).

VERSION The version number of the interface (optional).
The values of both the REQUEST and VERSION parameters are case-
insensitive.
A given service instance may support multiple versions of the TAP interface, and
by default the service assumes the highest standard version which is
implemented (access to any experimental versions supported by a service
requires explicit specification of the version by the client). Explicit specification of
the interface version assumed by the client is necessary to ensure against a
runtime version mismatch, e.g., if the client caches the service endpoint but a
newer version of the service is subsequently deployed. If desired the client can
omit the VERSION parameter to disable runtime version checking, and default to
the highest version standard interface implemented by the service.
All other request parameters are defined separately for each operation.

2.3.3 Parameter Values
Integer numbers are represented as defined in the specification of integers in
XML Schema Datatypes. Real numbers are represented as specified for double
precision numbers in XML Schema Datatypes. Sexagesimal formatting is not
permitted, either for parameter input or in formal output metadata, other than in
ISO 8601 formatted time strings (sexagesimal format is permitted in any informal
output intended for a human, e.g., text or HTML formatted tables).
TAP defines a special range-list format for specifying numerical ranges or lists of
ranges as parameter values. For example, “1E-7/3E-6“ specifies a closed
range from 1E-7 to 3E-6 inclusive. The syntax supports both open and closed
ranges. Ranges or range lists are permitted only when explicitly indicated in the
definition of an individual parameter. A variant of the range list is the value of the
WHERE parameter, used to specify the query constraint for a ParamQuery
operation. For a full description of range list syntax refer to section 3.3.1.

2.3.4 Use of GET and POST
Where specified, individual service operations may provide both HTTP GET and
POST forms for issuing the service request. Both forms share the same input
parameters and operation semantics, being merely two different ways of invoking
the same service operation. In general, the GET form is used for synchronous
operations which are idempotent (have no side effects, the result is cacheable,
multiple instances may be simultaneously active and will return the same result).
POST is used for any request which has a side effect, e.g., initiation of an
asynchronous job, or which needs to pass a large amount of data to the service,
e.g., uploading a table or region mask to be used within a query.

Table Access Protocol V0.2

 - 8 -

2.3.5 URL Encoding
URL encoding (see section 5) is a standard technique used to encode characters
appearing in HTTP requests, such as a GET URL, to pass characters which are
not otherwise legal and could interfere with the HTTP protocol. By using URL
encoding it is possible to pass arbitrary character data to a service in a HTTP
request, for example an arbitrary ADQL statement could be passed in a simple
GET request so long as it is not too large for a GET (2K or so).

2.3.6 Error Response
In the case of an error, service operations should return a VOTable containing an
INFO element with name QUERY_STATUS and the value set to “ERROR”. More
fundamental service or protocol errors may result in an HTTP level protocol error,
hence a client program should be prepared to handle either response. A null
query, that is a queryData which does not find any data, is not considered an
error. More information on error responses is given in section 5.

3 TAP Service Operations

3.1 Common Query Elements
The following concepts and notations are common to all TAP queries. In
particular, both AdqlQuery and ParamQuery share these common elements.

3.1.1 Table Names
A fully qualified table name has the form

[[catalog_name”.”[schema_name”.”]table_name]]

where catalog_name is the “catalog” name (often the “database” name) in SQL
DBMS terminology, schema_name is the “schema” name in DBMS terminology
(a DBMS schema is a type of data model where the top level data model
elements are tables), and table_name is the actual table name. All elements of
the table name are optional except table_name. Depending upon the DBMS,
“catalog” or “schema” may or may not be implemented; some DBMS implement
both, others one or the other, and the simplest database systems might not
implement either.

Table names originate in the TAP service in a metadata query and should be
passed back to the TAP service unchanged by the client. It is up to the service
whether or not catalog and schema names need to be included to fully qualify a
given table. Case is not significant in table names.

Table Access Protocol V0.2

 - 9 -

TAP defines several special case schemas, each of which may contain any
number of tables. “$VOSPACE” refers to the user’s VOSpace storage area co-
resident with the TAP service. “$UPLOAD” refers to a space containing any
tables uploaded inline in the current query. “$TAP_SCHEMA” refers to the TAP
information schema, used to describe database and table metadata. All of these
are discussed further in the sections which follow.

3.1.2 Table Field Names
In general table field names are defined by the table and its representation within
the underlying DBMS. Table field names must comply with any additional
limitations as defined by ADQL [possibly we should be more specific about this].
Table field names originate in the TAP service in a metadata query and should
not be modified by the client, which should pass them back to the service
unchanged when queries are submitted.

TAP further introduces the concept of name spaces when specifying table names.
By default an unqualified field name (no name space specified) refers explicitly to
a physical table field name, such as would be returned in a table metadata query.

