
International
Virtual
Observatory

Alliance

SAMP, Simple Application Messaging
Protocol

Version 1.00

IVOA Working Draft 2008-05-15

This version:
http://www.ivoa.net/...

Latest version:
http://www.ivoa.net/...

Previous versions:
??

Editor(s):

Authors:
T. Boch - boch@astro.u-strasbg.fr
M. Fitzpatrick - fitz@noao.edu
M. Taylor - m.b.taylor@bris.ac.uk
...

Draft version: $Revision: 1.17 $ $Date: 2008/04/30 10:17:48 $

Abstract

SAMP is a messaging protocol that enables astronomy software
tools to interoperate and communicate.

IVOA members have recognised that building a monolithic tool
that attempts to fulfil all the requirements of all users is impractical,
and it is a better use of our limited resources to enable individual
tools to work together better. One element of this is defining common

1

file formats for the exchange of data between different applications.
Another important component is a messaging system that enables the
applications to share data and take advantage of each other’s function-
ality. SAMP is intended to build on the success of a prior messaging
protocol, PLASTIC, which has been in use in over a dozen astronomy
applications for two years and has proven popular with users and de-
velopers. SAMP is an IVOA-endorsed standard that builds on this
success. It is also intended to form a framework for more general
messaging requirements.

Contents

1 Introduction 3
1.1 History . 3
1.2 Requirements and Scope . 4
1.3 Types of Messaging . 4
1.4 About this document . 5

2 Architectural Overview 6
2.1 Nomenclature . 6
2.2 Messaging Topology . 7
2.3 The Life cycle of a Client . 7
2.4 The Life cycle of a Hub . 8
2.5 Message Delivery Patterns . 9
2.6 Use of Profiles . 10

3 Abstract APIs and Data Types 11
3.1 Hub Discovery Mechanism . 11
3.2 Communicating with the hub 11
3.3 Registering with the hub . 11
3.4 SAMP Data Types . 11
3.5 Scalar type encoding conventions 12
3.6 Application Metadata . 13
3.7 What is a message? . 14
3.8 Message and Response Encoding 14
3.9 Sending and Receiving Messages 15
3.10 Operations a hub must support 18
3.11 Operations a hub may call on a client 20
3.12 General error processing . 20

2

4 Standard Profile 21
4.1 Data Type Mappings . 21
4.2 API Mappings . 21
4.3 Lockfile and Hub Discovery 22
4.4 Examples . 25

5 MTypes: Message Semantics and Vocabulary 27
5.1 The MType of a Message . 28

5.1.1 The Form of an Mtype 28
5.1.2 The Description of an MType 29

5.2 Mtype Vocabulary . 30
5.2.1 Application Messages 30
5.2.2 Set/Get Messages . 30
5.2.3 Status Messages . 31
5.2.4 File Messages . 31
5.2.5 Image Messages . 32
5.2.6 Query Messages . 32
5.2.7 Spectrum Messages . 32
5.2.8 Table Messages . 33
5.2.9 URL Messages . 33
5.2.10 Coordinate Messages 34

A Changes from PLASTIC document 35

B SAMP/PLASTIC interoperability 35

1 Introduction

1.1 History

SAMP is a direct descendent of the PLASTIC protocol, which in turn grew
—in the VOTech [?] framework —from the interoperability work of the Al-
adin [1] and VisIVO [2] teams. We also note the contribution of the team
behind the earlier XPA protocol [3]. For more information on PLASTIC’s
history and purpose see the IVOA note PLASTIC — a protocol for desktop
application interoperability [4].

SAMP has similar aims to PLASTIC, but incorporates lessons learnt
from two years of practical experience and ideas from partners who were not
involved in PLASTIC’s initial design.

Broadly speaking, SAMP is an abstract framework for loosely coupled
asynchronous RPC-like and/or event-based communication with extensible

3

message semantics using structured but weakly-typed data and based on
a central service providing multi-directional publish/subscribe message bro-
kering. These concepts are expanded on below. It attempts to make as few
assumptions as possible about the transport layer or programming language
with which it is used. It also defines a “Standard Profile” which specifies
how to implement this framework using XML-RPC as the transport layer.
The result of combining this Standard Profile with the rest of the SAMP
standard is deliberately similar in design to PLASTIC, and the intention is
that existing PLASTIC applications can be modified to speak SAMP instead
without great effort.

1.2 Requirements and Scope

SAMP aims to be a simple and extensible protocol that is platform and
language neutral. The emphasis is on a simple protocol with a very shallow
learning curve in order to encourage as many application authors as possible
to adopt it. In other words SAMP is intended to do what you need most
of the time. The SAMP authors believe that this is the best way to foster
innovation and collaboration in astronomy applications.

It is important to note therefore that SAMP’s scope is reasonably mod-
est; it is not intended to be the perfect messaging solution for all situa-
tions. In particular SAMP itself has no support for transactions, guaranteed
message delivery, message integrity or messaging beyond a single machine.
However, by layering the SAMP architecture on top of suitable messaging
infrastructures such capabilities could be provided. These possibilities are
not discussed further in this document, but the intention is to provide an
architecture which is sufficiently open to allow for such things in the future
with little change to the basics.

1.3 Types of Messaging

SAMP is currently limited to inter-application desktop messaging with the
idea that the basic framework presented here is extensible to meet future
needs, and so it is beyond the scope of this document to outline the many
types of messaging systems in use today (these are covered in detail in many
other documents). While based on established messaging models, SAMP is
in many ways a hybrid of several basic messaging concepts; the protocol is
however flexible enough that later versions should be able to interact fairly
easily with other messaging systems because of the shared messaging models.

The messaging concepts used within SAMP include:

4

Publish/Subscribe Messaging: A publish/subscribe (pub/sub) messag-
ing system supports an event driven model where information con-
sumers and producers participate in message passing. SAMP applica-
tions “publish” a message, while consumer applications “subscribe” to
messages of interest and consume events. Sending applications asso-
ciate messages with a specific meaning, and the underlying messaging
system routes messages to consumers based on the message types in
which an applications has registered an interest.

Point-to-Point Messaging: In point to point messaging systems, mes-
sages are routed to an individual consumer which maintains a queue
of “incoming” messages. In a traditional message queue, applications
send messages to a specified queue and clients retrieve them. In SAMP,
the message system manages the delivery and routing of messages, but
also permits the concept of a directed message meant for delivery to a
specific application. SAMP does not, however, guarantee the order of
message delivery as with a traditional message queue.

