Radio Astronomy Data Model for Single-Dish Multiple-Feed Instruments, and Robledo Archive Architecture

IVOA Note 2007 Jan 22

This version: 0.66-20070122

Authors:

- J. Santander¹, <jdsant@iaa.es>
- E. García¹, <garcia@iaa.es>

Contributors:

- J.F. Gómez¹, <jfg@iaa.es>
- O. Suárez², <Olga.Suarez@laeff.esa.es>

Reviewers:

- L. Verdes-Montenegro¹, <lourdes@iaa.es>
- S. Leon³, <leon@iram.es>
- R. Gutiérrez², <Raul.Gutierrez@laeff.inta.es>
- O. Morata², <Oscar.Morata@laeff.inta.es>
- C. Rodrigo², <Carlos.Rodrigo@laeff.inta.es>
- E. Solano², <Enrique.Solano@laeff.inta.es>
- T. Kuiper⁴, <kuiper@jpl.nasa.gov>

¹Instituto de Astrofísica de Andalucía - CSIC, Granada, Spain

 $^{^2 {\}rm Laboratorio}$ de Astrofísica Espacial y Física Fundamental, Villafranca del Castillo, Madrid, Spain

³Instituto de Radio Astronomía Milimétrica, Granada, Spain

⁴Jet Propulsion Laboratory-NASA, Pasadena, USA

Abstract

All the effort that the astrophysical community has put into the development of the Virtual Observatory (VO) has surpassed the non-return point: the VO is a reality today, and an initiative that will self-sustain, and to which all archival projects must adhere. We have started the design of the scientific archive for the DSS-63 70-m antenna at NASA's DSN station in Robledo de Chavela (Madrid). Here we show how we can use all VO proposed data models to build a VO-compliant single-dish, multiple-feed, radio astronomical archive data model (RADAMS) suitable for the archival needs of the antenna. We also propose an exhaustive list of Universal Content Descriptors (UCDs) and FITS keywords for all relevant metadata. We will further refine this data model with the experience we gain from that implementation.

Status of this document

This is a note. The first release of this document was 2007 Jan 22nd.

This is an IVOA Note expressing suggestions from and opinions of the authors. It is intended to share best practices, possible approaches, or other perspectives on interoperability with the Virtual Observatory. It should not be referenced or otherwise interpreted as a standard specification.

Contents

Li	st of	Figures	5
Li	st of	Tables	5
1	Intr	oduction	7
	1.1	VO for Radio Astronomy	8
	1.2	Outline of this document	8
2		ls and properties of the DSS-63 Robledo Archive Data del (RADAMS)	9
3	Exi	sting Work	13
	3.1	Data Model for Observation	13
	3.2	Data Model for Astronomical Dataset Characterisation	13
	3.3	IVOA Spectral Data Model	14
	3.4	IVOA Data Model for Raw Radio Telescope Data	14
4	Ove	erview of the DSS-63 antenna	15
	4.1	Spectral observations with the DSS-63 antenna $\ .$	16

5	\mathbf{RA}	DAMS High Level Description	21
	5.1	Observation	21
	5.2	ObsData	22
	5.3	Characterisation	22
	5.4	Provenance	23
	5.5	Target/Field	24
	5.6	Packaging	24
	5.7	Policy	24
	5.8	Curation	24
6	Det	ailed description of RADAMS classes	25
	6.1	An scientific case: water masers' survey within Bok globules	25
	6.2	ObsData and Characterisation	26
	6.3	Provenance	45
	6.4	Target	53
	6.5	Packaging	56
	6.6	Policy	56
	6.7	Curation	58
\mathbf{A}	Arc	hive Structure and Implementation	63
	A.1	Instrument Control System	64
	A.2	Archive Backend	64
	A.3	Archive Services	65
	A.4	Interfaces	65
в	Arc	hive Workflow	67
	B.1	File selection	67
	B.2	Automatic metadata generation	68
	B.3	Web-based interface for metadata edition	69
	B.4	Data query and XML and VOTable serialization	69
С	Poli	cy Determination	71
D	VO	Pack	73

List of Figures

DSS-63 70-meter antenna $\dots \dots \dots$
RADAMS general class organization
ObsData class data model
Spatial axis frame metadata
Temporal axis metadata
Spectral axis metadata
Observable axis metadata
Provenance.Instrument data model
Provenance.AmbientConditions data model
Provenance.Processing data model
Target data model
Policy data model
Curation data model
High level, layered architecture for the Robledo Archive 63
Role determination algorithm
VOPack structure
VOPack schema listing

List of Tables

4.1	DSS-63 antenna, receiver and spectrometer properties	18
4.2	DSS-63 properties, versus other antennas	19

6.1	AxisFrame.Spatial metadata	0
6.2	Coverage.Spatial.Location metadata 3	1
6.3	Coverage.Spatial.Bounds metadata	1
6.4	Coverage.Spatial.Support metadata	1
6.5	Coverage.Spatial.Sensitivity metadata 3	2
6.6	Coverage.Spatial.Resolution metadata	2
6.7	Accuracy.Spatial metadata	2
6.8	AxisFrame.Temporal metadata 3	4
6.9	Coverage.Temporal.Location metadata	4
6.10	Coverage.Temporal.Bounds metadata	5
6.11	Coverage.Temporal.Support metadata	5
6.12	Coverage.Temporal.Resolution metadata	5
6.13	Accuracy. Temporal metadata	6
		8
6.15	Coverage.Spectral.Location metadata	9
	Coverage.Spectral.Bounds metadata	9
		9
		0
	Coverage.Spectral.Resolution metadata 4	0
		0
	Accuracy.Spectral metadata	1
		3
	Coverage.Observable.Location metadata	3
		4
	-	4
		4
		4
		5
	Provenance instrument metadata	
	Instrument location metadata	7
	Antenna configuration metadata	
	Feed configuration metadata 4	8
	Beam configuration metadata	
		9
		0
	*	1
6.37		$\overline{2}$
		3
		4
		5
		8
		9
		9
		9
0.11		υ

6

Introduction

The AMIGA project intends to study a sample of isolated galaxies composed by more than 1000 objects, by means of multi-wavelength data, and with a particular emphasis on radio data at cm, mm, and sub-mm wavelengths. All these data are being periodically released via the web page of the project <http://www.iaa.csic.es/AMIGA.html>, which will soon count with a Virtual Observatory-compliant interface in order to allow à la carte data retrieval.

As a natural extension of the AMIGA project arised AMIGA+, AYA2005-07516-CO2-01, recently funded for three years and which among its goals includes, as an application of the expertise on databases and radio astronomy obtained with AMIGA, the participation in the development of software and archives for millimetre and sub-millimetre astronomical facilities, both single-dish and interferometric.

The two considered interferometric facilities are the SMA (Sub-Millimetre Array) and ALMA (Atacama Large Millimetre Telescope), the former one being the first sub-millimetre interferometer currently in operation, and precursor of the extremely complex ALMA project (8 antennas for the SMA, versus 50-64 antennas for ALMA).

In the single-dish side, we have started a collaboration with the Deep Space Station from NASA at Robledo de Chavela, in order to build an archive for the spectroscopic observations performed by the DSS-63 70-m antenna. This activity is part of the joint IAA-LAEFF collaboration within the framework of the Spanish Virtual Observatory Network, financed by the National Plan for Astronomy and Astrophysics, AYA2005-24102-E.

The goal of this document is, therefore, to provide an initial version of a data model for a single-dish, multiple-feed, radio astronomical archive suitable for the DSS-63 antenna, but as general as possible, in order to be able to adapt it for other single-dish antennas.

1.1 VO for Radio Astronomy

One of the more interesting windows of the electromagnetic spectrum for astronomy, and one that complements very well the traditional visible part of it, is the radio window, as radio signals are much less affected by extinction.

Nevertheless, radio astronomy is relatively new, especially when compared with optical astronomy, and non-radio astronomers are often unfamiliar with the specialised techniques for radio astronomy. Hence the importance of a VO infrastructure for radio astronomy, that provides easy access to data and tools.

