VO Tutorial
Java and scripting language WS clients
2003-10-11

[image: image1.png]

Consuming the VOStatistics Web Service from Java and scripting languages

Version 0.1

IVOA Working Draft

2003-10-11

This version:

http://putinURLhere
Latest version:

http://putinURLhere
Previous versions:

http://putinURLhere

http://putinURLhere
Editors:

Matthew Graham

Authors:

Matthew Graham

Abstract

I present a brief tutorial on how to consume a web service from Java and from scripting languages (Perl and Python). The example web service is the VOStatistics WS, a data analysis WS, which is implemented in Java.

Status of this document

This is a Working Draft. The first release of this document was 11 Oct 2003.

This is an IVOA Working Draft for review by IVOA members and other interested parties. It is a draft document and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use IVOA Working Drafts as reference materials or to cite them as other than "work in progress." A list of current IVOA Recommendations and other technical documents can be found at http://www.ivoa.net/docs/.

Acknowledgments

Please give credit to all major contributors to the document.

Contents

1
Introduction
2
2
VOStatistics WS
3
3
Java client
3
3.1
AXIS
4
3.2
JAX-RPC
4
4
Perl client
5
5
Python client
5
6
WS clients in other scripting languages
6
6.1
IDL
6
6.2
Jython
6

1 Introduction

Astronomical web services fall broadly into two categories: data access and data analysis. A lot of effort has been devoted to developing the former with many astronomical archives now providing easy access to their contents via WS (examples are presented by other contributors to this tutorial session); however, that is only half the story since once you have the data, you want to do something with it. Traditionally you would have downloaded the data, storing it locally, and could then apply your favourite analysis tools to it. However, what happens when the data is actually distributed heterogeneously across five continents (and far too large to store on your desktop hard drive) or the data does not really exist physically anywhere at all but is virtual data. You still want to be able to analyse it in the old familiar way but now you would use analysis tools that understand how to work with the “new” format: the VOStatistics WS is an example of this new breed of data analysis tools.

One of the key concepts behind the whole WS paradigm is interoperability (http://www.ws-i.org) meaning that it should be perfectly feasible to have a WS client implemented in a totally different language to the service provider. In reality, however, the two currently dominant service implementations, C# (with .NET framework) and Java (with Apache framework), are as different as Spanish and Italian rather than Spanish and Basque. In this tutorial, I will present simple client implementations that consume the VOStatistics WS in a range of languages (OO and scripting) with the aim of illustrating that although the languages themselves might be very different, implementing a WS client is easy in any of them.

2 VOStatistics WS
The VOStatistics WS is a prototype WS implementation for the Astrostatistics project (http://www.astro.caltech.edu/~aam/science/astrostat/index.html). This is a cross-disciplinary team of astronomers (from Caltech) and statisticians (from Penn State and CMU) who are developing statistical and computational toolkits to enable efficient and objective scientific exploitation of the federated datasets at the heart of the VO for the entire astronomical community.

The VOStatistics WS, VOStat, offers methods to calculate basic statistical quantities (e.g., mean, standard deviation, quantiles), perform statistical tests (e.g. KS 2-sample, Pearson product-moment correlation, Spearman rank correlation), plot (e.g. scatter, histogram) and analyse (e.g. PCA) data. It can handle both primitive arrays and VOTables.

It has been implemented in Java using both Apache AXIS 1.1 (http://ws.apache.org/axis) and Sun’s JAX-RPC (as part of the Sun Java Web Services Developer Pack 1.2 (http://java.sun.com/webservices/webservicespack.html)). AXIS is an add-on to Apache Tomcat and allows deployment and management of WS separate from the other technologies that Tomcat might also be serving (e.g. Java servlets). However, it only supports basic type mapping between Java classes and XML/WSDL definitions; for example, it has no default mapping for List objects (note that with both Axis and JAX-RPC it is possible to define user mappings for specific classes). JAX-RPC deploys its WS directly through Tomcat as packaged Java servlets (.WAR files) and so management is carried out via the usual Tomcat Manager interface. JAX-RPC also supports a wider list of type mappings including ArrayList/Vector and HashMap and multidimensional arrays. Both implementations use the rpc/encoding model by default (although it is possible to use the doc/literal model (.NET uses this by default) with noth, there are reports of implementation bugs in newsgroups).

The simple example I shall use here is to get VOStat to return the mean of a set of numbers passed to it by the client. For the scripting language examples, I shall be using the implementation of the WS that uses AXIS.

3 Java client

Both AXIS and JAX-RPC have applications to generate static client proxy classes or stubs (WSDL2Java and wscompile respectively) from the WSDL of a WS. In addition, JAX-RPC allows dynamic proxying as well.