Event-based Messaging: Event-based systems are systems in which pro-
ducers deliver events, and in which messaging middleware delivers events
to consumers based upon a previously specified interest. One typical
usage pattern of these systems is the publish-subscribe paradigm, how-
ever these systems are also widely used for integrating loosely coupled
application components. SAMP allows for the concept that an “event”
occurred in the system and that these message types may have require-
ments different from messages where the sender is trying to invoke some
action in the network of applications.

Synchronous vs. Asynchronous Messaging: As the term is used in this
document, a “synchronous” message is one which blocks the sending
application from further processing until a reply is received. However,
SAMP messaging is based on “asynchronous” message and response in
that the delivery of a message and its subsequent response are handled
as separate activities by the underlying system. With the exception of
the synchronous message pattern supported by the system, sending or
replying to a message using SAMP allows an application to return to
other processing while the details of the delivery are handled separately.

1.4 About this document

This document contains the following main sections describing the SAMP
protocol and how to use it. Section 2 covers the requirements, basic concepts
and overall architecture of SAMP. Section 3 defines abstract (i.e. indepen-
dent of language, platform and transport protocol) interfaces which clients

5

and hubs must offer to participate in SAMP messaging, along with data
types and encoding rules required to use them, including an abstract API.
Section 4 explains how the abstract API can be mapped to specific net-
work operations to form an interoperable messaging system, and defines the
“Standard Profile”, based on XML-RPC, which gives a particular set of such
mappings. Section 5 describes the use of the MType keys used to denote
message semantics, and outlines an MType vocabulary.

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL
NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and
“OPTIONAL” in this document are to be interpreted as described in RFC
2119.

2 Architectural Overview

This section provides a high level view of the SAMP protocol.

2.1 Nomenclature

In the text that follows these terms are used:

Client: An application that understands SAMP. Could be a Sender, Recip-
ient, or both.

Hub: A broker service for routing SAMP Messages.
Sender: A Client that can send SAMP Messages to Recipients via the Hub.
Recipient: A Client that can receive SAMP Messages from the hub. These

may have originated from other Clients or be from the hub itself.
Message: A communication sent from a Sender to a Recipient via a SAMP

Hub. May or may not provoke a Response.
Response: A communication which may be returned from a Recipient to a

Sender in reply to a previous Message. A Response may be either a
return value or an error object. In the terminology of this document, a
Response is not itself a Message. A Response is also known as a reply
in this document.

MType: A key defining the semantics of a Message and of its arguments
and return values (if any). Every Message contains exactly one MType,
and a Message is only delivered to Clients subscribed to that MType.

Subscribed Client: A Client is said to be subscribed to a given MType if
it has declared to the Hub that it is prepared to receive Messages with
that MType.

6

Hub

Client 1 Client 2

Client 3

Client n

Figure 1: The SAMP hub architecture

Callable Client: A Client to which the Hub is capable of performing call-
backs. Clients are not obliged to be Callable if they wish only to send
messages, and not to receive messages or asynchronous replies.

Broadcast: To send a SAMP Message to all subscribed clients.
Profile: A set of rules which map the abstract API defined by SAMP to a

set of network operations which may be used by Clients to send and
receive actual Messages.

2.2 Messaging Topology

SAMP has a hub-based architecture (see Figure 1). The hub is a single
service used to route all messages between clients. This makes application
discovery more straightforward in that each client only needs to locate the
hub, and the services provided by the hub are intended to simplify the actions
of the client. A disadvantage of this architecture is that the hub may be a
message bottleneck and the hub may be the single point of failure. However,
it is not anticipated that message traffic will be such that the former is an
issue, and the latter may be mitigated by an appropriate strategy for hub
restart if failure is likely.

Note that the hub is defined as a service interface which may have any of
a number of implementations. It may be an independent application running
as a daemon, an adapter interface layered on top of an existing messaging
infrastructure, or a service provided by an application which is itself one of
the hub’s clients. The only requirement is that exactly one hub must be
running (per user-id) at a time for messaging to take place.

2.3 The Life cycle of a Client

A SAMP client goes through the following phases:

7

1. Determine whether a hub is running by using the appropriate hub dis-
covery mechanism

2. If so, use hub discovery mechanism to work out how to communicate
with the hub.

3. Register with the hub.
4. Store metadata such as client name, description and icon in the hub.
5. Subscribe to a list of MTypes to define messages which may be received.
6. Interrogate the hub for metadata of other clients.
7. Send and/or receive messages to/from other clients via the hub.
8. Unregister with the hub.

Phases 4–7 are all optional and may be repeated in any order.

2.4 The Life cycle of a Hub

A SAMP hub goes through the following phases:

1. Locate any existing hub by using the appropriate hub discovery mech-
anism.

(a) Check whether the existing hub is alive.
(b) If so, exit.

2. If no hub is running, or a hub is found but is not functioning, write/overwrite
the hub discovery record and start up.

3. Await client registrations. When a client makes a legal registration,
assign it a public id, and add the application to the table of registered
clients under the public id. Broadcast a message [ref to messages section
here] to all subscribed clients announcing the registration of a new
client.

4. When a client stores metadata in the hub, broadcast a message [...] to
all candidate clients and make the metadata available.

5. When a client updates its list of subscribed MTypes, broadcast a mes-
sage[...] to all subscribed clients.

6. When the hub receives a message for relaying, pass it on to appropriate
recipients which are subscribed to the message’s MType. Broadcast
messages are sent to all subscribed clients except the sender, messages
with a specified recipient are sent to that recipient if it is subscribed.

7. Await client unregistrations. When a client unregisters, broadcast a
message [...] to all subscribed clients announcing the unregistration
and remove the client from the table of registered clients.

8. If the hub is unable to communicate with a client, it may unregister it
as described in phase 7.

8

9. When the hub is about to shutdown, broadcast a message[...] to all
subscribed clients.

10. Delete the hub discovery record.

Phases 3–8 are responses to events which may occur multiple times and in
any order.

Readers should note that, given this scheme, race conditions may occur.
We could have for instance a client trying to register with a hub which has
just shut down, or an attempt to send to a recipient which has already unreg-
istered. Specific profiles MAY define best-practice rules in order to manage
at best these conditions, but in general clients should be aware that in the
absence of guaranteed message delivery and timing, unexpected conditions
are possible.