In a search for VO-compliant radio archives we only found the ATCA (Australian Telescope Online Archive) Data Model [1], and the NOAO Science Archive Domain Model [2], but even when they provide VO interfaces, they make use of very few standard data models, and rely in their own implementations instead. The main contribution of this work, then, is the compilation of the existing VO proposed standards, and its extensive use to describe, store and retrieve spectroscopic and continuum observations in several bands, and multi-instrument data.

Apart from being the blueprint for the archive development effort for the DSS-63 70-m antenna archive, this document is intended to be a contribution to the radio-VO development.

1.2 Outline of this document

This document begins with a detailed explanation of Robledo's archive goals in Chapter 2, with a brief review of existing work on this field in Chapter 3. We finish the introductory material with an overview of the DSS-63 70-m antenna capabilities and observing modes in Chapter 4.

With that background, we engage in a high level overview of the archival system in Chapter 5, and we provide additional detail for the archive components in Chapter 6.

We also provide four appendices: we propose a design for the archive infrastructure to be implemented in Appendix A, and the workflow for the archive in Appendix B. The algorithm for policy determination is shown in Appendix C, and the VOPack, a new VO data format that we are proposing, is described in Appendix D.

Goals and properties of the DSS-63 Robledo Archive Data Model (RADAMS)

A successful implementation for the RADAMS needs to:

- Reproduce the scientific domain for any radio observation performed with the DSS-63 antenna, by means of proper instrument and data characterisation.
- Be as general and flexible as possible, so that new capabilities can be easily added.
- Support a set of representative queries.
- Follow IVOA directives, in order to be VO standards compliant, and also to help in the archive's flexibility.

The model will hold information about the following properties:

- Datasets.
- Instrumental and observation configuration.
- Observational conditions, fundamentally weather conditions.
- Observation projects, proposals, etc.
- Calibration status and data processing history.
- Numerical representation for FITS/VOTable serializations.
- Curation data (i.e., who is providing the datasets) for inclusion in VO registries.

CHAPTER 2. GOALS AND PROPERTIES OF THE DSS-63 ROBLEDO 10 ARCHIVE DATA MODEL (RADAMS)

Those characterisations will allow for many different queries. The queries that one will be able to perform will be, at least, queries by:

- Object/Target/Source.
- Field (through standard IVOA protocols, such as the SkyNode protocol, or the ConeSearch protocol).
- Observation date.
- Frequency Range/Spectral band.
- Spectral characteristics.
- Calibration type.
- Instrumental settings.
- Location (in coordinates, velocities, etcetera).
- Atmospheric conditions.
- Data quality (using numeric or descriptive qualifiers).
- Project management data, such as PI, Observer, etc.

These queries require the archive to provide an interface implementing, at least, the following VO services:

- SkyNode.
- ConeSearch.
- SSAP (for spectral access).
- SIAP (eventually, for map imaging).

Any agent (human or machine) interacting with the archive needs to retrieve both the data themselves, and the following information on the observation:

- Source pointing.
- Weather conditions.
- Calibration.

In addition, the system will provide, at a later stage, means to retrieve additional reports accumulated during a given term, such as:

- Weather conditions for such term.
- Opacity statistics.
- Skydips and Opacity curves.
- Engineering data.

Existing Work

In order to make the RADAMS as VO compliant as possible, we have based it in the following references from IVOA:

3.1 Data Model for Observation

The Data Model for Observation (DMO, version 0.23, IVOA Data Model WG Internal Draft) [3] describes a data model for the concept of an astronomical observation, considering it as a VO entity. It describes a class that is qualified by three more classes:

- **Characterisation**: How to describe the data to be archived, in terms of data properties.
- **Provenance**: How the data were originated (instrumental configuration, observing conditions, pipelines, etc).
- **Curation**: Extra information needed for systematic resource description for inclusion in VO registries.

The DMO does not describe in detail any of these additional qualifying classes, and leaves it up to further IVOA documents; for now, only Characterisation has been specified.

3.2 Data Model for Astronomical Dataset Characterisation

This document (DMAC, version 0.9, IVOA Data Model WG Note) [4] details the Characterisation part of the DMO, that is, how any kind of observation is described in the VO.

In particular, it recommends that any archive should provide different Axes for any piece of observational data:

- Location (at least, 2D spatial coordinates).
- Temporal (time, and time sampling).
- Spectral.
- Observable quantity or quantities, such as flux, polarization, etc.

For each of these axes, data resolution and precision have to be included, as well as the associated accuracy.

One of the most remarkable aspects of the Characterisation data model is that different levels of detail can be provided in the description of the data, depending on the intended VO use of the archive: if only discovery and query services are to be provided, the level of needed detail is lower than necessary for VO data mining applications, and the archive does not have to provide characterisation for the sensitivity in different axes.

However, we will describe this archive at the highest level of detail, so that in principle the RADAMS will support data mining capabilities.

3.3 IVOA Spectral Data Model

The SDM (SDM, version 0.95a, IVOA Data Model WG Working Draft) [5] defines a particular data model for defining both spectra and time series, as particular cases of a Spectral Energy Distribution (SED) object. We will use the SED data model to represent spectroscopic data for VO web services such as the Simple Spectral Access Protocol.

3.4 IVOA Data Model for Raw Radio Telescope Data

This document (RDM, version 0.1, IVOA Radio Astronomy Interest Group Note) [6] is a draft for a data model proposal for radio-interferometer data. Single-dish instruments are treated as a particular case of a single antenna interferometer.

Lamb and Power's RDM constitutes the only IVOA specific document for radio astronomy. Many aspects of our work are based upon this model, which we have updated with the latest IVOA discussions about data models for observations, characterisation, etceteras, and we have adapted it to singledish observations such as those performed at Robledo.

We have also made use of several other documents that can be found on the Bibliography section of this document.

Overview of the DSS-63 antenna

As we have stated before, the main goal for this document is to describe the RADAMS as a blueprint for the DSS-63 archive. Therefore, an introduction to the DSS-63 antenna, and its observation modes and properties is mandatory. This introduction is partially based upon the second chapter of de Gregorio-Mosalvo's Ph.D. thesis [7].

The DSS-63 is one of the antennas at the Madrid Deep Space Communications Complex. Three Deep Space Communications Complexes (DSCCs) where created by NASA in the late 50's, and where located at Canberra (Australia), Madrid (Spain) and Goldstone (USA), in order to allow for continuous monitoring of the incoming data from Earth-orbiting and interplanetary spacecraft missions, as well as radio and radar astronomy observations for the exploration of the Solar System and the Universe. The combined operation of the three DSCCs is what it is known as the Deep Space Network (DSN), which is managed by the Jet Propulsion Laboratory (JPL).

Of all the time devoted for astronomical observations, around 3% of the time at the Canberra and Madrid stations (up to 260 hours per antenna) is available to Host-Country astronomers. The organization responsible for the scheduling of this time at Madrid DSCC is the Laboratorio de Astrofísica Espacial y Física Fundamental (LAEFF) of the Instituto Nacional de Técnica Aeroespacial (INTA), by arrangement with NASA.

Each DSCC has at least four operational antennas:

- One 26-meter diameter antenna, originally built to support the Apollo missions to the Moon, presently used for communicating with Earth-orbiting spacecraft.
- One 34-meter diameter high efficiency antenna (HEF), designed around a precision-shaped reflector, for maximum signal sensitivity.

- One 34-meter diameter beam waveguide antenna (BWG), based on the HEF design, with five mirrors that reflect radio signals along a beam-waveguide tube from the antenna vertex to the equipment room, for easier maintenance access.
- One 70-meter diameter antenna, with the highest sensitivity, used for tracking the deepest space missions.

Nowadays, Host Country time at the MDSCC is dedicated to perform spectroscopic observations at K-band (i.e., wavelengths around 1 cm), with the 70-m DSS-63 antenna.

Table 4.1 summarises the main properties for the DSS-63 antenna, and Table 4.2 compares them with those from other similar radio telescopes. Figure 4.1 shows a picture of the 70-m antenna.