A field name name space is indicated by a “name_space:” prefix in the table
name, with the referenced name space being the name of a data model or other
well defined name space supported by the service [support for data models is an
optional advanced capability and would be indicated by the service capability
metadata]. For example, “src:ra”, might refer to the field “ra” of the source
catalog data model. The entire field reference constitutes a UTYPE referencing
a field or other element of the referenced data model. The physical field name
could be anything, so long as it does not conflict with the use of name spaces.

A special case of a name space is “ucd:”, which refers to the UCD name space
consisting of all defined unified content descriptors (UCDs). In other words, UCD
is a special case of a data model, which in this case attempts to describe the
individual physical attributes of all astronomical data.

In the most general case a table might support a data model providing UTYPE
references for some subset of the table fields, plus UCDs for most or all physical
table fields, plus define the physical field names of the table fields. In such a
case any of these names could be used to refer to a given table field. In all
cases the field name reference resolves to a single physical field of the table.
This is called field name resolution. Multiple name spaces may be mixed within
a single query. A direct reference to a table field by its physical table field name
is always permitted, and is the most unambiguous form of reference.

Table Access Protocol V0.2

 - 10 -

3.1.3 Inline Table Uploads
TAP supports two methods by which a client application can upload table or
other data for use in a query. The simplest is an inline table upload, where the
data is uploaded inline as part of the query, used within the query like any other
table, then discarded once the query completes (the second is via vospace,
which is discussed in section 3.1.4). Inline uploads are simplest for small tables,
but do not provide persistence and are not practical for very large tables. An
example of an inline table upload is a multi-position query, where a table
containing multiple spatial positions is uploaded by the client to perform a “multi
cone search” query.

To upload a table inline the POST form of the query must be used. The content
type used is “multipart/form-data”, using a “file” type input element, with
the “name” attribute specifying the table name. Within the query the uploaded
table can be referred to as “$UPLOAD.name” (the name is case insensitive).
Tables must be uploaded in VOTable format, but can be used within TAP queries
like any other database table.

Any number of tables can be uploaded using this technique, so long as they are
assigned unique table names within the query. Although our discussion here
concerns uploading tables, any type of file can be uploaded in this fashion
provided the service can do something useful with the file (TAP per se specifies
handling only for table data).

See Appendix XX for a more detailed example of the use of the table upload
capability.

3.1.4 VOSpace Usage
VOSpace [ref XX] provides network data storage on a per-user basis, as well as
facilities for transfer of data between VOSpaces or between a VOSpace and the
client application. TAP services which implement the (optional) VOSpace
capability integrate the VOSpace directly into the TAP service, allowing tables
stored in the VOSpace to be used efficiently in TAP queries. Tables may be
uploaded by the client to the VOSpace and subsequently used in a query, may
be output to the VOSpace and used in a subsequent query without having to
transport the table to and from the client, may be output to the VOSpace by an
asynchronous query and later retrieved by the client, or used as input to a remote
service for further processing.

Assuming that a client application or user-specific VOSpace storage area has
been identified, tables stored within the VOSpace may be used within any TAP
query by referencing them as “$VOSPACE.name”, where name is the table
name within the user’s TAP-resident VOSpace (any input tables must be
somehow written to the TAP-resident VOSpace before they are used in a query).

Table Access Protocol V0.2

 - 11 -

There are three main scenarios involving user (client) data tables used within or
produced by TAP queries:

• The simplest case is an inline table upload, as discussed in the previous
section (3.1.3). VOSpace is not required or used, and there are no issues
with data transport or authentication.

• The second simplest case is an asynchronous query which writes its

output table to a VOSpace on behalf of the user or client application. In
this case it is possible for the TAP service to assign an anonymous
VOSpace storage area on behalf of the “user” (client application instance),
and return a data access URL pointing to where this table will be available
once the query completes. Storage allocated in this fashion can be
purged after a time interval defined by the service, e.g., several days. A
table name can also be assigned to these temporary tables to allow their
use in subsequent queries.

• In the most general case the client application transfers tables directly to

and from their TAP-resident VOSpace, using the VOSpace provided
service interface [SOAP currently; a GET interface is planned for
VOSpace 2.0]. Since in this case the client interacts directly with the
VOSpace for data management and transfer, there needs to be some way
to identify the VOSpace to be used to the TAP service when a query is
performed. Either the user can unambiguously authenticate with both the
VOSpace and the TAP service, or an anonymous VOSpace storage area
can be created by the VOSpace on behalf of the client application or user.
In the latter case a container can be created within the TAP VOSpace for
client data storage, and the container ID can be used to uniquely identify
the storage area in a subsequent TAP query [exactly how to do all this is
still TBD].

In summary, in the most general case the user will simply sign on with a login
and password, using SSO authentication, transfer any tables to or from their
TAP-resident VOSpace, and execute one or more queries via TAP which
reference these tables.

