
Comparison with AstroPy
This page outlines and compares the astropy implementation against the IVOA Coords data model. The goal is to provide a mapping to illustrate the
compatibility of the Astropy implementation model to the IVOA model. To date, I haven't seen a formal 'model' for the Astropy packages (but may find one
in this effort), so the comparison is from a breakdown of the Classes and Relations defined in the implementation packages.

Reference:

AstroPy docs: https://docs.astropy.org/en/stable/
Coords model: ,pdf html

AstroPy packages related to Coords (and the greater IVOA model suite):

astropy.units - Units and Quantities
astropy.coordinates - Astronomical Coordinate Systems
astropy.time - Time and Dates
Other packages related to extended model suite (Measurement, Cube, TimeSeries)

astropy.uncertainty - Uncertainties and Distributions
astropy.nddata - N-dimensional datasets
astropy.timeseries - Time Series

astropy.units:

"handles defining, converting between, and performing arithmetic with physical quantities, such as meters, seconds, Hz, etc. It also handles
logarithmic units such as magnitude and decibel."
"does not know spherical geometry or sexagesimal (hours, min, sec): if you want to deal with celestial coordinates, see the astropy.coordinates
package"
Quantity: combines a value and a unit, where 'value' may be a scalar, sequence, or array
includes 'dimensionless'
handles , such as that between wavelength and frequency.equivalencies

astropy.coordinates:

"provides classes for representing a variety of celestial/spatial coordinates and their velocity components, as well as tools for converting between
common coordinate systems in a uniform way."

this is restricted to the spatial domain, and includes the concept of transforms (between standard space frames and representations)
Class inheritance diagram

: container class, provides convenient API to content, helper methods, etc.. Exposes attributes of underlying objects at this level, which SkyCoord
somewhat hides the underlying hierarchy, but is more convenient to the user.

positions:

coordinate values: SkyCoord provides API to underlying values at this level.

API catered to Frame/Representation.

via 'named attributes' which depend on the Frame. eg: if frame='icrs' => c.ra, c.dec. if frame='galactic' => c.l,
c.b
representing Frame/Representation-centric spatial coordinate types

values themselves exist at the Frame and Representation level
Frame values are frame-centric according to the representation type: (ra,dec,dist), (l,b,dist), (az,alt,default
dist)
Representation values are named according to the coordinate space: (lon,lat,dist), (x,y,z), (rho, phi, z)

Quantity value may be array...

'for efficiency when performing the same operation on multiple coordinates'
supports sexagesimal notation (in/out), the conversion is managed at the Coord level? (Quantities do not support it)

velocities:

associates differentials with the position: eg. (ra, dec,dist) + (pm_ra, pm_dec, radial_velocity)
may have multiple differentials associations (using Unit to identify the nature of the derivative (eg: 's' = time derivative))

so can have velocity and acceleration, and derivatives w.r.t. other properties.
Frame:

string key - eg 'icrs' used to instantiate specialized Frame class

Frame classes know how to convert to other, related Frames (see Transforms)
There is a hierarchy of which can be mapped to the StandardReferenceFrame List.Built-in Frames

Built-in Frames include the representation, and therefore, the coordinate value'
would need to check built-in frame specs for additional metadata associated with the particular frames (eg: FK4.
equinox)

: equinox value is a Time type.NOTE

https://docs.astropy.org/en/stable/
https://volute.g-vo.org/svn/trunk/projects/dm/STC/Coords/doc/PR-Coords-1.0.pdf
https://volute.g-vo.org/svn/trunk/projects/dm/STC/Coords/vo-dml/STC_coords-v1.0.html
https://docs.astropy.org/en/stable/coordinates/index.html#module-astropy.coordinates
https://docs.astropy.org/en/stable/units/equivalencies.html#unit-equivalencies
https://docs.astropy.org/en/stable/coordinates/index.html#class-inheritance-diagram
https://docs.astropy.org/en/stable/coordinates/index.html#built-in-frame-classes

Can generate Custom frame
Transforms

Frame level internally supports transforms between frames (eg: 'icrs' 'galactic')
transform_to(frame) where 'frame' == string key ('fk5'), Frame class, or frame instance.

this form also allows conversion to AltAz; usage of that frame may require Earth rotation info which are
"automatically downloaded from the International Earth Rotation and Reference Systems (IERS) service
when required"

Representations

the 'coordinate space' (Spherical, Cartesian, Cylindrical) is described as a 'representation'
Transforms

Representation level handles conversions between spaces

managed through Cartesian via to_cartesian() and from_cartesian() methods implemented by all
Representation types.