4.1 Spectral observations with the DSS-63 antenna

As the main scientific use of the DSS-63 antenna is the recollection of spectra, we will describe how spectroscopic observations are performed with this instrument.

The observing process for a spectrum is as follows:

- Source selection: first, a target source with a medium elevation at the time of observation is selected; extreme elevations introduce additional pointing errors and/or additional atmospheric effects.
- **Pointing calibrator selection**: once the source has been selected, a strong pointing calibration source near the target is chosen; minimization of antenna motion between pointing calibration and the actual observation is desirable.
- **Pointing calibration**: The antenna will be moved up and down in elevation, and clockwise and counter-clockwise in cross-elevation, around the expected position for the pointing calibrator. As the profile for the telescope beam conforms to a Gaussian distribution, the data can be fitted with a Gaussian, and the pointing error adjusted by comparison between the expected position of the calibrator, and the fitted maximum flux position. This correction will be applied to the coordinates where the source is expected to be.
- Focus calibration: The same calibrator can be used to calibrate the focus of the instrument, defined as the position of the secondary mirror that maximises the power collected by the instrument. Again, the profile for the focus, when the mirror is moved along its axis, is assumed to be Gaussian, and the fit for the maximum provides the focus.

- **On/Off source observation**: Both the source and a nearby position with no emissions have to be observed, in order to discriminate the contribution from the instrument. This is performed either by changing the position of the antenna (position switching), or by moving the secondary mirror in such a way that the main feed is focused on a different region of the sky, with no radio sources (wobbler switching). Another possibility is to compare the power of the emission from the same source at slightly different frequencies, assuming that the antenna and atmospheric noise does not change with this frequency switch (frequency switching). In the case of the DSS-63, on/off observations are performed either by position switching or frequency switching.
- Atmospheric corrections: The amount of energy received by the instrument depends strongly on weather conditions, and on the length of the path of the signal through the atmosphere. In particular, at cm wavelengths the amount of water vapour in the atmosphere is the major contributor to atmospheric opacity (a quantity that is proportional to the probability of a photon being absorbed after travelling a given length in the atmosphere). Measurements of opacity at different elevations (tipping curves, or skydips), which correspond to different air masses (a measure of the amount of atmospheric gas in the line of sight of the instrument), are used to fit a curve that provides the atmospheric opacity. This is usually done at DSS-63 once per observing session and frequency setup.

There are other corrections and calibrations to consider, but most of them can be obtained from typical values for the instrument and particular configuration, and do not contribute to illustrate the observing process with the DSS-63 antenna.

Of particular interest will be parameters such as system temperature (T_{sys}) , main beam solid angle (Ω_{mb}) , aperture efficiency (η_a) , and the antenna temperature scale.

The data output of the correlator is a 384-sample autocorrelation function, which by means of the Fourier transform (Discrete Fourier Transform, in this case) provides a function proportional to the power spectrum of the source. The post-processing of the observation, together with the calibration procedures, will allow us to determine the actual spectrum scale, and frequencies for the salient features of the spectrum.

	Name: Deep Space Station 63
	Diameter: 70 m
	Type : parabolic Cassegrain
	Mount: azimuth/elevation
Antenna	Latitude: 40° 25' 52" N
\mathbf{System}^{a}	Longitude : 04° 14' 53" W
Ū	Altitude: 865.5 m
	$HPBW^{b}: 42"$
	Aperture Efficiency (η): 49% maximum
	Sensitivity: 0.7 K/Jy
	Pointing accuracy: ≤ 10 "
	Amplifier type: cooled HEMT
TZ 1 1	Frequency range: 18-26 GHz
K-band receiver	Polarization : LCP^{c} or RCP^{d} (default, LCP)
receiver	T _{sys} (winter): 50 K
	T _{sys} (summer): 75 K
	Spaceborne-500 ^e
	Type : Digital autocorrelator
	BW : 2, 4, 8 and 16 MHz
	Num. channels: 384
	Observing mode : position switching
	${f Spectra-Data}^f$
	Type : Fourier-transform autocorrelator
Spectrometers	BW : 1, 2.5, 5 and 10 MHz
-	Num. channels: 256
	Observing mode : frequency switching
	$\mathbf{SAO4K}^{g}$
	Type : Digital autocorrelator
	BW : 400 MHz
	Num. channels: 4096
	Observing mode : position switching

Table 4.1: DSS-63 antenna, receiver and spectrometer properties.

 $[^]a\mathrm{HPBW},$ aperture efficiency, sensitivity and pointing accuracy measured at 22GHz, with 40^{o} of elevation

 $^{^{}b}$ Half-Power Beam Width

 $^{^{}c}\mathrm{Left}$ Circular Polarisation

 $[^]d\mathrm{Right}$ Circular Polarisation

 $[^]e\mathrm{This}$ is the correlator currently in used, and superseded the Spectra-Data.

 $^{{}^}f\!{\rm The}$ Spectra-Data was the correlator initially used at the facility (from 2001 to 2003), but it is no longer operational.

 $^{{}^}g\mathrm{The}$ SAO4K correlator belongs to the Smithsonian Astrophysical Observatory, and is used in the SAMBA survey.

Telescope	Diameter	$\begin{array}{c} \mathbf{Aperture} \\ \mathbf{efficiency} \ (\eta_{\mathrm{a}}) \end{array}$	Resolution	$\frac{\rm Sensitivity}{\rm (K/Jy)}$
Effelsberg	100 m	29%	40"	0.8
GBT	$100-110 {\rm m}$	55%	34"	1.5
Robledo DSS-63	$70 \mathrm{m}$	49%	42"	0.7

Table 4.2: DSS-63 properties, versus other antennas; values at 22 GHz.

Figure 4.1: DSS-63 70-meter antenna at Robledo de Chavela, Madrid

RADAMS High Level Description

Now that we have ended with the introductory material, we will start by giving a high level overview of our data model. This model was built upon the following assumptions:

- Archived data are considered exclusively single-dish, single-feed; for multiple feeds, each feed is considered a separate entity.
- The archive will contain both single pointing continuum and spectral data; radio mapping will be implemented at a later stage.
- The archive will just provide data retrieval; it will not directly provide tools for data mining, but as we will be characterising the sensitivity, as recommended by IVOA, the archive will allow for them.

The RADAMS is built with the help of several main classes. Figure 5.1 shows the high level organization of the RADAMS classes.

We will start by defining the different classes that make up the data model.

5.1 Observation

This is the main class of the data model. It describes an arbitrarily large dataset that can be derived directly from an observation, or from several observations. Generally, we will consider the set of observations taken with the same instrumental setting, and with the same associated target.

In the particular case of the DSS-63, an Observation would be made of the set of on/off observations associated with the same target, or the final, flux calibrated spectra. As we will see later, the Packaging class will allow us to have different degrees of granularity for data access.

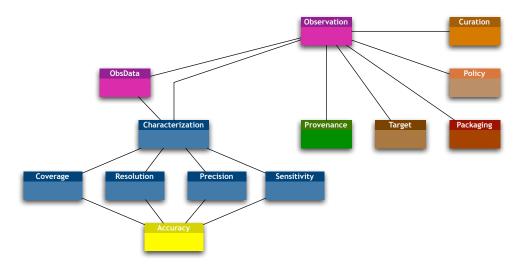


Figure 5.1: RADAMS general class organization. Different colours correspond to different sub-data models, as described by IVOA.

5.2 ObsData

This class describes the data, in tabular form. It can be just a number —if we are doing continuum observations—, or an array representing a spectrum, or a set of spectra.

We propose that the ObsData for the RADAMS —that is, the final product to be stored in the archive— can be any of the following:

- Each spectrum resulting from an on/off processing, corrected by opacity and $T_{\rm sys}.$
- The calibrated and averaged spectrum from all the on/off processed observations belonging to a given observation.
- Both.

The RADAMS makes use of the Packaging class —which we will define below— in order to specify what particular pieces of data are being retrieved. Besides, the archival of continuum information cannot be discarded, as most radio telescopes are capable of performing continuum scans.