If a general persistent VOSpace is used, it is up to the client application to
transfer tables to and from the VOSpace, or delete such tables when they are no
longer needed. A TAP service which supports the VOSpace capability deals only
with its local VOSpace. Tables are transferred over the Internet in VOTable
format, but may be referenced within TAP queries as ordinary DBMS tables.

Since VOSpace is a defined (logical) schema within the TAP service, all TAP
semantics defined apply to VOSpace resident tables just as they do to ordinary
data tables. In particular, table queries may read and write tables to the local

Table Access Protocol V0.2

 - 12 -

VOSpace, and table metadata queries may be used to list the tables in the local
user VOSpace, or list the columns of any such tables.

Although TAP refers to the local use VOSpace as a DBMS schema, how it is
implemented is up to the service. Typically the local TAP VOSpace would be
implemented as either a DBMS catalog or schema, and would store table data
for all users of the TAP service. The TAP interface however always makes the
VOSpace appear as a special schema ($VOSPACE), and allows the user to see
only their tables within the VOSpace. [An advanced issue is how to reference
tables from another user’s VOSpace within a TAP query].

3.1.5 Asynchronous Execution
All TAP table queries (both AdqlQuery and ParamQuery) can execute either
synchronously or asynchronously. Synchronous execution is the default;
asynchrnous execution is an optional advanced capability for a TAP service.
Synchronous execution is simpler and is adequate for many queries, in particular
“small” queries, or filter-type queries of a single table where the output is not
sorted or ordered and can be streamed to the client (as is typically the case for
astronomical catalogs).

Asynchronous execution is requested by the client by specifying an output table
name, with the new table to be placed in their per-user VOSpace storage area
(be it authenticated or anonymous). The query response for an asynchronous
query is synchronous, and consists of a status VOTable indicating either a
successful or unsuccessful response. If the asynchronous query is successfully
initiated a job ID is returned, along with an access reference URL indicating
where the output table will be available once the query completes (this points to
location within the user’s VOSpace).

Monitoring of job execution is performed using the UWS pattern [this needs to be
detailed but can probably be common to any asynchronous operation and not
specific to TAP. Either simple polling or messaging could be used to monitor job
execution.]. Once the asynchronous query completes, either the access
reference URL or the VOSpace client API can be used to retrieve the output
table, or the table can be used as input to a subsequent query.

[Query estimation, i.e., estimated job run time, is a difficult matter and is not
currently addressed. A simple technique is to specify a per-job limit on the run
time and leave it to the user to avoid running into this limit.]

3.1.6 Output Formats
In the case of TAP, all regular (non tableset) table data or metadata queries
produce a single table as a result. In the case of synchronous queries, output
table data may be rendered and returned to the client in any format supported by

Table Access Protocol V0.2

 - 13 -

the service, VOTable being the default and the only output format for which
support is mandatory. In the case of asynchronous queries, output is always
written to the local per-user VOSpace storage area, in a format which is internal
to the implementation of the TAP service and VOSpace (normally a native DBMS
table). When a remote client subsequently retrieves data from the VOSpace, the
default transport format is VOTable.

The suggested supported output formats for synchronous table queries include
VOTable (the default), CSV or TSV, pretty-printed text, and HTML (possibly
Javascript-enhanced). Other options might include FITS binary table or XML,
however these are generally less useful for general table queries.
Aside from the mandatory VOTable, the supported output formats for table data
or metadata queries are an optional service capability, and are specified in the
service capability metadata. A TAP service must support VOTable as the
default output format, and should support at least CSV/TSV and text as well.

Tableset metadata (see section 3.3.4) does not constitute normal table output
and can be returned only in either dataless VOTable or registry compliant XML
format.

3.2 AdqlQuery Operation
The TAP service should implement the AdqlQuery Operation, used to execute a
TAP query composed as an ADQL statement. Alternative query languages, e.g.,
native SQL pass-through, may optionally be supported by the service as an
advanced capability.

In the case of AdqlQuery, much of the power of the query is provided by the
richness of the ADQL language and the capability of the TAP service to process
general ADQL statements input by the client. Specification of the ADQL
language is beyond the scope of this document, and is addressed separately in
the ADQL specification (ref XX).

As noted earlier, many of the AdqlQuery input parameters, and everything having
to do with query execution and the query response, are common to both
AdqlQuery and ParamQuery.

3.2.1 Input Parameters
 [A number of these parameters are based on SSA parameters of the same
name and are intended to be common elements of the standard DAL service
profile.] [This part of the specification needs to be made more precise and
rigorous once a first round of discussions are completed.]

Table Access Protocol V0.2

 - 14 -

3.2.1.1 QUERY
A service which implements the AdqlQuery Operation must support this
parameter, used to input the ADQL (or other QL) statement to be executed. The
query string should be URL-encoded by the client if it contains any characters not
legal in a URL (see section 5). The TAP service must be prepared to decode the
URL encoded string (any modern service framework will normally do this
transparently to the service code).