'SphericalRepresentation' is default for built-in frames
coordinate values

available at this level for efficiency in performing operations on arrays of coordinates.
coordinate names here are Space-centric: Spherical(lon,lat,dist), Cartesian(x,y,z), Cylindrical(,z)rho, phi

may be different from names at SkyCoord level... especially for Spherical.
built-in representations:

SphericalRepresentation: "Representation of points in 3D spherical coordinates"

lon: longitude angle, range 0 to 360 deg, wrapped
lat: latitude angle, range -90 to +90 deg.
distance: radial distance
differentials: BaseDifferential[*]

UnitSphericalRepresentation: "Representation of points on a unit sphere"

same as spherical, but no distance
PhysicsSphericalRepresentation: "Representation of points in 3D spherical coordinates (using the physics convention
of using and for azimuth and inclination from the pole)."phi theta

phi: angle, range 0 to 360 deg, wrapped
theta: angle, range 0 to 180 deg
r: radial distance
differentials: BaseDifferential[*]

CartesianRepresentation

x: 'x' component of the point
y: 'y' component of the point
z: 'z' component of the point
differentials: BaseDifferential[*]

CylindricalRepresentation: "Representation of points in 3D cylindrical coordinates."

rho: distance from 'z' axis to the point
phi: azimuth, angle range 0 to 360, wrapped
z: 'z' coordinate of the point
differentials: BaseDifferential[*]

Differentials:

The differentials are sibling types to the Representations, and provide differentials in the various 'spaces'
The of the differential is stored as the 'key' in the container object (not internal to the Differential itself)nature
SphericalCosLatDifferential: d_lon_coslat, d_lat, d_distance
UnitSphericalCosLatDifferential: d_lon_coslat, d_lat
SphericalDifferential: d_lon, d_lat, d_distance
UnitSphericalDifferential: d_lon, d_lat
CartesianDifferential: d_x, d_y, d_z
CylindricalDifferential: d_rho, d_phi, d_z
PhysicsSphericalDifferential: d_phi, d_theta, d_r
RadialDifferential: d_distance

EarthLocations

sub package with location of sites (observatories) on Earth, not sure what the frame is there..

EarthLocation.of_site('Apache Point Observatory') => <EarthLocation(-1463969.30185172, -5166673.34223433,
3434985.71204565) m>

name, address, location.
Coordinates

three tiered system

representations: "a particular way of storing a three-dimensional data point (or points), such as Cartesian coordinates or
spherical polar coordinates"
frames: "particular reference frames like FK5 or ICRS, which may store their data in different representations, but have well-
defined transformations between each other"

frames know about representations; may change attribute name (eg: Galactic/Spherical == (l,b), ICRS/Spherical == (ra,
dec).. renaming (lon,lat))

high-level class: "uses the frame classes, but provides a more accessible interface to these objects as well as various
convenience methods and more string-parsing capabilities."

ie: a container object providing an interface to the underlying content

astropy.time:

"provides functionality for manipulating times and dates. Specific emphasis is placed on supporting time scales (e.g. UTC, TAI, UT1, TDB) and
time representations (e.g. JD, MJD, ISO 8601) that are used in astronomy"
components

value(s) - scalar, list, or numpy array
format - 'how to interpret the values':

time.FORMATS dictionary; currently contains 18 entries. eg: 'fits', 'iso', 'jd', 'byear', 'jyear', 'ymdhms'
'cxcsec' = Chandra X-ray Center seconds from 1998-01-01 00:00:00 TT

scale

time.SCALES dictionary; currently 8 (tai, tcb, tcg, tdb, tt, ut1, utc, local)
each 'format' has a corresponding Class
time from epoch formats (TimeOffset)

cxcsec, unix, gps provide offsets from a fixed reference date

each has an 'intrinsic' time scale, can't tell if that means 'fixed' or just 'default' (TT, UTC, TAI) respectively
TimeDelta

result of difference between Time types
the scale MUST be of type where 1day == 86400s.
don't see anything here which stores the reference date.