2.5 Message Delivery Patterns

Messages can be sent according to three patterns, differing in how and
whether a response is returned to the sender:

1. Notification
2. Asynchronous Call/Response
3. Synchronous Call/Response

The Notification pattern is strictly one-way while in the Call/Response pat-
terns the recipient returns a response to the sender.

If the sender expects to receive some useful data as a result of the re-
ceiver’s processing, and/or if it wishes to find out whether and when the
processing is completed, it should use one of the Call/Response variants.
If on the other hand the sender has no interest in what the recipient does
with the message once it has been sent, it may use the Notification pattern.
Notification, since it involves no communication back from the recipient to
the sender, uses fewer resources. Although typically “event”-type messages
will be sent using Notify and “request-for-information”-type messages will
be sent using Call/Response, the choice of which delivery pattern to use is
entirely distinct from the content of the message, and is up to the sender;
any message (MType) may be sent using any of the above patterns. Apart
from the fact of returning or not returning a response, the recipient should
process messages in exactly the same way regardless of which pattern is used.

From the receiver’s point of view there are only two cases, Notification
and Asynchronous Call/Response. However the hub provides a convenience
method which simulates a synchronous call from the sender’s point of view.
The purpose of this is to simplify the use of the protocol in such situations as

9

scripting environments which cannot easily handle asynchronicity. However,
it is recommended to use the asynchronous pattern where possible due to its
greater robustness.

2.6 Use of Profiles

The design of SAMP is based on the abstract interfaces defined in Section 3.
On its own however, this does not include the detailed instructions required
by application developers to achieve interoperability. To achieve that, ap-
plication developers must know how to map the operations in the abstract
SAMP interfaces to specific I/O (in most cases, network) operations. It is
these I/O operations which actually form the communication between appli-
cations. The rules defining this mapping from interface to I/O operations
are what constitute a SAMP “Profile” (the term “Implementation” was con-
sidered for this purpose, but rejected because it has too many overlapping
meanings in this context).

There are two ways in which such a Profile can be specified as far as client
application developers are concerned:

1. By describing exactly what bytes are to be sent using what wire pro-
tocols for each SAMP interface operation

2. By providing one or more language-specific libraries with calls which
equate to those of the SAMP interface

Although either is possible, SAMP is well-suited for approach (1) above given
a suitable low-level transport library. This is the case since the operations
are quite low-level, so client applications can easily perform them without
requiring an independently developed SAMP library. This has the additional
advantages that central effort does not have to be expended in producing
language-specific libraries, and that there are no problems for application
developers using “unsupported” languages.

Section 4 describes a Profile along the lines of (1) above, based on XML-
RPC, which can be used directly by client and hub developers, in conjunction
with the abstract interface description in Section 3 to write interoperable ap-
plications. This is at present the only SAMP Profile which has been defined.

Although splitting the abstract interface and Profile descriptions in this
way complicates the document a little, it separates the basic design principles
from the details of how to apply them, and it opens the door for other Profiles
serving other use cases in the future.

10

3 Abstract APIs and Data Types

3.1 Hub Discovery Mechanism

In order to keep track of which hub is running, a hub discovery mechanism,
capable of storing information about how to determine the existence of and
communicate with a running hub, is needed. This is a Profile-specific matter
and a specific prescription will be described in 4.3.

3.2 Communicating with the hub

The details of how a client communicates with the hub are Profile-specific
and will be covered in section 4.

3.3 Registering with the hub

A client registers with the hub to:

1. establish communication with the hub
2. advertise its presence to the hub and to other clients

Immediately following registration, the client will typically perform some or
all of the following optional operations:

3. supply the hub with metadata about itself, using the setMetadata()

call
4. tell the hub how it wishes the hub to communicate with it, if at all

(the mechanism for this is profile-dependent, and it may be implicit in
registration)

5. inform the hub which MTypes it wishes to receive, using the setMtypes()
call

3.4 SAMP Data Types

For all hub/client communication, including the actual content of messages,
SAMP uses three conceptual data types:

1. string — a scalar value consisting of a sequence of characters; each
character may be in the range 0x01–0x7f

2. list — an ordered array of data items
3. map — an unordered associative array of string-data item key-value

pairs

11

These types can in principle be nested to any level, so that the elements of
a list or the values of a map may themselves be strings, lists or maps.

There is no reserved representation for a null value, and it is illegal to
send a null value in a SAMP context even if the underlying transport protocol
permits this. However a zero-length string or an empty list or map may where
appropriate be used to mean null.

Although SAMP imposes no maximum on the length of a string, par-
ticular transport protocols or implementation considerations may effectively
do so; in general hub and client implementations are not expected to deal
with data items of unlimited size. General purpose MTypes should therefore
be specified so that bulk data is not sent within the message — in general
it is preferred to define a message parameter as the URL (or filename) of a
potentially large file rather than as the inline text of the file itself.

At the protocol level there is no provision for typing of scalars; un-
like many RPC protocols SAMP does not distinguish syntactically between
strings, integers, floating point values, booleans etc. This minimizes the re-
strictions on what underlying transport protocols may be used, and avoids
a number of problems associated with using typed values from untyped lan-
guages such as Python and Perl.

Some MTypes will however wish to define parameters or return values
which have non-string semantics, and conventions for encoding these as
strings are therefore in practice required. Such conventions only need to
be understood by the sender and recipient of a given message and so can
be established on a per-MType basis, but to avoid unnecessary duplication
of effort some commonly-used type encoding conventions are defined in the
following section.

3.5 Scalar type encoding conventions

The following BNF productions are used in the type encoding conventions
below:

<digit> ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" |

"7" | "8" | "9"

<digits> ::= <digit> | <digits> <digit>

<decimal_digits> ::= <digits> | <digits> "." | "." <digits>

| <digits> "." <digits>

<sign> ::= "+" | "-"

• <SAMP int> ::= [<sign>] <digits>

An integer value is encoded using its decimal representation with an op-

12

tional preceding sign and with no leading, trailing or embedded whites-
pace. There is no guarantee about the largest or smallest values which
can be represented, since this will depend on the processing environ-
ment at decode time.
• <SAMP float> ::= [<sign>] <decimal_digits>

["e" | "E" [<sign>] <digits>]

A floating point value is encoded as a mantissa with an optional pre-
ceding sign followed by an optional exponent part introduced with the
character “e” or ”E”. There is no guarantee about the largest or small-
est values which can be represented or about the number of digits of
precision which are significant, since these will depend on the process-
ing environment at decode time.
• <SAMP boolean> ::= "0" | "1"

A boolean value is represented as an integer: zero represents false,
and any other value represents true. 1 is the recommended value to
represent true.

