
Parameterised Query Language

 International

 Virtual

 Observatory

Alliance

IVOA Parameterised Query Language

Version 0.1
IVOA Internal Working Draft 2009 February 12

This version:

PQL-0.1-20090212

Latest version:

Not yet issued

Previous version(s):

Authors:

TBD

Contributors:

TBD

Abstract
This document describes the Parameterised Query language (PQL). PQL has
been developed as part of various Data Access Layer (DAL) services. This
document formalises the syntax and meaning of PQL as a generic parameter-
based query language for querying astronomical data services.

- 1 -

Parameterised Query Language

Status of This Document
This is a working draft internal to the DAL-WG.

This is an IVOA Working Draft for review by IVOA members and other interested
parties. It is a draft document and may be updated, replaced, or obsoleted by
other documents at any time. It is inappropriate to use IVOA Working Drafts as
reference materials or to cite them as other than “work in progress”.

A list of current IVOA Recommendations and other technical documents can be
found at http://www.ivoa.net/Documents/.

Acknowledgements
“Ack here, if any”

Contents
 1 Introduction .. 3

 2 Parameterised Query Language (PQL) .. 3

 2.1 General Parameter Rules .. 3

 2.1.1 Single-Valued Parameters .. 3

 2.1.2 Multi-Valued Parameters ... 3

 2.1.3 Range-Valued Parameters ... 3

 2.1.4 Qualifiers .. 4

 2.1.5 Combinations ... 4

 2.1.6 Symbolic Values ... 4

 2.1.7 Missing or null-valued parameters .. 5

 2.1.8 Case of parameters .. 5

 2.1.9 Order and cardinality of parameters ... 5

 2.2 Standard Parameters ... 5

 2.2.1 POS, SIZE .. 5

 2.2.2 REGION ... 6

 2.2.3 BAND ... 6

 2.2.4 TIME .. 7

 2.2.5 SELECT ... 7

 2.2.6 FROM .. 8

 2.2.7 WHERE .. 8

 2.3 Numeric and boolean values ... 11

 3 Use with HTTP (informative) .. 11

- 2 -

http://www.ivoa.net/Documents/

Parameterised Query Language

 3.1.1 Reserved characters in HTTP GET URLs .. 11

 4 References .. 12

 1 Introduction
The Parameterised Query language (PQL) is a language used by the
International Virtual Observatory Alliance (IVOA) to represent simple astronomy
queries posted to VO services.

PQL is based on past use and parameter-based query interfaces in DAL services
such as Simple Image Access (SIA), Simple Spectral Access (SSA), and Simple
Cone Search (SCS). Parametric queries are simple to express and to implement
for cases where the data model is sufficiently well defined and adequate for the
data to be queried, hiding many of the details required to pose and evaluate the
query. In this sense PQL provides a higher level of abstraction that richer and
more detailed languages such as the Astronomical Data Query Language
(ADQL).

 2 Parameterised Query Language (PQL)

 2.1 General Parameter Rules

 2.1.1 Single-Valued Parameters
Parameters which are single-valued always specify equality. The value may not
use any of the reserved characters listed above unless these are URL-encoded
(REF?).

 2.1.2 Multi-Valued Parameters
Parameters which are multi-valued (list valued, such as positions) use the
comma (“,”) as the separator between successive items in the list. Embedded
white space is not permitted. If a parameter value includes a space or comma, it
must be escaped using the URL encoding rules (see section Error: Reference
source not found and IETF RFC 2396 [5]).

In some lists, individual entries may be empty, and should be represented by the
empty string. Thus, two successive commas indicate an empty item, as does a
leading comma or a trailing comma. An empty list should be interpreted either
as a list containing no items, or as a list containing a single empty item,
depending upon the context.

 2.1.3 Range-Valued Parameters
Parameters thats specify a range of values use the forward slash (“/”) character
as the separator between elements of the range specification (as in the ISO 8601
date specification after which this convention is patterned). For example,a range
consisting of all values from 5E-7 to 8E-7 inclusive would be:

Example: 5E-7/8E-7

- 3 -

Parameterised Query Language

If a third field is specified it is a step size for traversing the indicated range. If a
parameter permits a step size the semantics of the step size are defined by the
specific parameter.

An open range may be specified by omitting either range value. If the first value
is omitted the range is open toward lower values. If the second value is omitted
the range is open toward higher values. Omitting both values indicates an infinite
range which accepts all values. An open range which accepts all values less
than or equal to 5:

Example: /5

Range values can be used with parameters which specify numeric and date
values only. (TBD: Why not all data types that are fully ordered? e.g. numbers,
dates, and strings but not regions)

 2.1.4 Qualifiers
If specified by the definition of a particular parameter, a single-valued parameter,
range, or list may be qualified by appending the character “;” (semicolon)
followed by a qualifier string. This could be used to specify an alternate
coordinate system, e.g.