5.3 Characterisation

ObsData is the main class containing scientific data, but further metadata are needed in order to describe its content quantitatively, as well as qualitatively. The class that provides this information is the Characterisation class. The DMO document establishes that any astronomical measurement occupies a position in a multi-dimensional space, defined by several axes. Initially, this axes are just four (but more can be added): spatial (coordinates), temporal, spectral, and a fourth axis corresponding to the observed physical quantity (e.g., measured flux, or polarization, in the case of radio observations). Characterisation gives us a description of the data in different attributes and levels inside this multi-dimensional space, including physical units and scales.

The Characterisation class can be divided in the following subclasses:

- Characterisation.Coverage: Specifies which part of the multi-dimensional space has been encompassed by the measurement. That is, when was the observation made and for how long, which field was covered, which bands were studied, what was the range of observed flux, and so on. Each of those questions belongs to a different axis.
- Characterisation.Resolution: Specifies data resolution in each of the axis. Resolution is independent of the sampling, as it is a property of the instrument/observing process.
- Characterisation.Precision: If the data are sampled in any axis (e.g., for spectral data in the frequency domain, data are sampled), this class will include information on the sampling precision. This is different from resolution: resolution is a property of the instrument, due to uncertainties on the energy distribution of the source, because of convolution of the source's and the instrument's profiles.
- Characterization.Sensitivity: This class quantifies the sensitivity of the instrument in the given axis, by means of a sensitivity function that is defined for the whole coverage of the observation in the given axis. This class has not been fully defined yet by the IVOA Working Group, hence we are providing a tentative description of this class, in order to help the the efforts of the Characterisation Working Group.
- Characterisation.Coverage.Accuracy: For each of the above characterisations, accuracy metadata have to be provided. This class qualifies the accuracy and errors, both systematic and random, for each characterisation axis.

5.4 Provenance

This class groups all the information describing the way the dataset was created. It has to include the instrumental setting for that particular observation, coordinates for the telescope, weather and atmospheric conditions, and all the information about pre- and post- processing of data, when such data were created by processing some other.

5.5 Target/Field

This class allows the model to include relevant information about the observed target. Such target can be mapped to a known astronomical object, to a detected source, to a given field, etc. Having this entity in a separate class from the Observation one allows optimized searches by Target, and the ability to link external target information using VO services (such as Sesame, Aladin, the SkyNode interface, etcetera).

5.6 Packaging

Archive queries result in different datasets, and a particular dataset for a given Observation can contain several measurements. The Packaging class specifies what is being delivered by the archive as a result for a given query, and the organization of data packages different VOTables link to. We will provide an initial development of this class, suitable for the needs of the RADAMS. We will also propose a VO general packaging system, the VOPack.

5.7 Policy

Different observations can fall under different privacy policies. This class allows for easy tagging of private data, and for searches for public data. We will provide an initial development of this class, as needed by the RADAMS.

5.8 Curation

To be considered part of the VO community, all VO resources have to be included in a Registry. The Curation class encompasses all the metadata needed for well-formed archive and data VO registry. In addition, we also integrate an ObservingProgram subclass, proposed by Anita Richards in the DMO document, which acts as an intermediate class that allows grouping together different observations with a common goal, such as a maser survey —see Section 6.1—, for instance.

Detailed description of RADAMS classes

After this initial overview of the classes that conform the RADAMS, we will detail the attributes corresponding to each of the classes of the model.

Besides, we will select appropriate FITS Keywords and UCDs for FITS and VOTable serializations of observational data. FITS Keywords will be selected first from the official NASA FITS mandatory headers [8], later from the Multi-Beam FITS Raw Data Format [9], and lastly from the NRAO GBT FITS data format [10]. Sometimes those keywords cannot appear in the main header of a FITS file, but instead in a FITS extension table. For some columns, a value of **assign** is stated, meaning that a FITS keyword has yet to be selected for that particular database field.

UCDs will be selected from the UCD1+ vocabulary [11], using the recommended juxtaposition technique in order to clarify the meaning of any given term. In some cases, where there is no feasible UCD combination, we will propose one.

6.1 An scientific case: water masers' survey within Bok globules

In order to better illustrate the details of the different data models, we will introduce first a sample scientific case: a water maser survey performed on Bok globules with the DSS-63 [7].

Water maser emission has a rest frequency of 22235.080 MHz, and corresponds to the $6_{16} \rightarrow 5_{23}$ transition of the water molecule. This emission is excited when there is a shock wave running through the gas, which provides the energy to invert the population of the energy levels of the molecule, a prerequisite to produce a significant amount of stimulated emission. Maser emissions have very precise frequencies, and their presence is a tracer of molecular outflows or stellar mass loss.

Data collected for this survey would be part of the same Observing program, and observations performed with the same instrument and configuration would be part of the same proposal. Different observations for different targets would be tuned to different frequencies, to account for the different Doppler shifts caused by the recessions of the source.

6.2 ObsData and Characterisation

Following the ALMA Software Glossary [12], we can define several degrees of observational data:

- **Dump** This is the smallest interval of time for which a set of correlated data can be accumulated and output from the backend stage.
- **Integration** Set of dumps, all identical in configuration, which are accumulated and form the basic recorded unit.
- **Sub-scan** Set of integrations performed while the antennas complete an elemental pattern across the source: e.g., frequency switching, nutator switching, etc.
- Scan Set of sub-scans with a common goal, such as a pointing scan, a focus scan or an atmospheric amplitude calibration scan, among others.

Hence, the minimum useful unit to be recorded in the archive is the subscan, which can be appropriately described, but the minimum scientifically significant unit is the scan, so depending on the kind of granularity desired one could base the archive upon one or the other. Higher order units —such as multiple scans on the same source—should be derived from Project metadata.

To describe these scans we will use the ObsData class (which could also be referred to as RawData) as the main class for the RADAMS. From ObsData instances, we will form a tree of data that will describe a particular scan, both by its properties in the Spatial, Temporal, Spectral and Observable axes, and its respective Accuracy.

We show a high level overview of the ObsData class and its relationships with AxisFrame, Coverage, Resolution and Accuracy classes in Figure 6.1.

ObsData (also to be referred as RawData): Instances of this class will contain the final data. As discussed previously, we will keep either whole scans to determine the scientific data, or processed data (such as spectra).

AxisFrame: Instances of this class will contain metadata that describe the main properties of the axis, such as units, calibration state, etc.

Coverage: We will describe the position of the archived data in the parameter space: where and when was the telescope pointed, and what wavelength range was observed. Several subclasses exist:

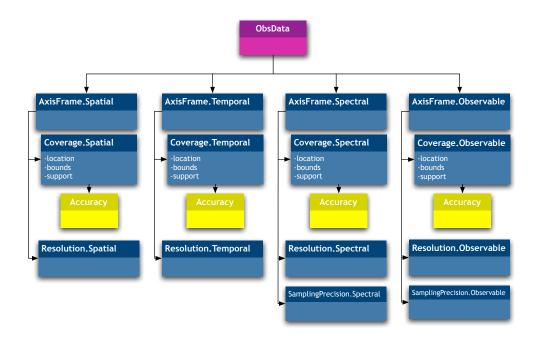


Figure 6.1: ObsData class data model; the different axes for the Characterization part of the data model are shown.

Coverage.Location: This subclass of Coverage describes the characteristic value for each axis. For instance, **Coverage.Spatial.Location** would give the central point of the observed field, and **Coverage.Temporal.Location** would hold the middle time of the scan.

Coverage.Bounds: Maximum and minimum values of the axis; for instance, **Coverage.Spectral.Bounds** would give us the maximum and minimum frequencies of the spectrum, and **Coverage.Temporal.Bounds** would give us the starting and ending time of the observation.

Coverage.Support: Set of parameters in that axis where we have valid observational data. For instance, **Coverage.Temporal.Support** could be a set of intervals when data were gathered, excluding the pauses for reissuing scans.