3.2.1.2 QUERYTYPE
A string specifying the language and optionally version used for the QUERY
parameter, as defined by the service capabilities. A service which implements
the AdqlQuery operation must support “ADQL” (case insensitive) as the default
queryType. The service may support other query language encodings as well,
e.g., other ADQL versions, or pass-through of native SQL. The service should
return an “unknown queryType” error if an unsupported queryType is specified.

3.2.1.3 FORMAT
The service must implement a FORMAT parameter specifying the output format
requested by the client, specified either as a MIME type or as one of the
shorthand forms “votable”, “csv”, “tsv”, “text”, or “html” (case independent). The
service should return an “unsupported output format” error if an unsupported
output format is requested.

3.2.1.4 MAXREC
The service should implement a MAXREC parameter indicating the maximum
number of table records (rows) to be returned. If the result set for a query
exceeds this value a valid data table should be returned with a status of
“OVERFLOW” indicating that overflow occurred (this may not be supported for
output formats other than VOTable).

The default MAXREC value defined by a service should be large enough to avoid
overflow for most small queries, but small enough to provide a response to the
user reasonably quickly. The client may override the default MAXREC,
increasing the value up to the maximum value permitted by the service. A
sufficiently large MAXREC may permit streaming of arbitrarily large tables.
Output tables larger than the maximum permitted value of MAXREC must use
VOSpace (if supported by the service) for data storage and transfer. [Support for
paging through the output of large queries is another option which could be
considered]

A value of MAXREC=0 indicates that, in the event of an otherwise successful
query, a valid output table should be returned containing metadata but no table
data rows (overflow should still be indicated if table data rows were discarded; a

Table Access Protocol V0.2

 - 15 -

status of OK should be indicated if no table data rows were produced). This is an
example of a null query, that is, a query which produces an empty table.

3.2.1.5 MTIME
The service may support an MTIME parameter, used to query a table for only
rows which were modified within a given range of times, specified as an ISO8601
open or closed range list in the UTC time system. A “modified” row is a table row
which was inserted, updated, or deleted during the indicated time interval (hence
MTIME may be used to see deleted rows which are not visible in any other
fashion). This feature may be used by a remote client to maintain a replica of a
large table, or to periodically poll a table for changes. The period of time for
which deletions are preserved is server dependent but should be at least several
days.

3.2.1.6 RUNID
The service should implement the RUNID parameter, used to tag service
requests with the job ID of a larger job which the request may be part of. For
example, if a cross match portal issues multiple requests to remote TAP services
to carry out a cross-match operation, all would receive the same RUNID, and the
service logs could later be analyzed to reconstruct the service operations initiated
in response to the job. The service need not do anything with RUNID other than
pass the parameter on to any other services which it in turn calls, e.g., a
VOSpace. The service should also ensure that RUNID is preserved in any
service logs.

3.2.1.7 OUTPUT
The service may support an OUTPUT parameter, used to specify the name of
the output table to be generated. If no output table is generated the query is
synchronous and the output table is returned as the query response, with a
status of OK, OVERFLOW, or ERROR (e.g., if the query times out or otherwise
fails). If an output table name is given an asynchronous job is initiated which
upon successful completion will save the query result to the named table in the
user’s VOSpace storage area (see section 3.1.4 and 3.1.5).

If the named output table would overwrite a valid table of the same name the
service should return an ERROR status indicating “would overwrite existing
table”. If for any reason an asynchronous query cannot be initiated, an ERROR
response should be returned.

3.2.2 Query Response
If the query is unsuccessful an ERROR response VOTable is returned as
described in section 2.3.6. An error condition always results in a VOTable

Table Access Protocol V0.2

 - 16 -

response regardless of the output format requested by the client (except for low
level errors where a HTTP error could occur instead).

If the query is successful the type of response depends upon whether it was a
synchronous or asynchronous query. In the case of a synchronous query, the
output table is returned as the query response, in the format requested by the
client. In the case of a VOTable, the VOTable must contain a RESOURCE
element, identified with the tag type=“results”, containing a single TABLE
element with the results of the query. The RESOURCE element must contain an
INFO with name=”QUERY_STATUS”, with the value attribute set to “OK” if the
query executed successfully, regardless of whether any data rows were returned.
If the query executed successfully but resulted in overflow, a value of
“OVERFLOW” should be returned.

In the case of an asynchronous query, an asynchronous job is initiated to
execute the query, and the request returns immediately. A standard status
VOTable response must be returned containing an INFO element with name
= ”QUERY_STATUS”, with the value attribute set to either “OK” or “ERROR”. If
the asynchronous query job is successfully initiated an additional INFO is
included with name=”JOBID” with the value set to the job ID of the
asynchronous job, which may subsequently be used to monitor job execution
(see 3.1.5).