Example: 180.0,1.0;GALACTIC

could specify a position in galactic coordinates. In some cases, multiple
semicolons may be used to delimit separate sub-lists or clauses within the
parameter value.

 2.1.5 Combinations
List and range syntax may be combined, e.g., to indicate a list of scalar or range-
valued parameter values. Such a range list may be ordered or unordered, and
may contain either numeric or string data. An ordered list is one which requires
values to be processed in a specified order, and to ensure this the range list is
sorted or ordered by the service as necessary before being used. It is the
responsibility of the service to sort an ordered range list, hence the client may
input ranges or range values in any order for an ordered range list and the result
must be the same. The sequence in which items in an unordered list occur on
the other hand is significant, as since there is no intrinsic ordering for the list
which can be enforced by the service, items will be processed by the service in
the order they are input by the client.

 2.1.6 Symbolic Values
The value for any parameter can be a symbolic value rather than a literal value
(constant). The @ character is used to denote a symbolic value:

Example: POS=@something

The meaning or interpretation of the symbolic value is defined by the service that
accepts PQL.

- 4 -

mailto:POS%3D@something

Parameterised Query Language

 2.1.7 Missing or null-valued parameters
If a parameter is not included in a query its value is unset; no value has been
specified. If a parameter is given a null value, e.g., “POS=”, the parameter value
has been set and the value is the null string. The interpretation of such an input
is defined by the service that accepts PQL input and may or may not be an error.

 2.1.8 Case of parameters
Parameter names must not be case sensitive, but parameter values must be
so. In this document, parameter names are typically shown in uppercase for
typographical clarity, not as a requirement.

 2.1.9 Order and cardinality of parameters
Parameters in a request may be specified in any order.

When request parameters are duplicated with conflicting values, the response
from the service is undefined. The service may reject the request or it may pick
one value for for the parameter. Clients should not repeat parameters in a
request.

 2.2 Standard Parameters
A service which implements parametric queries on data must do so using the
parameters defined in this section.

 2.2.1 POS, SIZE
The POS and SIZE parameters provide an easy to use, optimized facility for
performing spatial queries of astronomical data, as is used in the SIA and CSC
protocols. Spatial queries are supported only for content which contain positional
information; most astronomical data services serve content where this is true.

POS and SIZE define a circular search region in the specified coordinate system
(default ICRS). A service which supports must support the POS and SIZE
parameters, and implement them as a query constraint for tables containing
records tagged with spatial positions. If POS and SIZE cannot be applied to the
referenced table an error should be returned.

The coordinate values for POS are specified in list format (comma separated)
with no embedded white space, as defined in section 2.1.2.

Example: POS=52,-27.8

The POS parameter defaults to right-ascension and declination in decimal
degrees in the ICRS coordinate system. A coordinate system reference frame
may optionally be specified to indicate a spatial coordinate system other than
ICRS. The reference frame is specified as a list format modifier, with the
acceptable values as defined by Table 3 (standard reference frames) in STC [4].

Example: POS=52,-27.8;GALACTIC

The SIZE parameter specifies the diameter of the search region input in decimal
degrees.

- 5 -

Parameterised Query Language

Example: SIZE=0.05

A valid query does not have to specify a SIZE parameter. If SIZE is omitted in a
positional query, the service should supply a default value intended to find nearby
objects which are candidates for a match to the given object position, taking into
account the spatial resolution of the data.

 2.2.2 REGION
The REGION parameter provides a more general spatial search than can be
defined using POS and SIZE. The value of REGION must be a STC/S (REF)
region specifier, e.g.

Example: REGION=Ellipse ICRS 148.9 69.1 2.0 4.0 32.7

In the example above the embedded spaces are shown for clarity, but in real use
they must be URL encoded.

If POS,SIZE and REGION are all specified in the same query, they both apply.
That is, REGION must be used as a mask to further qualify the circular region
specified by POS and SIZE. This is most useful for multi-position queries (TBD),
where a large table of possible search positions may include positions outside
the desired search region. In this case REGION specifies the sub-region of the
referenced table to be used. This allows large tables to be used in a multi-
position query. In particular it permits a cross match of two data tables (e.g., two
large astronomical catalogs) to be performed in a single operation, restricting the
spatial portion of the cross match to the mask region.