Coverage.Sensitivity: This can be seen an additional refinement to Coverage.Support, providing a response function of the instrument in the given axis that goes beyond a Boolean response. This is especially useful for cases with a large number of small interruptions in the data, there is need for data resampling, or for which filters imperfections have to be accounted for. Resolution: Instances of this class are used to describe resolution in each axis. For instance, Resolution.Spatial would give us the Half-Power Beam Width.

SamplingPrecision: For a sampled axis —such as the Spectral axis, in the case of spectroscopic data—, an instance of this class will hold sampling precision, described as a pixel scale.

Accuracy: All of the aforementioned classes should have an accompanying class in order to describe errors and data quality for each axis. In the case of archives without data mining capabilities, we only have to provide Accuracy instances related to the Coverage classes.

It has to be noted that, for some observational sets, there is no meaningful definition of an error. Instead, one can define statistical error estimations valid for a certain period, and apply those definitions for observations being performed during said period. That would be the case, for instance, of errors in pointing or focus, where one cannot specify the error for a single observation, but pointing or focus error averages.

AxisFrame.Spatial and Coverage.Spatial

In this subsection, we describe the classes that configure the description of the spatial axis (AxisFrame.Spatial), and the characterisation of the coverage in such axis (Coverage.Spatial). Figure 6.2 shows the classes and their relationships.

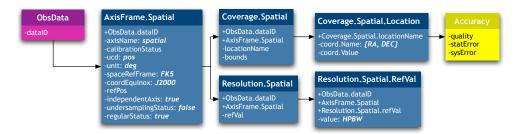


Figure 6.2: Spatial axis frame and coverage metadata; redundant classes for the RADAMS are not shown.

AxisFrame.Spatial: This instance describes the main properties of the Spatial axis, such as calibration status, units (normally, degrees), reference frame, epoch, spatial sampling type and sampling status, etc.

For the DSS-63 antenna, the spatial axis is never sampled (because we are not storing maps at this stage), and each scan only needs two pairs of coordinates (plus pointing accuracy) to describe the antenna-pointing pattern.

As the coordinate space is in this case bi-dimensional, and properties for one of the coordinates do not have to be equal for the other, we should either choose between a vector approach, using two dimensional arrays of coordinates, or splitting the Spatial classes in different subclasses. We choose the first approach, and thus all AxisFrame.Spatial attributes will have a spaceseparated array of values (just two values separated with an space, for a bidimensional coordinate space).

If the archive were to be exploited in the third dimension, an additional distance and/or redshift coordinate should be entered. As we have seen, extension in the spatial axis is straightforward. A second option would add an additional axis to the Characterisation data model.

Coverage.Spatial.Location: For the DSS-63 antenna, the stored values for this class correspond to the antenna pointing coordinates.

Coverage.Spatial.Bounds: Bounds for spatial data would be the maximum and minimum for spatial coordinates (normally, right ascension and declination) when observing the source. For single point spectroscopic data, this class is redundant, as the antenna does not describe any path across the source.

Coverage.Spatial.Support: Typically, the stored values for this class should be equal to those of Coverage.Spatial.Bounds, except when invalid data within Coverage.Spatial.Bounds might exist, or in order to describe an elaborate scanning path on the source. This class would describe such a path.

Coverage.Spatial.Sensitivity: In the case of the DSS-63 antenna, Spatial.Sensitivity would be defined as the beam pattern of the antenna. Another possibility is the combination of beam pattern with receiver efficiency at different elevations.

Bear in mind that Spatial.Support for radio astronomical measurements is either a point, for spectroscopic calibrations, or a set of line paths for bolometric and/or continuum mappings. Spatial support will be defined as the set of line paths, and can be described by an array of start/end values for 2D sky coordinates.

For spectroscopic data, this class is redundant, as mentioned above.

AxisFrame.Temporal and Coverage.Temporal

In this subsection, we describe the classes that configure the description of the temporal axis (AxisFrame.Temporal), and the characterisation of the coverage in such axis (Coverage.Temporal). Figure 6.3 shows the classes and their relationships.

AxisFrame.Temporal: Describes the main properties of the time axis, such as whether the axis is calibrated or not (calibrationStatus), units, reference system (refPos), time-scale (timescale), whether the axis is sampled or not (undersamplingStatus), and if sampled, whether sampling is regular or not (samplingStatus). In the case of spectroscopic data, time is not sampled.

We will use the independentAxis attribute to signal axis dependency as true for continuum observations.

· · · ·	FITS		
Attribute	Keyword	UCD	Description
axisName	assign	meta.id;	Axis name.
		meta.main	
calibrationStatus	assign	obs.calib;	Calibration status from a con
		meta.code	trolled vocabulary: uncal
			ibrated, calibrated, rela
			$\texttt{tive}^a, \texttt{normalized}^b.$
ucd	assign	meta.ucd;	Main UCD for the axis.
		meta.main	
unit	assign	meta.unit;	Main units for the axis.
		meta.main	
refPos	assign	<pre>meta.ref;</pre>	Identification of the origin po
		meta.id	sition within the spaceRef
			Frame from a controlled vocab
			ulary; See Space-Time Coordi
			nate Data Model [13].
spaceRefFrame	WCSNAME	<pre>pos.frame;</pre>	Identification of the reference
	or	meta.id	system from a controlled vo
	RADESYS		cabulary; see Space-Time Co
			ordinate Data Model [13]: FK4
			FK5, ELLIPTIC
coordEquinox	assign	pos;	Equinox (only if needed).
		time.equinox	
epoch	assign	pos;	Epoch (only if needed).
		time.epoch	
independentAxis	assign	pos;	Boolean flag indicatin
		obs.param;	whether the axis is indepen
		meta.code	dent of the rest or not.
undersamplingStatus	assign	pos;	Boolean flag indicatin
		obs.param;	whether the data are sample
		meta.code	in this axis or not.
regularStatus	assign	pos;	Boolean flag used in cas
		obs.param;	of sampled data, indicatin
		meta.code	whether sampling is regular o
			not.

Table 6.1: AxisFrame.Spatial metadata.

^{*a*}**relative** refers to calibrated data, except for an additive or multiplicative constant. ^{*b*}**normalized** refers to dimensionless quantities, such as those resulting from the division between two commensurable datasets.

Attribute	FITS Keyword	UCD	Description
coord.name	assign	pos; meta.name	Name of the coordinate whose value goes in coord.value.
coord.value	assign	pos; meta.number	Numeric value for the coordinate co- ord.name.

 Table 6.2:
 Coverage.Spatial.Location metadata.

Table 6.3: Coverage.Spatial.Bounds metadata.

Attribute	FITS Keyword	UCD	Description
coord.name	assign	pos;	Name of the coordinate whose value
		meta.name	goes in coord.value.
coord.maxValue	assign	pos;	Minimum numeric value for the coor-
		<pre>meta.number;</pre>	dinate coord.name.
		stat.max	
coord.minValue	assign	pos;	Maximum numeric value for the coor-
		<pre>meta.number;</pre>	dinate coord.name.
		stat.min	

Table 6.4: Coverage. Spatial.
Support metadata.

Attribute	FITS Keyword	UCD	Description
code	assign	pos; meta.name	Code for the interval where we will be defining support; an array of [co- ord.code, startValue, endValue] can be used to define spatial support.
startValue	assign	pos; meta.number	2D array of start values.
endValue	assign	pos; meta.number	2D array of end values.

32 CHAPTER 6. DETAILED DESCRIPTION OF RADAMS CLASSES

Attribute	FITS Keyword	UCD	Description
theta[n]	assign	pos.posAng	Theta angle for the nth beam pattern
			normalised response.
phi[n]	assign	pos.posAng	Phi angle for the nth beam pattern
			normalised response.
response[n]	assign	arith.factor	Nth normalised beam pattern re-
			sponse.

Table 6.5: Coverage. Spatial.Sensitivity metadata^a.

 $^a\mathrm{Symmetrical}$ beam patterns could be defined just in one dimension, with pairs of [theta, response] values.

 Table 6.6:
 Coverage.Spatial.Resolution
 metadata.