The numeric types are based on the syntax of the C programming lan-
guage, since this syntax forms the basis for typed data syntax in many other
languages. This list may be extended in the future if required.

Particular MType definitions may use these conventions or devise their
own as required. Where the conventions in this list are used, message doc-
umentation should make it clear using a form of words along the lines “this
parameter contains a SAMP int”.

3.6 Application Metadata

A client may store metadata in the form of a map of key-value pairs in the hub
for retrieval by other clients. Typical metadata will be the human-readable
name of the application, a description and a URL to its icon, but other values
are permitted. The following keys are defined for well-known metadata items:

samp.name - A one word title for the application.
samp.description.text - A short description of the application, in plain

text.
samp.description.html - A description of the application, in HTML.
samp.icon.url - The URL of an icon in png, gif or jpeg format.
samp.documentation.url - The URL of a documentation web page.

All of the above are OPTIONAL, but samp.name is strongly RECOMMENDED.
[?? should others be RECOMMENDED ??]
Applications may store metadata under any keys, except that keys beginning
‘samp.” may only be used as described here.

13

3.7 What is a message?

A message is an abstract container for the information we wish to send to
another application. The message itself is that data which should arrive at
the receiving application. It may be transmitted along with some external
items (e.g. sender/recipient/message identifiers) required to ensure proper
delivery or handling.

A message contains at least the following parts:

An MType: a string which defines the meaning of the message, for instance
the instruction to load a table. It also, via external documentation,
defines the names, types and meanings of any parameters as well as
the type and meaning of the return value. MTypes are discussed in
more detail in Section 5.

Parameters: zero or more named values giving the data required for the
receiver to act on the message, for instance the URL of a particular
table. The names and semantics of these parameters are determined
by the MType.

It may also contain other items, for instance a timestamp, but such items
are not currently described by this standard.

[?? ref-id ??]
It is legal to include parameters in the parameter object which are not

documented by the MType. Any parameters whose name a receiver does
not recognise in the context of the given MType should be ignored. The
intention is that MTypes can evolve by having new parameters added which
provide additional functionality if the need is identified during use. Although
in some cases such refinement will require a redesign with completely differ-
ent parameters (and a new MType), it is often the case that MTypes can
be improved by adding new optional parameters which can be harmlessly
ignored by clients only familiar with the older version.

Some common MTypes and their parameter objects are described in sec-
tion 5.

3.8 Message and Response Encoding

A message as described in Section 3.7 may be encoded in the terms of the
datatypes described in Section 3.4 as a map. The defined keys and their
associated values are as follows:

mtype The value is a string giving the MType for the message.

14

params The value is a map giving the parameter values for the message. Each
parameter is represented by a key-value pair in which the key is the
documented name of the parameter, and the value is its value, with the
type as documented by the MType.

No other keys are currently defined. Keys which are not defined here are not
illegal, but if an application encounters keys which it does not understand,
it should generally ignore them.

The response to a message, if one is expected, is a map and may be one
of two things:

1. a return value (successful completion)
2. an error object (failure)

A flag is passed with the response object to indicate which of these it is;
clients do not have to examine the object to find out whether it represents a
return value or an error.

In the case of a return value, the type and meaning of any data contained
in it as key-value pairs SHOULD be documented by the MType.

In the case of an error response, the map may contain entries with the
following keys:

errortxt (REQUIRED) — A short string describing what went wrong. This
will typically be delivered to the user of the sender application.

usertxt (OPTIONAL) — A free-form string containing any additional text
an application wishes to return. This may be a more verbose error
description meant to be appended to the errortxt string, however it is
undefined how this string should be handled when received.

debugtxt (OPTIONAL) — A longer string which may contain more detail
on what went wrong. This is typically intended for debugging purposes,
and may for instance be a stack trace.

code (OPTIONAL) — A string containing a numeric or textual code iden-
tifying the error.

No other keys are currently defined. Keys which are not defined here are not
illegal, but if an application encounters keys which it does not understand,
it should generally ignore them.

[?? should these keys be samp.mtype etc, with samp.* a reserved part of
the namespace and others available for public use ??]

3.9 Sending and Receiving Messages

As outlined in Section 2.5, three messaging patterns are supported, differing
according to whether and how the response is returned to the sender. For

15

a given MType there may be a messaging pattern that is most typically
used, but there is nothing in the protocol that ties a particular MType to a
particular messaging pattern.

From the point of view of the sender, there are three ways in which a
message may be sent, and from the point of view of the recipient there are
two ways in which one may be received. These are described as follows.

Notification: In the notification pattern, communication is only in one di-
rection:

1. The sender sends a message to the hub for delivery to one or more
recipients.

2. The hub forwards them to those requested recipients which are
subscribed

3. No reply from the recipients is expected or possible

Notifications can be sent to a given recipient or broadcast to all recip-
ients. The notification pattern for a single recipient is illustrated in
Figure 2.

Figure 2: Notification pattern

Asynchronous Call/Response: In the asynchronous call pattern, mes-
sage IDs are used to tie together messages and their replies:

1. The sender sends a message to the hub for delivery to one or
more recipients, supplying along with the message an ID string,
sender-msg-id.

2. The hub forwards the message to the appropriate recipients, sup-
plying along with the message an ID string, hub-msg-id.

3. Each recipient processes the message, and sends its response back
to the hub along with the ID string hub-msg-id.

4. Using a callback, the hub passes the response back to the original
sender along with the ID string sender-msg-id.

The sender is free to use any value for the sender-msg-id. There is no
requirement on the form of the hub-msg-id (it is not intended to be
parsed by the recipient), but it must be sufficient for the hub to pair

16

messages with their responses reliably, and to pass the correct sender-
msg-id back with the response to the sender1. Asynchronous calls may
be sent to a given recipient or broadcast to all recipients. In the latter
case, the sender should be prepared to deal with multiple responses to
the same call. The asynchronous pattern is illustrated in Figure 3.

Figure 3: Asynchronous pattern

Synchronous Call/Response A synchronous utility method is provided
by the hub, mainly for script environments where dealing with asyn-
chronicity might be a problem. The hub will provide synchronous be-
haviour to the sender, interacting with the receiver in exactly the same
way as for the asynchronous case above.

1. The sender sends a message to the hub for delivery to a given
recipient. This call blocks until the response is available.