[Note: PQL defines the use of symbolic values (above) and it would
be up to a service like TAP to specify this kind of usage. -Ed.]

 2.2.3 BAND
The BAND parameter specifies a constraint on the energy value or coverage of
the astronomical content. This is generally applicable for queries to data
services, where the data is described with some representative energy value or
range of values.

The BAND parameter defines a single value or range of values of energy in the
specified representation (TBD: default is wavelength in meters). For example, to
find content at 550nm (e.g. including photons of that energy):

Example: BAND=5.5E-9

The value of the BAND parameter may be qualified to indicate an alternate
energy representation. For example,

Example: BAND=2.0E9/3.0E9;FREQ

would specify an frequency range of 2.0 to 3.0 GHz. Allowed qualifiers are WAVE
(wavelength in meters), FREQ (frequency in Hz), and ENERGY (energy in eV).

[NOTE: BAND was not in TAP 0.31, but has been included from
SSA for completeness. This use of the qualifier described above
has been extrapolated from the POS,SIZE material above; SSA

- 6 -

Parameterised Query Language

uses the qualifier to specify the rest frame - “source” or “observer” -
rather than to specify an alternate representation as above. Both
seem valuable and if there can be multiple qualifiers we could have
both; otherwise we need to make decisions: compatibility vs
symmetry. -Ed.]

 2.2.4 TIME
The TIME parameter specifies a constraint on the time value or coverage of the
astronomical content. This is generally applicable for queries to data services,
where the data is described with some representative time value or range of
values (the observation date, for example).

The TIME parameter defines a single value or range of values of time in the
specified representation (TBD: default is ISO8601 for compatibility with SSA). For
example, to find data collected in January 2009:

Example: TIME=2009-01-01T00:00:00/2009-01-31:23:59:59

The value of the BAND parameter may be qualified to indicate an alternate time
representation. For example,

Example: TIME=53200.0/53210.0;MJD

would specify a range of dates using Modified Julian Date. Allowed qualifiers are
ISO (ISO8601 date-time format) and MJD (Modified Julian Date).

[NOTE: As above, TIME has been included from SSA and the use
of qualifiers has been extrapolated from POS,SIZE. SSA only
allows ISO8601, while the qualifier use here allows clients to use
Modified Julian Date as well. -Ed]

 2.2.5 SELECT
The SELECT parameter specifies the fields to be returned by the query, specified
either as a comma delimited list of field names, or optionally by specifying one of
the reserved values $STD (to return only the standard or “primary” fields), or
$ALL (to return all table fields).

Example: SELECT=ra,dec,flux

Example: SELECT=$ALL

By default only the $STD fields are returned. The “primary” fields are specified
on a per-table basis, and define a subset of the most important table fields
chosen by the service implementor. This is used to provide a more readable
view of very wide tables. The service must permit $STD and $ALL to be input
without error, but is not required to actually use them to adjust the view of the
table. If no $STD view is defined for a table the service should ignore $STD and
merely return all table fields.

[TBD: ALL and STD are symbolic values and could use the
symbolic value mechanism in 2.1.6 instead of introducing another
reserved symbol.]

- 7 -

Parameterised Query Language

The names of available fields can be specified by the service specification
directly (e.g. for services like SIA and SSA with a data model) or obtained from
service metadata (for generic services with no inherent astronomical data
model).

 2.2.6 FROM
The FROM parameter indicates the target of the query. Only a single value is
allowed.

Example: FROM=hdfv2

It is up to the service specification to decide if there is a sensible default value; in
services with a data model (e.g. SSA) there would be a valid default and FROM
would not be required. In generic services with no data model (e.g. TAP, where
targets means tables) there may be multiple targets to chose from and FROM
would be required.

 2.2.7 WHERE
The WHERE parameter is used to specify generic optional filtering constraint(s)
to be applied to the query target and determine which records are returned. By
default all trecords are returned.

The WHERE parameter may be combined with other query constraints such as
POS and REGION to further refine the query.

The syntax of the WHERE parameter value is a simple sequence of equality or
range constraints delimited by semicolons, with the field name and value
elements of an individual constraint separated by a comma.

Example: WHERE=observer,*smith*;z,1.5/2.2

This specifies two table field constraints: the field “observer” must contain the
case-insensitive substring “smith” (hence the wildcards), and the field “z” must be
in the range 1.5 to 2.2 inclusive.

