INAF radio telescopes: ObsCore mapping of SD data

A. Zanichelli - INAF radio data archive Working Group

IVOA Radio Interest Group Meeting, March 8th, 2022

INAF radio telescopes

Observing modes:

SD

Pulsar

VLBI

Single-dish scan types (main/current)

Measured quantity: raw counts(x,y,lambda,Pol).

at a given sampling rate delta_t

Single-dish data format

1 Scan = 1 ObsCore entry

One Scan: folder containing...

1 Summary FITS file

Mapping SD data into ObsCore

OK

```
calib level
obs collection
obs_id, obs_publisher_did
access url, access format
access estsize
target name, s ra, s dec
t_min,t_max, t_exptime
(pol states), pol xel
(facility_name), instrument_name
```

Under discussion

dataproduct_type / subtype s_fov, s_region, s_xel1, s_xel2 t_resolution, t_xel s_resolution em_res_power, em_min, em_max

dataproduct_type

Extend the concept of *measurement* according to the preliminary description in http://www.ivoa.net/rdf/product-type as of 2021-11-18?

Use dataproduct_subtype to improve the description.

Geometry: s_fov, s_region, s_xel1, s_xel2

Peculiar cases in the radio domain [not a typical (x,y) image]

ON-OFF: two fixed positions

OTF Cross Scan: axes lengths have not the same geometrical meaning as in a typical image. s region = s fov

OFF

ON

<u>Multi-feed receivers</u> (typically used for mapping and nodding): non-contiguous sky coverage. s_fov as the instantaneous footprint.

s_region may not be extremely accurate (requires computations on the feed geometry during mapping)

Time in SD data

t_resolution is defined as the temporal resolution FWHM, not meaningful for SD?

SD: (x,y) positions measured at a fixed sampling rate delta_t. Sampling rate does not vary in a scan. Measured: raw counts(x,y,lambda,Pol)

(btw: looking at the description in ObsCore v1.1 Sez 4.16 "The t_resolution column is the minimal interpretable interval between two points along the time axis" Is it a FWHM or a minimal value?)

t_xel: to be discussed accordingly

Multiple spectral windows:

Many spectral windows in the same scan. Each spectral window is <u>fixed</u> within a scan and different spectral windows may differ in bandwidth and spectral resolution.

Example: each window centered on a different frequency, or all windows at the same frequency but with increasing resolution.

Spectral multiplicity affects em_min, em_max, em_res_power but also s_resolution, s_region and s_fov

em_res_power: it is defined as the optical resolving power (adimensional, delta_lambda/lambda). The radio domain uses the frequency resolution (in units of frequency): new parameter em_resolution?

To be discussed

Some kind of ObsCore extension could be useful to:

- fully describe the spectral multiplicity of the data, expressed in: em_min, em_max, em_xel, em_res_power (or its equivalent for radio)
- fully describe the spatial properties/scanning strategies (which are related to the spectral ones): s_resolution, s_region and s_fov

Additional discussion:

- em_res_power vs em_resolution?
- (access_estsize in kbytes: is it still a meaningful unit?)