	FITS		
Attribute	Keyword	UCD	Description
referenceValue	assign	pos.angResolution	Resolution reference value.

Table 6.7: Accuracy.Spatial metadata.

	FITS		
Attribute	Keyword	UCD	Description
quality	assign	pos;	Quality code for spatial coordinates;
		meta.code.qual	invalid data are flagged with a quality code of 1.
sysError	assign	pos;	Systematic error for spatial coordi-
		<pre>stat.error.sys</pre>	nates.
sysErrorHigh	assign	pos;	Maximum systematic error for spatial
		<pre>stat.error.sys;</pre>	coordinates.
		stat.max	
sysErrorLow	assign	pos;	Minimum systematic error for spatial
		<pre>stat.error.sys;</pre>	coordinates.
		<pre>stat.min</pre>	
statError	assign	pos;	Statistical error for spatial coordi-
		stat.error	nates.
statErrorHigh	assign	pos;	Maximum statistical error for spatial
		<pre>stat.error;</pre>	coordinates.
		stat.max	
statErrorLow	assign	pos;	Minimum statistical error for spatial
		<pre>stat.error;</pre>	coordinates.
		<pre>stat.min</pre>	

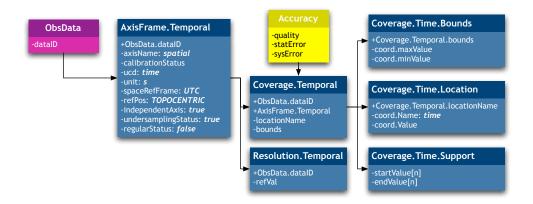


Figure 6.3: Temporal axis and related coverage metadata.

Coverage. Temporal: Collects all the temporal characterisation of the observational data.

Coverage.Temporal.Location: Coverage.Location holds the most representative value for the axis. In the temporal axis, it holds the time of observation, either the starting time or the time at the middle of the observation.

Coverage.Temporal.Bounds: Coverage.Bounds holds the maximum and minimum values for the axis. In the temporal axis, it holds the starting and ending time for the observation.

Coverage.Temporal.Support: Coverage.Support holds the parts of the axis holding valid observational data. In the temporal axis, this is the part of time devoted to flux collection, but just the observation exposition time can be provided.

Coverage.Temporal.Sensitivity: In cases where an instrument had a sensor ramp-up, where some time is needed before 100% sensitivity is achieved, this class would describe such a ramp, and would allow for convenient scaling of data taken during those intervals. If that were never the case, Temporal.Sensitivity would be equal to Temporal.Support.

Resolution.Temporal: Holds the temporal resolution of the data. Most of the time, telescope control system time-stamps are expressed in UTC or LST in seconds, so temporal resolution would be of the order of a second, but normally the instrument could deliver better temporal resolution. We should address this after the initial setup.

We will not develop the SamplingPrecision.Temporal class, because we are not sampling the temporal axis.

Accuracy.Temporal: This class has to collect systematic and statistical errors associated with the temporal coordinates of the data. The Quality attribute gives additional information about the temporal data quality. We could use time re-syncing statistics in order to evaluate accuracy.

	FITS		
Attribute	Keyword	UCD	Description
axisName	assign	meta.id;	Axis name.
		meta.main	
calibrationStatus	assign	time;	Calibration status from a con-
		obs.calib;	trolled vocabulary: uncal-
		meta.code	ibrated, calibrated, rela-
			$\texttt{tive}^a \ , \texttt{normalized}^b$
ucd	assign	time;	Main UCD for the axis.
		meta.ucd;	
		meta.main	
unit	assign	time;	Main units for the axis.
		meta.unit;	
		meta.main	
refPos	assign	time;	Identification of the origin po-
		<pre>meta.ref;</pre>	sition from a controlled vocab-
		meta.id	ulary.
independentAxis	assign	time;	Boolean flag indicating
		obs.param;	whether the axis is indepen-
		meta.code	dent of the rest or not.
undersamplingStatus	assign	time;	Boolean flag indicating
		obs.param;	whether the data are sampled
		meta.code	in this axis or not.
regularStatus	assign	time;	Boolean flag used in case
	-	obs.param;	of sampled data, indicating
		meta.code	whether sampling is regular or
			not.
numBins	assign	time;	Number of time samples.
	-	meta.number	_

Table 6.8: AxisFrame.Temporal metadata.

^arelative refers to calibrated data, except for an additive or multiplicative constant. ^bnormalized refers to dimensionless quantities, such as those resulting from the division between two commensurable datasets.

Table 6.9:	Coverage. Temporal. Location metadata.
10010 0.01	coverage. remperandocation metadata.

	FITS		
Attribute	Keyword	UCD	Description
coord.name	assign	time;	Name of the coordinate whose value
		meta.name	goes in coord.value; in this case, time
			with respect to refPos.
coord.value	assign	time;	Numeric value for the time location;
		meta.number	usually, a MJD or decimal UTC time.

	FITS		
Attribute	Keyword	UCD	Description
coord.name	assign	time;	Name of the coordinate whose maxi-
		meta.name	mum and minimum values go in co-
			ord.maxValue and coord.minValue.
coord.maxValue	assign	time;	Minimum numeric value for the obser-
		<pre>meta.number;</pre>	vation time.
		stat.max	
coord.minValue	assign	time;	Maximum numeric value for the ob-
		<pre>meta.number;</pre>	servation time.
		<pre>stat.min</pre>	

Table 6.10: Coverage. Temporal. Bounds metadata^a.

^aThe UCDs for coord.maxValue and coord.minValue could have been, respectively, time.obs.start and time.obs.end, but we think the proposed UCDs are more consistent with the rest of the axes. Besides, we can defer the election, by using time.obs.start and time.obs.end at the beginning of the UCD, and appending meta.number; stat.max or meta.number; stat.min as additional qualifiers.

	Table 6.11:	Coverage. Temporal. Support metadata ^{<i>a</i>} .
--	-------------	--

	FITS		
Attribute	Keyword	UCD	Description
code	assign	time; meta.code	Code for the time interval where we will be defining support; an array of [coord.code, startValue, endValue] can be used to define temporal sup- port.
startValue	assign	time.expo.start	Time interval start value.
endValue	assign	<pre>time.expo.end</pre>	2DTime interval end value.

^aCoverage.Temporal.Support could be alternatively defined by using just one value, the exposure time, with UCD time.expo. The chosen definition, apart from being more consistent across axes, allows for discontinuous temporal support.

Table 6.12: Coverage. Temporal. Resolution metadata.

Attribute	FITS Keyword	UCD	Description
referenceValue	assign	time; meta.number; meta.ref	Resolution reference value.

	FITS		
Attribute	Keyword	UCD	Description
quality	assign	time;	Quality code for time coordinates; in-
		meta.code.qual	valid data are flagged with a quality
			code of 1.
sysError	assign	time;	Systematic error for time coordinates.
		<pre>stat.error.sys</pre>	
sysErrorHigh	assign	time;	Maximum systematic error for time
		<pre>stat.error.sys;</pre>	coordinates.
		stat.max	
sysErrorLow	assign	time;	Minimum systematic error for time
		<pre>stat.error.sys;</pre>	coordinates.
		<pre>stat.min</pre>	
statError	assign	time;	Statistical error for time coordinates.
		stat.error	
statErrorHigh	assign	time;	Maximum statistical error for time co-
		<pre>stat.error;</pre>	ordinates.
		stat.max	
statErrorLow	assign	time;	Minimum statistical error for time co-
		<pre>stat.error;</pre>	ordinates.
		<pre>stat.min</pre>	

Table 6.13: Accuracy. Temporal metadata.

AxisFrame.Spectral and Coverage.Spectral

In this subsection, we describe the classes that configure the description of the spectral axis (AxisFrame.Spectral), and the characterisation of the coverage in such axis (Coverage.Spectral). Figure 6.4 shows the classes and their relationships.