[NOTE: In the WHERE parameter, the semi-colon is used as the list
delimiter to separate constraints, while in the range-list section
above comma separates list items and semi-colon separates an
item from a qualifier. That is, in the BNF below field-list uses semi-
colon and the other lists use comma. Clearly the separators need
to be different, but maybe re-using the qualifier separator is not
such a good idea... just in case we want to allow (now or in future)
the use of qualifiers in the WHERE parameter. -Ed.]

The field names come from the service specification or service metadata as
described in 2.2.5 .

The WHERE syntax has deliberately been kept simple as ADQL already provides
a fully general expression evaluation capability, which should be used to support
advanced query capabilities. Each constraint applies to a single table field;
multiple constraints on the same table field are allowed. The constraints have an
AND relationship, hence all must evaluate to true for a table row to satisfy the

- 8 -

Parameterised Query Language

WHERE condition. Individual constraints may be negated to construct more
complex expressions.

The syntax chosen is intended to be easy to compose, easy and unambiguous
for a service to parse and map to a SQL back end or otherwise evaluate (a
conventional rule-based parser is not required). It was also chosen to be
consistent with similar usage in other data access services, e.g., in the use of
range-list syntax (2.1.2) for the WHERE expression. An effort has been made to
define a minimal set of meta-characters so as to minimize the need for URL
encoding – specifically not using reserved characters in the URI and URL query
string syntax (e.g. =, &, ?, #). Most simple expressions should not require URL
encoding, e.g., if typed interactively into a Web browser, allowing the simplest
Web tools to be easily used for basic queries.

A partial BNF for the WHERE expression is as follows:
<where-expr> ::= <field-list>

<field-list> ::= <field-expr> [';' <field-list>]

<field-expr> ::= <field> ',' ['!'](<list> | "null")

<list> ::= <numeric-list> | <string-list> | <date-list>

<numeric-list> ::= <number> [',' <numeric-list>]

<string-list> ::= <string> [',' <string-list>]

<date-list> ::= <date> [',' <date-list>]

 Where we have not attempted to detail the BNF for the numeric, string, and
date tokens. Some additional notes follow.

 Each field expression defines a constraint on the named table field.

 Field expressions are of the form <field-name>’,’<value> (meaning field-
name=value), where <value> is a single value, a range, or a list of single
values or ranges all of the same type. Constraint expressions within the
overall WHERE expression are combined with a logical AND operation.
Values within a range-list are combined with a logical OR operation, i.e. a
range or list for a specific field gives a list of acceptable values.

 A parameter value may optionally be prefixed with ‘!’ (exclamation) to negate
the sense of the entire clause.

 The special value “null” indicates a null-valued field. For example “flux,!null” is
true only if field “flux” has a non-null value.

 A <date> conforms to ISO8601 date syntax, e.g., "2007-04-05T14:30".

 A <number> token is any legal integer or floating point number optionally
preceded by ‘+’ or ‘-‘.

 A <string> token is any token which is not a number or date, or any sequence
of characters which is quoted using single quotes.

 While accumulating a string token, anything quoted in single quotes is literally
included in the string, otherwise (where case-insensitive context applies),

- 9 -

Parameterised Query Language

characters are converted to lower case for use in case-insensitive
comparisons. Quoted characters are treated in a case sensitive fashion. Any
metacharacter other than the quote character may be quoted to include it
within a token. A single quote may be included within a string by quoting it
(that is, three single quotes in sequence). Quotes used within a string token
do not delimit the token.

 For string-valued fields the constraint is a case-insensitive simple pattern,
with “*” matching zero or more characters. Absent any use of “*”, the entire
string must match. Hence “obj,m31” specifies that the value of field “obj”
must match “m31” exactly, except for case. To force a case sensitive match
the case sensitive characters must be quoted.

 For numeric or date values the constraint is either a single value or a range,
using “/” as the range delimiter (range syntax is not supported for strings).
Both open and closed ranges can be specified, e.g., “5/” specifies an open
range equivalent to “greater than or equal to 5”, whereas “5/9” means “5 to 9
inclusive”.

 Spaces may be embedded to improve readability, but if so they must be URL
encoded as “%20”.

Field names or value expressions must be quoted if they contain any special
characters (e.g., semicolon, comma, forward slash, asterisk). The single quote
is used to avoid conflict with double quote which is often used to quote the entire
URL string.