2. The hub forwards the message to the recipient, supplying along
with the message an ID string, hub-msg-id.

3. The recipient processes the message, and sends its response back
to the hub along with the ID string hub-msg-id.

4. The hub sends the response as the return value from the original
blocking call made by the sender.

There is no broadcast counterpart for the synchronous call. This pat-
tern is illustrated in Figure 4.

Note that the two different cases from the receiver’s point of view, Noti-
fication and Call/Response, differ only in whether a response is returned to
the hub. In other respects the receiver should process the message in exactly
the same way for both patterns.

1 One way a hub might implement this is to generate hub-msg-id by concatenating
the sender’s client id and the sender-msg-id. When any response is received the hub
can then unpack the accompanying hub-msg-id to find out who the original sender was
and what sender-msg-id it used. In this way the hub can determine how to pass each
response back to its correct sender without needing to maintain internal state concerning
messages in progress. Hub and client implementations may wish to exploit this freedom in
assigning message IDs for other purposes as well, for instance to incorporate timestamps
or checksums.

17

Figure 4: Synchronous pattern

3.10 Operations a hub must support

This section describes the operations that a hub must support and the asso-
ciated data that must be sent and received. Message and response arguments
are encoded as map objects as described in Section 3.8. The precise details
of how these operations map onto method names and signatures is Profile-
dependent. The mapping for the Standard Profile is given in section 4.2.

• register()

Method called by a client wishing to register with the hub. Note that
the form of this call may vary according to the requirements of the
particular Profile in use. For instance authentication tokens may be
passed in one or both directions to complete registration.

• unregister()

Method called by a client wishing to unregister from the hub

• setMetadata(map metadata)

Method called by a client to declare its metadata (name, icon, descrip-
tion, etc — see section 3.6 for details). May be called zero or more
times to update hub state; the most recent call is the one which defines
the client’s currently declared metadata.

• map metadata = getMetadata(string client-id)

Returns the metadata information for the client whose public id is
client-id.

• setMTypes(list mtypes)

Method called by a callable client to declare the MTypes it wishes to
subscribe to. May be called zero or more times to update hub state;
the most recent call is the one which defines the client’s currently sub-
scribed MTypes.
[?? possibly wildcarding allowed here ??]

18

• list mtypes = getMTypes(string client-id)

Returns the array of subscribed MTypes for the client whose public id
is client-id.

• list client-ids = getRegisteredClients()

Returns the list of public ids of other registered clients. The caller’s id
is not included.

• list client-ids = getSubscribedClients(string mtype)

Returns the list of public ids of all other registered clients who are sub-
scribed to the MType mtype. The caller’s id is not included, even if it
is subscribed.

• string client-id = getHubId()

Returns the client-id which identifies the hub itself as a client. This is
the id which the hub uses for instance to send administration messages
to other candidate clients.

• notify(string recipient-id, map message)

Method called by a client wishing to send a notification to a given re-
cipient.

• notifyAll(map message)

Method called by a client wishing to broadcast a notification to all re-
cipients.

• call(string recipient-id, string msg-id, map message)

Method called by a callable client wishing to send an asynchronous call
to a given recipient.

• callAll(string msg-id, map message)

Method called by a callable client wishing to broadcast an asynchronous
call to all recipients.

• map response = callAndWait(string recipient-id, map message)

Method called by a client wishing to make a synchronous call to a given
recipient.

• reply(string msg-id, string success, map response)

Method called by a client to send its response to a given message.
success is a SAMP boolean (“1” for successful completion or “0” for

19

an error). In the case of success, response is the return value as
documented for the MType of the message. In the case of failure,
response is an error object as described in 3.8.

All these operations with the exception of callAndWait() should com-
plete, and where appropriate return a result, quickly.

3.11 Operations a hub may call on a client

We list in this section the operations which may be called on a callable client.
Note that not all clients may be callable; special (Profile-dependent) steps
may be required for a client to inform the hub how it may be contacted, and
thus become callable. Clients which are not callable are unable to receive
messages or use the asynchronous call/response pattern.

Message and response arguments are encoded as map objects as described
in Section 3.8. The precise details of how these operations map onto method
names and signatures is Profile-dependent. The mapping for the Standard
Profile is given in section 4.2.

• receiveNotification(string sender-id, map message)

Method called by the hub when dispatching a notification to its recip-
ient.

• receiveCall(string sender-id, string msg-id, map message)

Method called by the hub when dispatching a call to its recipient. The
client MUST at some later time make a matching call to reply() on
the hub.

• receiveResponse(string responder-id, string msg-id,

string success, map response)

Method used by the hub to dispatch to the sender the response of an
earlier asynchronous call. success is a SAMP boolean (“1” for success-
ful completion or “0” for an error). In the case of success, response is
the result value as documented for the MType of the original message.
In the case of failure, response is an error object as described in 3.8.

All these operations should complete quickly.

3.12 General error processing

Hubs and clients should use the usual error reporting mechanisms of the
transport protocol in use in the case of bad calls of the operations defined

20

in Sections 3.10 and 3.11, for instance use of syntactically invalid parameter
types.

Errors produced by clients when processing call-type SAMP messages
themselves (in response to a syntactically legal receiveCall() operation)
should be signalled in the way the matching reply() call is made. In case
of an error, the success flag should be set to “0” and the response object
should be filled in with error information as described in Section 3.8.

4 Standard Profile

Section 2 defines the concepts and operations used in SAMP messaging.
As explained in Section 2.6, in order to implement this architecture some
concrete choices about how to instantiate these concepts are required.

This section gives the details of a SAMP Profile based on the XML-RPC
specification [6]. Hub discovery is via a lockfile in the user’s home directory.

XML-RPC is a simple general purpose Remote Procedure Call proto-
col based on sending XML documents over HTTP (it resembles a very
lightweight version of SOAP). Since the mappings from SAMP concepts such
as API calls and data types to their XML-RPC equivalents is very straight-
forward, it is easy for application authors to write compliant code without
use of any SAMP-specific library code. An XML-RPC library, while not es-
sential, will make coding much easier; such libraries are available for many
languages.

4.1 Data Type Mappings

The SAMP argument and return value data types described in Section 3.4
map straightforwardly onto XML-RPC data types as follows:

SAMP type XML-RPC element
string ←→ <string>

list ←→ <array>

map ←→ <struct>

The <value> children of <array> and <struct> elements themselves contain
children of type <string>, <array> or <struct>.