3.1 AXIS

1. The first requirement is that your Java class path is set properly to pick up the following JAR files from the AXIS distribution: axis.jar, commons-discovery.jar, commons-logging.jar, saaj,jar, axis.jar, jaxrpc.jar, wsdl4j.jar and log4j-1.2.4,jar.

2. The source class files are generated from the WS WSDL:

java –p org.vostat org.apache.axis.wsdl.WSDL2Java

3. http://localhost:8080/axis/services/vostat.wsdl

The –p flag just specifies the package that the source code will belong to, in this case, org.vostat.

4. The client code which makes use of these can then be written:

package org.vostat;

public class JavaAxisClient {

public static void main(String[] args) throws Exception {

VOStatServiceLocator loc = new VOStatServiceLocator();

VOStatSoapBIndingStub stub = (VOStatSoapBindingStub)

loc.getVOStat();
double[] x = new double[50];

for (int I = 0; I < 50; I++) x[I] = Math.random();

System.out.println(stub.mean(x));

}

}

The first two statements in bold are the calls to the generated classes to locate and establish the connection to the WS. The final statement is a call of the mean method of the WS.

5. The client code can be compiled and run.

3.2 JAX-RPC

JAX-RPC supports three client types:

· static stub – this relies on an implementation specific class for the proxy

· dynamic proxy – this uses a Service object as a proxy factory

· DII (dynamic invocation interface) – this can call a remote procedure even if the signature of the remote procedure or the name of the service is unknown until runtime.

Note, however, that JAX-RPC currently does not support (multidimensional) arrays under dynamic clients. Since this is one of the common arguments in VOStat methods,

they will be not be considered further here (but see the Java Web Services Tutorial for examples (http://java.sun.com/websevices/tutorial.html)).

Perl client

To access a WS, the Perl module SOAP::Lite (http://www.soaplite.com) must be installed.

A simple client then becomes:

#/usr/bin/perl –w

use SOAP::Lite;

my $service = SOAP::Lite -> service(http://localhost:8080/axis/services/VOStat?wsdl);

for ($I = 0; $I < $#ARGV; $I++) {

 $values[$I] = SOAP::Data -> type(‘xsd:double’) -> (@ARGV[$I])

};

my $data = SOAP::Data

 -> name(‘in0’)

 -> type(‘ArrayOf_xsl_double’)

 -> value([@values]);

print $service -> mean($data), “\n”;

A number of Perl utilities are included with the SOAP::Lite package including the routine stubmaker.pl which will create a Perl proxy routine given a WSDL URL:

perl stubmaker.pl http://localhost:8080/axis/services/VOStat?wsdl
will create VOStatService.pm.

Good sources for other examples of using Perl to access WS are the SOAP::Lite documentation and the SOAP::Lite cookbook (http://cookbook.soaplite.com).

4 Python client

To access a WS, the Python module SOAPPy (http://pywebsvcs.sourceforge.net) must be installed.

A simple client then becomes:

import SOAPpy as SOAP

server = SOAP.SOAPProxy(http://localhost:8080/axis/services/VOStat)

data = [1.0, 2.0, 3.0, 4.0, 5.0]

print server.mean(data)

There is a proxy class generator for Python

(ftp://www-126.ibm.com/pub/wsdl4py/wsdl4py/0.6) but it is unclear what the present state of development or support is.

Further examples of Python clients are given in the SOAPPy documentation.

5 WS clients in other scripting languages

5.1 IDL

As with all languages, to some IDL is a religion and using it a mystical experience; it is certainly a major tool in the astronomer’s toolkit. IDL currently has no explicit support for WS as it has no notion of SOAP. However, it understands XML (from IDL 5.6 there is a SAX2-compliant XML parser (IDLffXMLSAX)) and it can open ports so there should be nothing to stop a willing developer from implementing a WS client in IDL. RSI are currently not intending to support SOAP or WS technologies, favouring instead the use of ION.

5.2 Jython

Jython (http://www.jython.org) is an implementation of Python written in 100% pure Java and seamlessly integrated with the Java platform. It will run under any compliant JVM and allows direct calls to Java libraries and tools (see also the O’Reilly book Jython Essentials by Samuele Pedroni and Noel Rappin). I am aware of at least one major astronomical project that is utilizing Jython – the ESA Herschel satellite mission – hence my reason for mentioning it here. Python modules can be loaded into Jython; however, currently Jython will not load the SOAPPy module as Jython lacks an implementation of certain system call functions that Python has. A fix should be possible, however,

and then Jython could be used for WS clients.

1