As a more complex example of WHERE usage consider the following somewhat
contrived expression (with extra spaces for readability here):

WHERE=vmag,4.5/5.5; imag,4.5/; bmag,/5.5; flag,4,5,6;
jmag,4.5/5.5,/3.0,9.0/; name,*Lon*; kmag,4.5/5.5; flux,null;
last,1

The equivalent SQL WHERE clause would be the following:
vmag between 4.5 and 5.5

and imag >= 4.5

and bmag <= 5.5

and (flag = 4 or flag = 5 or flag = 6)

and (jmag between 4.5 and 5.5 or jmag <= 3.0 or jmag >= 9.0)

and name like '%Lon%'

and kmag between 4.5 and 5.5

and flux is null

and last = 1

Note the special treatment of the jmag constraint; the list of ranges are combined
with the OR operator while the jmag constraint itself is combined with the others
with the AND operator.

- 10 -

Parameterised Query Language

 2.3 Numeric and boolean values
Integer numbers must be represented in a manner consistent with the
specification for integers in XML Schema Datatypes [10]. This document
indicates explicitly where an integer value is mandatory. Real numbers must be
represented in a manner consistent with the specification for double-precision
numbers in XML Schema Datatypes. This representation allows for integer,
decimal and exponential notations. A real value is allowed in all numeric fields
defined by this document unless the value is explicitly restricted to integer.

Sexagesimal formatting is generally not permitted other than in ISO 8601
formatted time strings.

Positive, negative and zero values are allowed unless explicitly restricted by a
service specification making use of PQL.

Boolean values must be represented in a manner consistent with the
specification for Boolean in XML Schema Datatypes. The values “0” and “false”
are equivalent. The values “1” and “true” are equivalent. Absence of an optional
value is equivalent to logical false.

 3 Use with HTTP (informative)
An HTTP service which accepts PQL as input is constrained by the general rules
for use of HTTP, which are contained in IETF RFC documents. This section
collates some of issues in using PQL with such services. For authoritative
specifications, please refer to the original RFCs.

The PQL parameters described in this document may be mapped directly to
HTTP request parameters in the query string portion of the URL (HTTP GET) or
included in the request (HTTP POST). As noted above, it may not be necessary
to URL encode the parameter values in all cases, but it is generally good practice
to do so.

 3.1.1 Reserved characters in HTTP GET URLs
The URL specification (IETF RFC 2396 [5]) reserves particular characters as
significant and requires that these be escaped when they might conflict with their
defined usage. This document explicitly reserves several of those characters for
use in the query portion of TAP requests. When the characters “?”, “&”, “=”, “,”
(comma), “/”, and “;” appear in one of the roles defined in Table 1, they must
appear literally in the URL. When those characters appear elsewhere (for
example, in the value of a parameter), they should be encoded as defined in
IETF RFC 2396. The server must be prepared to decode any character
escaped in this manner.

Table 1 — Reserved characters in HTTP URLs

Character Reserved usage

? Separator indicating start of the URL query string

& Separator between parameters in the query string

- 11 -

Parameterised Query Language

= Separator between name and value of a parameter

Separator indicating start of a URL fragment (anchor?)

, / ; Separator between individual values in range or list parameters

For example, while PQL does not specify any use for the fragment or anchor (#)
separator, any parameter value contains this character must be URL encoded to
be legally included in a URL.

 4 References
[1] I. Ortiz, J. Lusted, P. Dowler, A. Szalay, Y. Shirasaki, M. Nieto- Santisteban, M.

Ohishi, W. O’Mullane, P. Osuna, VOQL-TEG & VOQL-WG, IVOA Astronomical
Data Query Language version 2, IVOA recommendation 30th October 2008.
http://www.ivoa.net/Documents/REC/ADQL/ADQL-20081030.pdf

[2] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, IETF
RFC 2119. http://www.ietf.org/rfc/rfc2119.txt

[3] A. Rots, Space-Time Coordinate Metadata for the Virtual ObservatoryVersion
1.33, IVOA Recommendation 30 October 2007.
http://www.ivoa.net/Documents/REC/DM/STC-20071030.html

[4] T. Berner-Lee, R. Fielding L. Masinter, Uniform Resource Identifiers (URI):
Generic Syntax, IETF RFC 2396. http://www.ietf.org/rfc/rfc2396.txt

[5] P. Biron & A. Malhotra, XML Schema Part 2: Datatypes Second Edition, W3C
Recommendation 28 October 2004. http://www.w3.org/TR/xmlschema-2/

[6] R. Fielding, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee,
Hypertext Transfer Protocol – HTTP/1.1, IETF RFC 2616. http://www.rfc-
editor.org/rfc/rfc2616.txt

TODO: add references to previous DAL services (e.g. SSA)

- 12 -

http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.ivoa.net/Documents/REC/DM/STC-20071030.html
http://www.w3.org/TR/xmlschema-2/
http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ivoa.net/Documents/REC/ADQL/ADQL-20081030.pdf