In addition, an INFO is included with name=”TABLE_NAME”, with the value set to
the name of the table to be output, plus another INFO with name
= ”ACCESS_URL”, with the value set to the URL to be used to retrieve the
output table from the local VOSpace once job execution is completed. In simple
cases this allows the client to retrieve data following job completion without
having to interact directly with the VOSpace.

3.3 ParamQuery Operation
The service must implement the ParamQuery operation, used to provide basic
access to both table data and metadata. ParamQuery is the standard way to
query table metadata with TAP: an advanced service might also be able to query
table metadata with AdqlQuery but this is overkill for basic table metadata
queries. ParamQuery allows simple filter-type queries of individual tables to be

Example:
 <VOTABLE … version=”1.1”>

<RESOURCE type="results">
 <INFO name="QUERY_STATUS" value="OK"/>
 <INFO name="JOBID" value="4316"/>
 <INFO name="TABLE_NAME" value="highz"/>
 <INFO name="ACCESS_URL" value="http://..."/>
</RESOURCE>

 </VOTABLE>

Table Access Protocol V0.2

 - 17 -

implemented without requiring ADQL support; most simple queries of
astronomical catalogs are of this type. Explicit support is provided for common
query cases such as cone search and multi-position queries.

3.3.1 Input Parameters
While the ParamQuery input parameters are defined in detail in the following
sections, a few simple examples should help illustrate how such queries are
formed. Only the ParamQuery parameters are shown in these examples; the full
query URL would include the prefix “baseURL?REQUEST=ParamQuery&”.

The following example would read the 2MASS point source catalog, finding all
sources within six arcminutes of the indicated position, where the J band SNR is
greater than or equal to 2.5:

FROM=fp_psc&POS=180.0,0&SIZE=0.2&WHERE=j_snr,2.5/

The following would list all tables in the user’s VOSpace at the TAP service:

FROM=$TAP_SCHEMA.tables&WHERE=tablename,$vospace.*

By default these are synchronous queries, with output returned in the default
ouput format (VOTable).

3.3.1.1 POS, SIZE
POS and SIZE define a circular search region in the indicated coordinate system
(default ICRS). The service must support the POS and SIZE parameters, and
implement them as a query constraint for tables containing records tagged with
spatial positions. If POS and SIZE are applied to a table which does not tag
records with spatial positions an ERROR should be returned (the client should
omit these parameters to query such a table).

The coordinate values for POS are specified in list format (comma separated)
with no embedded white space, as defined in section 5.

Example: POS=52,-27.8

POS defaults to right-ascension and declination in decimal degrees in the ICRS
coordinate system. A coordinate system reference frame may optionally be
specified to indicate a spatial coordinate system other than ICRS. The reference
frame is specified as a list format modifier, with the acceptable values as defined
by Table 3 (standard reference frames) in STC (Rots 2007).

 Example: POS=52,-27.8;GALACTIC

Table Access Protocol V0.2

 - 18 -

Whether or not a service supports coordinate systems other than ICRS for POS
is an optional service-defined capability (solar and planetary data for example
would use other coordinate systems, or omit POS entirely). It is an error if a
coordinate reference frame is specified which the service does not support.

POS also defines a special syntax which is used to reference a table of positions
for multi-position queries. This is discussed separately in section 3.3.6.

SIZE specifies the diameter of the search region input in decimal degrees.

Example: SIZE=0.05

A valid query does not have to specify a SIZE parameter. If SIZE is omitted in a
positional query, the service should supply a default value intended to find
nearby objects which are candidates for a match to the given object position.

3.3.1.2 REGION
The service may implement a REGION parameter, used to define more general
spatial search regions than can be defined using POS, SIZE. The value is a
STC/S region specifier [a future capability to consider would be uploading a more
general STC/X region mask and referencing this via indirection using REGION.]

 Example: REGION=Ellipse ICRS 148.9 69.1 2.0 4.0 32.7

In the example above the embedded spaces are shown for clarity, but in an
actual URL they would have to be URL encoded as “%20”.

If both POS,SIZE and REGION are specified in the same query, REGION acts as
a mask to further qualify the circular region specified by POS,SIZE. This is most
useful for multi-position queries (see section 3.3.6), where a large table of
possible search positions may include positions outside the desired search
region.

3.3.1.3 SELECT
The table fields to be returned by the query, specified either as a comma
delimited list of field names, or by specifying one of the special values “$STD” (to
return only the “primary” fields), or “$ALL” (to return all table fields). These
values are case insensitive.