4.2 API Mappings

The operation names in the SAMP hub and client abstract APIs (Sections
3.10 and 3.11) very nearly have a one to one mapping with those in the
Standard Profile XML-RPC APIs. The differences are as follows:

21

1. The XML-RPC method names (i.e. the contents of the XML-RPC
<methodName> elements) are formed by prefixing the hub and client
abstract API operation names with “samp.hub.” or “samp.client.”
respectively.

2. The register() operation takes the samp.secret value read from the
lockfile (see Section 4.3) as an argument, and returns a new private-key

string generated by the hub.
3. All other hub and client methods take the private-key as their first

argument.
4. A new method, setXmlrpcCallback() is added to the hub API.

• setXmlrpcCallback(string private-key, string url)

This informs the hub of the XML-RPC endpoint on which the client is
listening for calls from the hub. The client is not considered Callable
intil it has invoked this method.

5. Another new method, isAlive() is added to the hub API. This may
be called by registered or unregistered applications (as a special case
the private-key argument may be omitted), and can be used to deter-
mine whether the hub is responding to requests. Any non-error return
indicates that the hub is running.

The private-key string referred to above serves two purposes. First it
identifies the client in hub/client communications. Some such identifier is
required, since XML-RPC calls have no other way of identifying the sender’s
identity. Second, it prevents application spoofing, since the private key is
never revealed to other applications, so that one application cannot pose as
another in making calls to the hub.

The usual XML-RPC fault mechanism is used to respond to invalid calls
as described in 3.12. The XML-RPC fault’s <faultString> element should
contain a user-directed message as appropriate and the <faultCode> value
has no particular significance.

4.3 Lockfile and Hub Discovery

Hub discovery is performed by examining a lockfile in a well-known loca-
tion. This has the consequence that in normal operation each user may run
only one hub, and users do not share hubs. The name of the lockfile is
“.samp” in the user’s home directory. A “home directory” is a somewhat
system-dependent concept: we define it as the value of the $HOME environ-
ment variable on Unix-like systems and as the value of the %USERPROFILE%

22

environment variable on Microsoft Windows2.
The format of the file is given by the following BNF productions:

<file> ::= <lines>

<lines> ::= <line> | <lines> <line>

<line> ::= <line-content> <EOL> | <EOL>

<line-content> ::= <comment> | <assignment>

<comment> ::= "#" <any-string>

<assignment> ::= <name> "=" <any-string>

<name> ::= <token-string>

<token-string> ::= <token-char> | <token-string> <token-char>

<any-string> ::= <any-char> | <any-string> <any-char>

<EOL> ::= "\r" | "\n" | "\r" "\n"

<token-char> ::= [a-zA-Z0-9-_.]

<any-char> ::= [\x20-\x7f]

[?? are regular expressions OK in BNF? is there some other reasonably
compact way of expressing this??]

The only parts which are significant to SAMP clients/hubs are (a) exis-
tence of the file and (b) <assignment> lines.

A legal lockfile must provide (in any order) unique assignments for the
following tokens:

• samp.secret An opaque text string which must be passed to the hub
to permit registration.
• samp.hub.xmlrpc.url The XML-RPC endpoint for communication

with the hub.
• samp.profile.version The version of the SAMP Standard Profile

implemented by the hub (“1.0” for the version described by this docu-
ment).

it may optionally include other blank, comment or assignment lines, but
tokens beginning “samp.” may only be assigned as described here.

The lockfile should normally be created with permissions which allow
only its owner to read it. This provides a measure of security in that only
processes with the same permissions as the hub process (hence presumably
running under the same user ID) will be able to register with the hub, since
only they will be able to provide the samp.secret required for registration.

2 Note to Java developers: contrary to what you might expect, the user.home
system property on Windows does not give you the value of USERPROFILE. See
http://bugs.sun.com/bugdatabase/view bug.do?bug id=4787931.

23

Thus under normal circumstances all participants in a SAMP conversation
can be presumed owned by the same user, and therefore not malicious.3

An example lockfile might therefore look like this:

SAMP lockfile written 2008-29-02T17:45:01

Required keys:

samp.secret=734144fdaab8400a1ec2

samp.hub.xmlrpc.url=http://andromeda.star.bris.ac.uk:8001/xmlrpc

samp.profile.version=1.0

Info stored by hub for some private reason:

com.yoyodyne.hubid=c80995f1

The existence of the file MAY be taken (e.g. by a hub deciding whether
to start or not) to indicate that a hub is running. However it is RECOM-
MENDED to attempt to contact the hub at the given XML-RPC URL (e.g.
by calling isAlive()) to determine whether it is actually alive.

The hub discovery sequences are therefore as follows:

• Client startup:

– Determine hub existence as above
– If no hub, client MAY start its own hub
– Acquire samp.secret value from lockfile
– If pre-existing or own hub is running, call register() and zero

or more of setXmlrpcCallback(), setMetadata(), setMTypes()

• Hub startup:

– Determine hub existence as above
– If hub is running, exit
– Otherwise, start up XML-RPC server
– Write lockfile with mandatory assignments including XML-RPC

endpoint

• Hub shutdown:

– Notify candidate clients that shutdown will occur
– Remove lockfile (it is RECOMMENDED to first check that this

is the lockfile written by self)
– Shut down services

Hub implementations SHOULD make their best effort to perform the
shutdown sequence above even if they terminate as a result of some error
condition.

3 Of course they may be owned by the same user and still be malicious, but in this case
SAMP represents no additional security risk.

24

Note that manipulation of a file is not atomic, so that race conditions are
possible. For instance a client or hub examining the lockfile may read it after
it has been created but before it has been populated with the mandatory
assignments, or two hubs may look for a lockfile simultaneously, not find
one, and both decide that they should therefore start up, one presumably
overwriting the other’s lockfile. Hub and client implementations should be
aware of such possibilities, but may not be able to guarantee to avoid them
or their consequences. In general this is the sort of risk that SAMP and
its Standard Profile are prepared to take — an eventuality which will occur
sufficiently infrequently that it is not worth significant additional complexity
to avoid. In the worst case a SAMP session may fail in some way, and will
have to be restarted.

4.4 Examples

Here is an example in pseudo-code of how an application might locate and
register with a hub, and send a message requiring no response to other reg-
istered clients.