Comparison/Compatibility:

Coordinates:

Frame vs Coordinate system
Astropy 'BaseCoordinateFrame' is equivalent to the model 'SpaceSys' element, including both the 'Frame' and 'CoordSpace'
concepts.

Association of Coordinate value to the corresponding Axis

The astropy.coordinates package seems to allow only spatial coordinates associated with standard coordinate spaces.

there is no concept of a CoordSpace as a collection of Axis.
Representations merge model Coordinate 'values' with various Standard Coordinate Spaces to form space-centric the
versions of the Coordinate.

eg: Point + standard SphericalCoordSpace - SpaceFrame => SphericalRepresentation
eg: Point + standard CartesianCoordSpace - SpaceFrame => CartesianRepresentation
eg: Point + customized SphericalCoordSpace - SpaceFrame => PhysicsSphericalRepresentation

astropy.coordinates has no independent relation between a coordinate and its axis... the axis specification is built into the
definition of the Representation type:

a 'SkyCoord' in Spherical Representation has

'lon' is an angular value with range 0..360 deg, wrapped - by definition
'lat' is an angular value with range -90:90 deg - by definition

a 'SkyCoord' in Cartesian Representation has perpendicular axes

'x' a Quantity, no range restriction, not wrapped.
'y' a Quantity, no range restriction, not wrapped.
'z' a Quantity, no range restriction, not wrapped.

These are equivalent to instances of the Standard Coordinate Spaces defined in the model
Point => SkyCoord; where the constraint to use only standard coordinate spaces allows denormalization of content to more
efficiently operate on them.

The coordinate value(s) are available at all three levels of the implementation

By merging model Coordinate with standard CoordSpace concepts, the coordinate value becomes accessible by the Frame the
through SpaceSys. The various Frame types provide coordinate values via named attributes catered to the given Frame (c.ra,
c.dec).

I'm interpreting these as essentially aliases to the underlying Representation coordinates assuming the representation
is 'default'.
I'm assuming the code handles the translation if the SkyCoord.representation is not the 'default' and users attempt to
access the values via these named attributes.

SkyCoord provides an API so that the coordinate values appear to reside at the SkyCoord level.

a 'SkyCoord' in "ICRS" frame and Spherical Representation has (ra, dec, distance)
a 'SkyCoord' in "ICRS" frame and Cartesian Representation has (x, y, z)
a 'SkyCoord' in "Galactic" frame and Spherical Representation has (l, b, distance)

Only standard coordinate spaces

The IVOA model allows users to customize the coordinate space specification.
limit axes to a domain (eg: chip coordinates)finite
to specify where 0 is in a 'pixel' (left, center, right, somewhere in between)
to define 'standard' spaces not yet included in the model (eg: PhysicsSpherical)

Dealing only with standard coordinate spaces, this package has no knowledge of Discrete, or Binned axis types.. only
Continuous.

The transforms described here are going between various standard reference frames

These are not formally defined (ie: not modeled content, but implementations of 'commonly known transformations'.
so I'm not sure where Pixel coordinates come into play in Astropy. (image Pixel SkyCoord), and defining the PixelSpace

there is the AST package which knows the Transforms, but I'm how the pixel space and coordinates are curious
defined.

IVOA model references an external list for supported reference frames and positions.

the current list covers most, but maybe not all of Frame types in the astropy packagethe
some astropy Frames show additional metadata not currently in SpaceFrame. These could be accommodated by extension

AltAz Space/Frame with associated IERS metadata.
LSR with Barycenter velocity

Time:

similar to Coordinates, the value and associated axis/frame are more tightly bound than in the Coords model.

again, there is no customization of the axis, which is compatible with the default CoordSpace for TimeSys
astropy.time 'Frame' seems to only consist of the time scale.

is the use case which requires refPosition/refDirection rare enough to extracting these to a subclass of TimeFrame?warrant
astropy.time includes Epoch as a Time type where the model does not.

this was a comment by FB as well, during the review process.
astropy.time supports far more 'formats' than currently supported by the model.

	Comparison with AstroPy