 Example: SELECT=ra,dec,flux

By default only the standard or “primary” fields are returned. The “primary” fields
are specified on a per-table basis, and form a subset of the table fields including
only those fields thought to be most important. This is used to provide a more

Table Access Protocol V0.2

 - 19 -

readable view of very wide tables. Field name resolution (3.1.2) is performed,
hence UTYPE or UCD references may optionally be used to reference table
fields, if supported by the service. [It has been suggested that use of SELECT
FROM WHERE as parameter names could be confusing and that other names
should be used – this needs further consideration.]

3.3.1.4 FROM
The table to be queried, specified as defined in section 3.1.1. Only a single table
reference is allowed. There is no default, hence the query is not valid unless a
table is specified.

 Example: FROM=$VOSPACE.highz

In addition to the data tables managed by the service, tables in the query upload
or user VOSpace area may be referenced, as well as the table metadata tables
defined by the TAP information schema.

3.3.1.5 WHERE
An optional filtering constraint to be applied to the table to determine which table
rows are returned. By default all table rows are returned.

The syntax of the ParamQuery WHERE parameter value (not to be confused
with the SQL WHERE clause of the same name) is a simple sequence of equality
or range constraints delimited by semicolons, with the field name and value
elements of an individual constraint separated by a comma [a colon would be
more readable for this but conflicts with field name resolution].

A simple example should help illustrate the syntax:

Example: WHERE=observer,*smith*;z,1.5/2.2

This specifies two table field constraints: the field “observer” must contain the
case-insensitive substring “smith” (hence the wildcards), and the field “z” must be
in the range 1.5 to 2.2 (“/” indicates a numerical range).

Each constraint applies to a single table field; multiple constraints on the same
table field are allowed. The constraints have an AND relationship, hence all must
evaluate to true for a table row to satisfy the WHERE. Field name resolution is
applied, hence table field names can be referred to indirectly by UTYPE or UCD
if this capability is supported by the service.

The syntax chosen is intended to easy to compose, easy and unambiguous for a
service to parse and map to a SQL back end or otherwise evaluate, and
consistent with similar usage in other data access services, e.g., in the use of “/”

Table Access Protocol V0.2

 - 20 -

for numerical ranges. An effort has been made to select a minimal set of
metacharacters so as to minimize the need for URL encoding – most simple
expressions should not require URL encoding, e.g., if typed interactively into a
Web browser, allowing the simplest Web tools to be easily used for basic queries.

Some details of the syntax:

• For string-valued fields the constraint is a case-insensitive simple pattern,

with “*” matching zero or more characters. Absent any use of “*”, the entire
string must match. Hence “obj,m31” specifies that the value of field “obj”
must match exactly, except for case.

• For numeric fields the constraint is either a single numeric value or a range,

using “/” as the range delimiter. Both open and closed ranges can be
specified, e.g., “5/” specifies an open range equivalent to “greater than or
equal to 5”, whereas “5/9” means “5 to 9 inclusive”. [this is a DAL range list
as in SSA etc.].

• For both string and numeric valued fields the constraint can also be a comma

delimited list of allowable values with an OR relationship.

• A value expression prefixed with “!” specifies a NOT of whatever follows.

Only the entire field value expression can be prefixed in this fashion.

• The special value “null” indicates a null-valued field. For example

“flux,!null” is true only if field “flux” has a non-null value.

• Spaces may be embedded to improve readability, but if so they must be URL

encoded as “%20”.

Field names or value expressions must be quoted if they contain any special
characters (semicolon, comma, slash, asterisk). A string can also be quoted to
force case-sensitive comparison. The single quote is used to avoid conflict with
double quote which is often used to quote the entire URL string. Hence,
“snr,2.5/;’ucd:meta.id;src’,ir” demonstrates the use of quotation to
avoid misinterpretation of the “;” embedded in the UCD formatted field name.

3.3.1.6 TOP
A service should support the TOP parameter, used to order the query result by a
score heuristic and return the specified number of top ranked records from the
output table. For example, TOP=20 would return the top 20 ranked records from
the output table. The details of the scoring heuristic used to rank the query
response are server-specific, but the intent is to order the response by the
degree of match to the query parameters. An example of a simple scoring
heuristic for a spatial query is the distance from the center of the search region.

Table Access Protocol V0.2

 - 21 -

FROM=fp_psc&POS=180.0,0&SIZE=0.2&WHERE=j_snr,2.5/&TOP=20

The above example is identical to what we presented earlier except that only the
top 20 rows of the response are returned (this differs from MAXREC in that
overflow cannot occur, and an order-by-score heuristic is implied).

[TOP comes from SSA etc., but is very similar to the SQL TOP except for the
suggestion that a scoring heuristic be used to order the output table; if the
ordering heuristic is omitted they are the same.]

3.3.1.7 Other Query Parameters
The FORMAT, MAXREC, MTIME, RUNID, and OUTPUT parameters are
identical for both ParamQuery and AdqlQuery. Refer to section 3.2.1 for a
description of these parameters.