Read information from lockfile to locate and register with hub.

string hub-url = readFromLockfile("samp.hub.xmlprc.url");

string samp-secret = readFromLockfile("samp.secret");

Establish XML-RPC connection with hub (uses some generic XML-RPC library)

xmlrpcServer hub = xmlrpcConnect(hub-url);

Register with hub.

string private-key = hub.xmlrpcCall("samp.hub.register", samp-secret);

Store metadata in hub for use by other applications.

map metadata = ("samp.name" -> "dummy",

"samp.description" -> "Test Application",

"dummy.version" -> "0.1-3");

hub.xmlrpcCall("samp.hub.setMetadata", private-key, metadata);

Send a message requesting file load to all other registered clients,

not wanting any response.

map loadParams = ("filename" -> "/tmp/foo.bar");

map loadMsg = ("mtype" -> "file.load",

"params" -> "loadParams");

hub.xmlrpcCall("samp.hub.notifyAll", private-key, loadMsg);

25

Unregister

hub.xmlrpcCall("samp.hub.unregister", private-key);

The first few XML-RPC documents sent over the wire for this exchange
would look something like the following. The registration call from the client
to the hub:

POST /xmlrpc HTTP/1.0

User-Agent: Java/1.5.0_10

Content-Type: text/xml

Content-Length: 189

<?xml version="1.0"?>

<methodCall>

<methodName>samp.hub.register</methodName>

<params>

<param><value><string>734144fdaab8400a1ec2</string></value></param>

</params>

</methodCall>

which leads to the response:

HTTP/1.1 200 OK

Connection: close

Content-Type: text/xml

Content-Length: 148

<?xml version="1.0"?>

<methodResponse>

<params>

<param><value><string>app-id:1a52fdf-2</string></value></param>

</params>

</methodResponse>

The client might then declare its metadata: the response to this call has no
useful content so can be ignored or discarded.

POST /xmlrpc HTTP/1.0

User-Agent: Java/1.5.0_10

Content-Type: text/xml

Content-Length: 596

26

<?xml version="1.0"?>

<methodCall>

<methodName>samp.hub.setMetadata</methodName>

<params>

<param><value><string>app-id:1a52fdf-2</string></value></param>

<param><value><struct>

<member>

<name>samp.name</name>

<value><string>dummy</string></value>

</member>

<member>

<name>samp.description</name>

<value><string>Test application</string></value>

</member>

<member>

<name>dummy.version</name>

<value><string>0.1-3</string></value>

</member>

</struct></value></param>

</params>

</methodCall>

Calls from the hub to the client are along similar lines.

5 MTypes: Message Semantics and Vocabu-
lary

As stated earlier, a message contains an mtype string that defines the seman-
tic meaning of the message, for example a request for another application to
load a table. It also has other attributes and optional parameters to form
the complete message that we will outline below. These messages also play
a number of roles in a messaging system, although not every message is ap-
propriate for every role. Below we will discuss the types of messages used in
SAMP and see how specific mtypes are used.

In this section we will also discuss the form and required elements of
a message, and the types of messages needed by many common desktop
applications. This discussion is by no means complete; within the rules
of how messages are defined here and the delivery mechanisms described,
developers are free to create message types and usage patterns not detailed
here. New messages affecting the messaging system itself (e.g. those used

27

in communications with the Hub or those needed to ensure interoperability
such as a return status code) should be formalized for wider use later using a
(TBD) procedure outlined below. Application message types, e.g. those that
expose some functionality of a particular application, are entirely open-ended
and require no formal process to be adopted by developers.

5.1 The MType of a Message

A key concept of a message is the Mtype attribute that defines the semantic
meaning of the message. The concept behind the Mtype is similar to that
of a UCD in that a small vocabulary is sufficient to describe the expected
range of concepts required by a messaging system within the current scope
of the SAMP protocol. As noted earlier, developers are free to introduce
new MTypes for use within applications without restriction; new MTypes
intended to be used for Hub messaging or other administrative purposes
within the messaging system should be discussed within the IVOA for ap-
proval as part of the SAMP standard. The details and policy for adopting
new standard MTypes are TBD.

5.1.1 The Form of an Mtype

Like a UCD, an Mtype is made up of atoms. These are not only meaningful to
the developer, but form the central concept of the message. Because we wish
to loosely couple the capabilities one application is searching for from the
details of what another may provide, we don’t create a rigorous definition of
the behavior that an MType must provoke in a receiver. Instead, the Mtype
defines a specific semantic message such as “display an image”, it is up to the
receiving application to determine how it chooses to do the display (e.g. a
rendered greyscale image within an application or displaying the image in a
web browser might both be valid for the recipient and faithful to the meaning
of the message).

The ordering of the words in an Mtype should normally use the object of
the message followed by the action to be performed (or the information about
that object). For example, the use of “image.display” is preferred to “dis-
play.image” in order to keep the number of toplevel words (and thus message
classes) like ‘image’ small, but still allow for a wide variety of messages to
be created that can perform many useful actions on an image. If no existing
MType exists for the required purpose, developers can agree to the use of
a new Mtype such as ‘image.display.extnum’ if e.g. the ability to display a
specific image extension number warrants a new Mtype.

The syntax of an MType is given by the following BNF:

28

<mchar> ::= [0-9a-z] | "-" | "_"

<atom> ::= <mchar> | <atom> <mchar>

<period> ::= "."

<mtype> ::= <atom> | <atom> <period> <atom>

5.1.2 The Description of an MType

In order that senders and recipients can agree on what is meant by a given
message, the meaning of an MType must be clearly documented. This means
that for a given MType the following information must be available:

• The MType string itself.
• A list of zero or more parameters. For each one:

– name
– data type (map, list or string as described in 3.4) and if appro-

priate scalar sub-type (see 3.5)
– meaning
– whether it is REQUIRED or OPTIONAL
– OPTIONAL parameters MAY specify what default will be used

if the value is not supplied

• A list of zero or more returned values. For each one:

– name
– data type (map, list or string as described in 3.4) and if appro-

priate scalar sub-type (see 3.5)
– meaning
– whether it is REQUIRED or OPTIONAL
– OPTIONAL return values MAY specify what default is intended

if the value is not supplied

• A description of the meaning of the message. This should convey the
semantic meaning of the message, e.g. that an event of some type has
occurred, or that a specific request is is being made.

This is just the same information as one ought to supply for documentation
of public interface method in a weakly-typed programming language.