AxisFrame.Spectral: Describes the main properties of the time axis, such as whether the axis is calibrated or not (calibrationStatus), units, reference system (RefPos), or the mathematical definition used for the Doppler effect (DopplerDef), for velocity calibrated spectra. It is clear that spectral information is indeed sampled, and the number of channels will be coded by numBins.

Coverage.Spectral: Collects the different spectral properties of the data.

Coverage.Spectral.Location: Coverage.Location holds the most representative value for the axis. In the spectral axis, and being a sampled axis, we will use the frequency for the central sample of the spectrum.

Coverage.Spectral.Bounds: Holds the spectral limits of the data, that is, the starting and ending frequency for the spectrum.

Coverage.Spectral.Support: Holds the spectral support for the data. We could choose to register just the actual bandwidth, or better, to set an array of different intervals where the instrument is sensitive. Better yet, we could register a sensitivity profile for each frequency. We will initially choose the array of intervals as the way to express the spectral support.

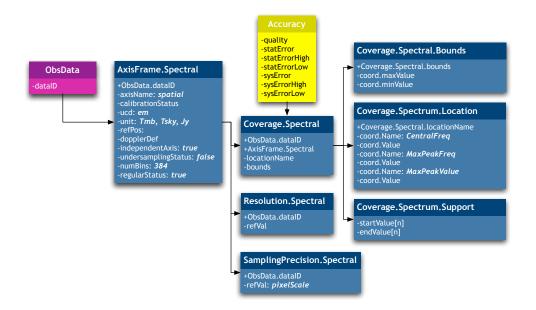


Figure 6.4: Spectral axis and related coverage metadata.

Coverage.Spectral.Sensitivity: Holds the sensitivity profile for the instrument in frequency; in other words, this would be equal to the detailed frequency response of the whole antenna-receiver-backend set.

Resolution.Spectral: Holds the spectral resolution information for the data. For filter banks, it is the filter bandwidth for each filter, or an average filter bandwidth. In the case of spectra obtained from the Fourier transform of the autocorrelation function, it is equal to the bandwidth divided by the number of channels.

SamplingPrecision.Spectral: In the case of the Robledo antenna, this value should be equal to the value stored at Resolution.Spectral. For other instruments, SamplingPrecision.Spectral defines the frequency steps from one frequency bin to the next.

Accuracy.Spectral: Errors associated with the spectrum. In the same way as the support could change along the spectrum, because of different sensitivities, we might need to characterise the accuracy along the spectrum. At least in the case of Robledo, the SNR is global, and considered equal for all frequencies. If not, a first approximation can be using an average SNR, and maximum and minimum SNR.

AxisFrame.Observable and Coverage.Observable

The Observable axis is, finally, the one directly related to the stored data, instead of data headers. In this subsection, we describe the classes that con-

Attribute	FITS Keyword	UCD	Description
axisName	assign	meta.id;	Axis name (frequency or
		meta.main	velocity).
calibrationStatus	assign	em.radio;	Calibration status from a
		obs.calib;	controlled vocabulary: un-
		meta.code	calibrated, calibrated,
			$\texttt{relative}^a \ , \texttt{normalized}^b.$
ucd	assign	em.radio;	Main UCD for the axis.
		<pre>meta.ucd;</pre>	
		meta.main	
unit	TUNITn	em.radio;	Main units for the axis.
		<pre>meta.unit;</pre>	
		meta.main	
refPos	assign	em.radio;	Identification of the origin
		<pre>meta.ref; meta.id</pre>	position from a controlled vocabulary.
dopplerDef	VELDEF	<pre>spect.dopplerParam;</pre>	Code defining the type
		meta.code	of Doppler shift definition
			used for frequency and/or
			velocity calibration; from a
			controlled vocabulary: op-
			tical, radio, relativis-
			tic.
independentAxis	assign	em.radio;	Boolean flag indicating
		obs.param;	whether the axis is in-
		meta.code	dependent of the rest or
			not.
undersamplingStatus	assign	em.radio;	Boolean flag indicating
		obs.param;	whether the data are
		meta.code	sampled in this axis or not.
regularStatus	assign	em.radio;	Boolean flag used in case
		obs.param;	of sampled data, indicating
		meta.code	whether sampling is regular
			or not.
numBins	assign	em.radio;	Number of spectral sam-
		meta.number	ples.

Table 6.14: AxisFrame.Spectral metadata.

^{*a*}**relative** refers to calibrated data, except for an additive or multiplicative constant ^{*b*}**normalized** refers to dimensionless quantities, such as those resulting from the division between two commensurable datasets.

	FITS		
Attribute	Keyword	UCD	Description
coord.name	assign	em.radio;	Name of the coordinate whose value
		meta.name	goes in coord.value; in this case,
			frequency with respect to refPos.
coord.value	OBSFREQ	em.radio;	Numeric value for the central fre-
		em.freq;	quency location.
		<pre>stat.mean</pre>	

Table 6.15: Coverage.Spectral.Location metadata.

 Table 6.16:
 Coverage.Spectral.Bounds
 metadata.

	FITS		
Attribute	Keyword	UCD	Description
coord.name	assign	em.radio;	Name of the coordinate whose maxi-
		meta.name	mum and minimum values go in co-
			ord.maxValue and coord.minValue.
coord.maxValue	assign	em.freq;	Minimum frequency value.
		<pre>meta.number;</pre>	
		stat.max	
coord.minValue	assign	em.freq;	Maximum frequency value.
		<pre>meta.number;</pre>	
		<pre>stat.min</pre>	

Table 6.17: Coverage.Spectral.Support metadata.

	FITS		
Attribute	Keyword	UCD	Description
code	assign	em.radio;	Code for the interval where we will
		meta.record	be defining support; an array of [co-
			ord.code, startValue, endValue] can
			be used to define spectral support.
startValue	assign	em.freq;	Frequency interval start value.
		stat.min	
endValue	assign	em.freq;	Frequency interval end value.
		stat.max	

40 CHAPTER 6. DETAILED DESCRIPTION OF RADAMS CLASSES

	FITS		
Attribute	Keyword	UCD	Description
numChannels	assign	em.radio;	Number of channels of the frequency
		meta.number	response of the filter that describes
			spectral sensitivity.
channel[n]	assign	em.freq	Frequency for the nth channel of the
			filter that describes spectral sensitiv-
			ity.
response[n]	assign	arith.factor	Filter response for the nth channel.

Table 6.18: Coverage.Spectral.Sensitivity metadata.

Table 6.19: Coverage.Spectral.Resolution metadata^a.

meta.number lution is provided. referenceValue[n] FREQRES em.freq; Resolution reference value for		FITS		
meta.number lution is provided. referenceValue[n] FREQRES em.freq; Resolution reference value for	Attribute	Keyword	UCD	Description
referenceValue[n] FREQRES em.freq; Resolution reference value for	numChannels	assign	em.radio;	Number of channels for which reso-
			meta.number	lution is provided.
	referenceValue[n]	FREQRES	em.freq;	Resolution reference value for the
spect.resolution nth channel.			<pre>spect.resolution</pre>	nth channel.

^{*a*}When the Sensitivity class is provided, Resolution.numChannels has to be equal to Sensitivity.numChannels, and each channel can support different resolutions. When the Sensitivity class is not provided, Resolution.numChannels has to be set to 1, and Resolution.referenceValue represents the average channel resolution.

Attribute	FITS Keyword	UCD	Description
numChannels	assign	em.radio; meta.number	Number of frequencies that we are sampling.
referenceValue[n]	FREQRES	<pre>em.freq; spect.resolution</pre>	Resolution reference value for the nth channel.

Table 6.20: SamplingPrecision.Spectral metadata^a.

^aWhen SamplingPrecision.numChannels is set to 0, the number of spectral channels is given by AxisFrame.Spectral.numBins, and SamplingPrecision provides the sampling step in a single referenceValue. Otherwise, SamplingPrecision.Spectral.numBins must be equal to AxisFrame.Spectral.numBins, and when the Sensitivity class is provided, SamplingPrecision.Spectral.numBins must be equal to Spectral.Sensitivity.numChannels, and Spectral.SamplingPrecision.referenceValue[n] equal to Spectral.Sensitivity.channel[n].