3.3.2 Query Response
The ParamQuery query response is identical to that for AdqLQuery. Refer to
section 3.2.2 for a description of the query response.

3.3.3 Table Data Queries
Although ParamQuery supports only a restricted range of query expressions
compared to AdqlQuery, it is equally efficient for table data queries even for very
large tables. In the case of both ParamQuery and AdqlQuery the input query
resolves to the same database operations, and so long as indexing is used
carefully, both types of queries can be used to access very large tables, e.g.,
tables containing hundreds of millions of records or more. For some specialized
applications where it is desirable to put a TAP interface in front of some form of
data storage which is not SQL-based (e.g., to directly query a set of VOTables or
FITS files), ParamQuery has the advantage of making it possible to provide a
basic query capability without requiring either ADQL or SQL.

3.3.4 Table Metadata Queries
Rather than provide access to database and table metadata via a custom
interface, querying of database and table metadata is provided by representing
such metadata in a set of tables within a special database schema called the
TAP schema ($TAP_SCHEMA). This approach has the advantage of allowing the
standard TAP table query interface to be used to query table metadata as well as
ordinary table data. In addition, since metadata is represented as data which is
queried at runtime, table metadata can vary dynamically, and is easily extended
without any changes to the query interface. A good example of dynamically
changing table metadata is using the metadata query interface to query the

Table Access Protocol V0.2

 - 22 -

contents of the user’s VOSpace storage area, which changes constantly as
tables are added or deleted.

The core TAP schema defines the following tables (more detailed information on
the TAP schema is given in section 4.1):

• $TAP_SCHEMA.tables. Lists all tables known to the TAP service and
visible to the current client or user. This includes any views, and the
contents of the user’s VOSpace storage area at the service.

• $TAP_SCHEMA.columns. Lists all columns (fields) of all tables known to

the TAP service and visible to the current user. A query specifying a table
name will return only the columns of the given table.

• $TAP_SCHEMA.tableset. This is not a true table but is provided to

enable the standard interface to be used to query tableset metadata,
providing a convenient means to get a description of all data tables
managed by the service.

Some examples should help illustrate how table metadata queries are used. The
following simple query will list all the tables known to the service and visible to
the client (no WHERE is needed since all tables are to be listed):

FROM=$TAP_SCHEMA.tables

To list only the tables in the user’s VOSpace the following query would be used
instead:

FROM=$TAP_SCHEMA.tables&WHERE=tablename,$vospace.*

To list only data tables, ignoring the VOSpace:

FROM=$TAP_SCHEMA.tables&WHERE=tablename,!$vospace.*

To list all columns of table “fp_psc”:

FROM=$TAP_SCHEMA.columns&WHERE=tablename,fp_psc

Table metadata queries use the regular table query interface, so the query
response is returned as a VOTable by default, with other output format options
available as for a data table, if supported by the service.

Simple TAP services are required only to be able to list all tables, or all the fields
of a single table (a minimal TAP service does not implement VOSpace so that is
not an issue). A fully compliant TAP service will support general table metadata
queries using the full query interfaces.

Table Access Protocol V0.2

 - 23 -

3.3.5 Cone Search Query
The POS and SIZE parameters provide a spatial position query capability
equivalent to the legacy cone search interface. Going back to our original
example, the following would execute a cone search of table “fp_psc” using the
specified position and search region diameter:

FROM=fp_psc&POS=180.0,0&SIZE=0.2

Cone search also provided a VERB parameter to control which fields are
returned in a query. This is equivalent to a SELECT, with “$STD” providing the
default “narrow” view, and “$ALL” returning all table fields.

ParamQuery thus duplicates all the functionality of the legacy cone search and is
equally easy to use, and nearly as simple to implement. It is much more
powerful however, since a service can support multiple tables, the table
metadata can be queried as easily as the table itself, additional query constraints
can be specified to refine the query, spatial coordinate system frames other than
ICRS can be specified, non-circular regions can optionally be used for searches,
multiple output formats can be specified, optional Grid capabilities are available
to permit large queries, and as we will see in the next section, multi-position
queries can be used to provide a “multi-cone search” type of capability.

3.3.6 Multi-Position Queries
A multi-position query generalizes POS, SIZE to a table of positions, allowing an
arbitrarily large number of spatial position-based queries to be executed
simultaneously. In a typical scenario the user uploads a list of the positions of
their favorite objects, and executes a spatial cross match against some data
table. The multi-position query provides this simple spatial cross match
capability.

A multi-position query is indicated by using POS to point to a table containing
positions, instead of inputing a single position directly. Any table can be used so
long as it contains position information which the service’s POS implementation
understands [we need to specify this more carefully in terms of UCDs and
possibly UTYPEs].