Note that it is possible for the MType to have no returned values. This is
actually quite common if the MType does not represent a request for data.
It is not usually necessary to define a status-type return value (success or
failure), since a sender which is interested in whether the message processing
was successful can wait to see whether the response from the message is an
error or not (the client receiveResponse() method has a success flag set).

29

So return values only need to be defined if there is data to return. If there
is not, the response object will be a map with no entries.

As explained in Section 3.7, parameters and returned values which are not
described in the MType may be passed as well as those which are. Clients
which do not recognise these should usually ignore them.

5.2 Mtype Vocabulary

In the description below the mtype attribute of the message is constructed
from the toplevel and secondary words. Any arguments required by the
message MUST be encoded in the message params attribute. The Mtypes
presented here are intended to be suggestions that we hope will be adopted by
developers; concepts and Mtypes not shown here may also be used and may
appear in later versions of this document if they become widely accepted.

mtype args returns meaning

----- ---- ------- -------

5.2.1 Application Messages

These message types have the toplevel word “app”. They are intended to
convey some change in the state of a sending application.

app

event

register id app has registered

unregister id app has unregistered

starting id app starts processing

stopping id app stops processing

mtype mtypes app declares new mtype

id

metadata meta app declares new metadata

id

status(??)

ok app executing normally

error app encountered error

???

5.2.2 Set/Get Messages

These message types have the toplevel word “set” or ‘get”. They are in-
tended to provide a general mechanism for setting/getting values from a

30

remote application beyond the scope of what is available using either the
Client or the Hub.

set

mtype mtype set list of mtypes

metadata meta set list of metadata

param param set parameter to value

value

get

mtype mtypes get list of supported mtypes

metadata param value get metadata item from client

param param value

5.2.3 Status Messages

These message types have the toplevel word “status”. They are intended
to convey information about the state of an application, or its response to a
Request message.

status

ok message processed normally

invalid message invalid (badly formed)

unknown message unknown (bad mtype)

delivery stat_str delivery status

progress

percent percent percentage completed (float)

timeLeft time est. time remaining (sec)

error err_str error message

5.2.4 File Messages

These message types have the toplevel word “file”. They are intended to
perform some action on a file regardless of format.

file

event

load filename the ’filename’ was loaded

save filename the ’filename’ was saved

load filename load this file ’filename’

save filename save to ’filename’

31

5.2.5 Image Messages

These messages have the toplevel word “image”. They are intended to invoke
operations on image data objects.

image

event

load imname the ’imname’ was loaded

save imname the ’imname’ was saved

load imname load image ’imname’

save imname save image to ’imname’

display imname display image in ’imname’

panTo x, y pan display (arb coords)

pixel x, y pan display to pixel coords

sky ra, dec pan display to sky coords

zoom level zoom to given level (+/-N level)

highlight

pixel x, y highlight point at pixel coords

sky ra, dec highlight point at sky coords

5.2.6 Query Messages

These message types have the toplevel word “query”. They are intended to
perform some action on a query object. Queries will typically be ADQL, but
no specification is made about the format of a query.

query

exec

adql adql_str result execute the ADQL query

sql sql_str result execute the SQL query

expr expr_str result evaluate the expression

5.2.7 Spectrum Messages

These message types have the toplevel word “spectrum”. They are intended
to invoke operations on spectrum data objects.

spectrum

event

load specname the ’tblname’ was loaded

table spectable the given table was loaded

32

image specimage the given image was loaded

save specname the ’tblname’ was saved

table spectable table was saved to fname

fname

image specimage image saved to imname

imname

load specname load table ’tblname’

table spectable table was loaded

image specimage image was loaded

save specname spectrum saved to ’specname’

table spectable table saved to ’fname’

fname

image specimage image saved to ’imname’

imname

5.2.8 Table Messages

These message types have the toplevel word “table”. They are intended to
invoke operations on table (any format) data objects.

table

event

load tblname the ’tblname’ was loaded

save tblname the ’tblname’ was saved

load tblname load table ’tblname’

save tblname save table to ’tblname’

highlight

row row highlight specified row

col col highlight specified column

cell row, col highlight cell at position

select

row row select (subset) named row

col col select (subset) named column

rowList rows select (subset) named rows

colList cols select (subset) named columns

5.2.9 URL Messages

These message types have the toplevel word “url”. They are intended to
perform some action on a URL.

33

url

event

load url ’url’ was loaded

save url ’url’ was saved to ’filename’

filename

load url load url at ’url’

save url save ’url’ to ’filename’

filename

5.2.10 Coordinate Messages

These message types have the toplevel word “coord”. They are intended to
provide a general method for using coordinates. Specific behavior depends
on the application.

34

A Changes from PLASTIC document

In order to facilitate the transition from PLASTIC to SAMP protocol from
applications’ developers point of view, we summarize in this appendix the
main changes - arranged in order of decreased importance - between the two
documents, ie the main updates from PLASTIC to SAMP.

1. Transport choice - The main drawback of PLASTIC was the Java
dependency for hub writers. In SAMP, Java RMI as transport mech-
anism has been dropped, which allows hubs to be written in virtually
any language.

2. Refactoring of registration API - Registration, declaration of meta-
data, and declaration of understood messages are clearly separated
steps in SAMP, whereas they were mixed in PLASTIC.

3. Application identity

TODO : complete this list. Not so easy to sort the importance of changes
!!!

B SAMP/PLASTIC interoperability

This section will detail how interoperability between SAMP-compatible and
PLASTIC-compatible clients can be achieved, using hubs able to translate
PLASTIC messages into SAMP Mtypes.

References

[1] F. Bonnarel, P. Fernique, O. Bienaymé, D. Egret, F. Genova, M. Louys,
F. Ochsenbein, M. Wenger, and J. G. Bartlett. The ALADIN interac-
tive sky atlas. A reference tool for identification of astronomical sources.
A&AS, 143:33–40, April 2000.

[2] U. Becciani, M. Comparato, A. Costa, C. Gheller, B. Larsson, F. Pasian,
and R. Smareglia. VisIVO: an interoperable visualisation tool for Virtual
Observatory data. Highlights of Astronomy, 14:622–622, 2007.

[3] http://hea-www.harvard.edu/RD/xpa/.

35

[4] J. Taylor, T. Boch, M. Comparato, M. Taylor, and N. Winstan-
ley. PLASTIC - a protocol for desktop application interoperability.
http://ivoa.net/Documents/latest/PlasticDesktopInterop.html,
June 2006. IVOA note.

[5] http://www.json.org/.

[6] http://www.xmlrpc.com/.

36