The POS syntax used to point to a table of positions is “POS=@tablename”,
where tablename can be any valid table known to the TAP service. For
example the client might upload a table “positions” when executing the multi-
position query, in which case we would have “POS=@$upload.positions”. If
a persistent table of positions is preferred this could be uploaded to the user’s
VOSpace instead, and referenced as “POS=@$vospace.positions”.

Table Access Protocol V0.2

 - 24 -

In the most general case any table containing position information can be used.
For example we could use the 2MASS point source catalog from our earlier
examples. This table contains nearly half a billion sources, so the REGION
parameter is used to apply a spatial mask to restrict POS to only the positions
within the specified region. In this case we might have “POS=@fp_psc”, with
REGION specifying whatever spatial region the user requires. Additional query
constraints may optionally be added to further refine the query.

The output from a multi-position query is a single table, containing a sequence of
zero or more table rows corresponding to each input position. A unique position
ID is added to the table to indicate the position from the input position table to
which the output table row corresponds. The other output table fields are taken
from the data table being queried.

If a SIZE parameter is specified the value given applies to all positions.
Otherwise the region size is taken from the position table, and is allowed to vary
for each position [as with POS we need to specify more precisely how this is
done.]

3.4 GetCapabilities Operation

[To be added]

3.5 GetAvailability Operation

[To be added]

4 Table Metadata

4.1 TAP Core Schema
The TAP core schema is equivalent to that defined by the registry for a
VODataService with minor additions. VODataService is in turn modeled after
VOTable.

The table “$TAP_SCHEMA.tables” contains the following columns:

Tablename table name including catalog and schema if used
Tabletype base_table, view, output
Description brief description of table
Utype UTYPE if table corresponds to a data model

The table “$TAP_SCHEMA.columns” contains the following columns:

Table Access Protocol V0.2

 - 25 -

Name column name
Tablename table name, e.g., <schema>.<table>
Description brief description of column
Unit unit in VO standard format
Ucd UCD of column if any
Utype UTYPE of column if any
Datatype datatype as in VOTable/Registry
Arraysize array dimensions as in VOTable/Registry
Primary column is visible in default selection
Indexed column is indexed on the server
Std standard column (as opposed to custom)

The tablename should include any catalog or schema names if these are used to
reference tables by the server. This should include TAP_SCHEMA, plus the
"vospace" schema if supported by the service (a VOSpace could be implemented
as either a catalog or schema depending upon the DBMS, but should be treated
as a schema in queries to avoid having the client know how the vospace is
implemented). The TAP_SCHEMA may be queried for tables named
"$TAP_SCHEMA.*" to get information about the schema itself, e.g., to determine
if any extended schema metadata is defined by the service.

The schema element naming convention used here follows that of the registry.
Data types are expressed as in VOTable and the registry, e.g., boolean,
unsignedByte, short, int, float, double, and so forth. Arraysize specifies the
dimensions of an array, e.g., "*", "5", "5x20" etc. Primary=true indicates that
the column is visible in the default (narrow) view of a table; SELECT=$all would
display all columns. Indexed=true indicates that the column is indexed,
potentially making queries run much faster if this column is used as a constraint.
“Std” is included for compatibility with the registry, which uses this value to
indicate that a given column is defined by some standard, as opposed to a
custom column defined by a particular service.

Other possible metadata fields under consideration but not yet included in the
core schema include "dbtype" (the SQL database type used on the server),
"width" and "precision", and "is_nullable".

The schema defined by a TAP service could add additional fields to extend the
core schema shown here.

4.2 Table Sets
The schema also defines $TAP_SCHEMA.tableset, however this is not an
actual table but rather a structured view of the two core schema tables above. A
simple query will return the entire tableset, but advanced services may permit

Table Access Protocol V0.2

 - 26 -

selection with a WHERE clause, e.g., to find only tables within a given region or
for which the tablename matches some pattern. The tableset contains a
sequence of table entries with each entry listing the columns of that table. XML
and VOTable output formats are defined. For XML table metadata is formatted
as defined for a VODataService. For VOTable a VOTable is returned which
contains a sequence of "empty" TABLE entries containing only metadata (FIELD
and PARAM definitions) and no table data.

To return the full tableset supported by the service in VOTable format:

FROM=$TAP_SCHEMA.tableset&FORMAT=votable
To return the same metadata in registry compliant XML format the same
command would be used, with FORMAT specified as “xml”.

5 Basic Service Elements

[To be added. This is very similar to section 8 of the SSA specification.]

Appendix A: “Appendix Title”
Insert appendix here

References

[1] R. Hanisch, Resource Metadata for the Virtual Observatory ,
http://www.ivoa.net/Documents/latest/RM.html
[2] R. Hanisch, M. Dolensky, M. Leoni, Document Standards Management: Guidelines
and Procedure , http://www.ivoa.net/Documents/latest/DocStdProc.html