	FITS		
Attribute	Keyword	UCD	Description
quality	assign	em.freq;	Quality code for frequency coordi-
		meta.code.qual	nates; invalid data are flagged with a
			quality code of 1.
sysError	assign	em.freq;	Systematic error for frequency coordi-
		<pre>stat.error.sys</pre>	nates.
sysErrorHigh	assign	em.freq;	Maximum systematic error for fre-
		<pre>stat.error.sys;</pre>	quency coordinates.
		stat.max	
sysErrorLow	assign	em.freq;	Minimum systematic error for fre-
		<pre>stat.error.sys;</pre>	quency coordinates.
		<pre>stat.min</pre>	
statError	assign	em.freq;	Statistical error for frequency coordi-
		stat.error	nates.
statErrorHigh	assign	em.freq;	Maximum statistical error for fre-
		<pre>stat.error;</pre>	quency coordinates.
		stat.max	
statErrorLow	assign	em.freq;	Minimum statistical error for fre-
		<pre>stat.error;</pre>	quency coordinates.
		<pre>stat.min</pre>	

Table 6.21: Accuracy.Spectral metadata.

figure the description of the observable axis (AxisFrame.Observable), and the characterisation of the coverage in such axis (Coverage.Observable). Figure 6.5 shows the classes and their relationships.

AxisFrame.Observable: Describes the main properties of the observable (be it flux, polarization state, or any other), such as whether the axis is calibrated or not (calibrationStatus), applicable units, etcetera. Flux information is sampled at the digital conversion stage, and the number of available different flux levels is codified in numBins. By specifying units in this class, we define whether the observable data are provided in flux units, or in brightness or antenna temperature. Additional information, such as the polarization, can be accommodated in the same axis in the same way we extended the Spatial axis for 2D or 3D coordinates, or by means of (an) additional observable (axis) axes.

Coverage.Observable: Collects all information that directly characterises observable data.

Coverage.Observable.Location: Coverage.Location instances hold the most representative value for that axis. In this case, the average spectrum flux is not significant, specially if we have a strong line detection. Hence, for this axis we will take the maximum flux as Observable.Location.

Coverage.Observable.Bounds: Coverage.Bounds instances record the maximum and minimum values for the axis. In the Observable axis, it records minimum and maximum flux for the spectrum.

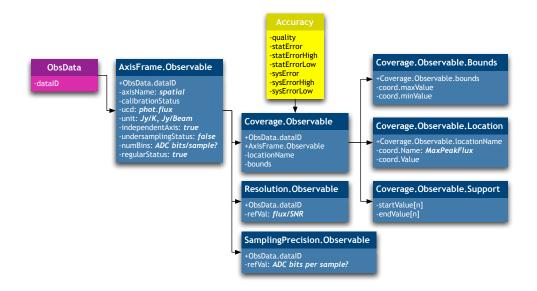


Figure 6.5: Observable axis and related coverage metadata.

Coverage.Observable.Support: This instance should give us the intervals of flux observed in the spectrum, and we could choose between making it equal to Coverage.Observable.Bounds, or defining an interval that holds a given dispersion from the Coverage.Observable.Location value. We will initially consider Coverage.Observable.Support as equal to Coverage.Observable.Bounds.

Coverage.Observable.Sensitivity: This would store the change rate in the observable axis for a given observed flux.

Resolution.Observable: We keep the flux resolution for the data, defined as mean flux divided by the SNR, or mean noise.

SamplingPrecision.Observable: Instances of this class indicate the sampling precision. For the observable (flux) axis, this should be equal to the Analog to Digital Converter (ADC) resolution, or worse if more processing is involved, and should be tabulated by instrument setup. We might also consider this axis as non-sampled, as Resolution.Observable is usually well above ADC resolution, and drop this class.

Accuracy.Observable: Collected flux associated errors. Errors on the observable axis can be dependent on received flux, and so we should give an average value, and either variance or maximum and minimum accuracy on the observable axis.

If the observable variable were a different one, the main difference would correspond to the change of UCDs. In the particular case of polarization, phot.flux would be replaced by phys.polarization. Other changes would include an additional characterization of the parameters been actually returned by the instrument, and their relationship with Stokes parameters. Table 6.22: AxisFrame.Observable metadata (when the observed variable is flux).

	FITS		
Attribute	Keyword	UCD	Description
axisName	assign	meta.id;	Axis name.
		meta.main	
calibrationStatus	assign	em.radio;	Calibration status from a con-
		obs.calib;	trolled vocabulary: uncal-
		meta.code	ibrated, calibrated, rela-
			$\texttt{tive}^a \ , \texttt{normalized}^b.$
ucd	assign	<pre>phot.flux;</pre>	Main UCD for the axis.
		meta.ucd;	
		meta.main	
unit	TUNITn	<pre>phot.flux;</pre>	Main units for the axis.
		meta.unit;	
		meta.main	
refPos	assign	<pre>phot.flux;</pre>	Identification of the origin po-
		<pre>meta.ref;</pre>	sition from a controlled vocab-
		meta.id	ulary.
independentAxis	assign	<pre>phot.flux;</pre>	Boolean flag indicating
		obs.param;	whether the axis is indepen-
		meta.code	dent of the rest or not.
undersamplingStatus	assign	<pre>phot.flux;</pre>	Boolean flag indicating
		obs.param;	whether the data are sampled
		meta.code	in this axis or not.
regularStatus	assign	<pre>phot.flux;</pre>	Boolean flag used in case
		obs.param;	of sampled data, indicating
		meta.code	whether sampling is regular or
			not.
numBins	assign	<pre>phot.flux;</pre>	Number of spectral samples (if
		meta.number	the axis is sampled)

^arelative refers to calibrated data, except for an additive or multiplicative constant ^bnormalized refers to dimensionless quantities, such as those resulting from the division between two commensurable datasets.

Table 6.23: Coverage.Observable.Location metadata (when the observed variable is flux).

	FITS		
Attribute	Keyword	UCD	Description
coord.name	assign	<pre>phot.flux; meta.name</pre>	Name of the coordinate whose value goes in coord.value; in this case, flux with respect to refPos.
coord.value	assign	<pre>phot.flux; stat.max</pre>	Numeric value for the maximum flux (flux location).

44 CHAPTER 6. DETAILED DESCRIPTION OF RADAMS CLASSES

Attribute	FITS Keyword	UCD	Description
coord.name	assign	phot.flux; meta.name	Name of the coordinate whose maxi- mum and minimum values go in co- ord.maxValue and coord.minValue.
coord.maxValue	assign	phot.flux; stat.max	Minimum flux value.
coord.minValue	assign	<pre>phot.flux; stat.min</pre>	Maximum flux value.

 Table 6.24:
 Coverage.Observable.Bounds
 metadata.

Table 6.25: Coverage.Observable.Support metadata (when the observed variable is flux).

Attribute	FITS Keyword	UCD	Description
code	assign	em.radio; meta.record	Code for the interval where we will be defining support; an array of [co- ord.code, startValue, endValue] can be used to define spectral support.
startValue	assign	em.freq; stat.min	Frequency interval start value.
endValue	assign	em.freq; stat.max	Frequency interval end value.

Table 6.26: Coverage.Observable.Resolution metadata.

Attribute	FITS Keyword	UCD	Description
referenceValue	assign	<pre>phot.flux; stat.snr; arith.ratio</pre>	Flux resolution (Flux/SNR), as $\frac{\text{Flux}}{\text{SNR}} = \text{flux} \times \frac{\text{fluxNoise}}{\text{fluxSignal}}$
			. Equivalent to average noise.

Table 6.27: SamplingPrecision.Observable metadata^a.

Attribute	FITS Keyword	UCD	Description
referenceValue	assign	<pre>phot.flux; instr.precision</pre>	Flux sampling precision; maybe expressed as the number of bits per sample.

 $^a \rm Somewhat$ redundant, given the presence of Axis Frame.Observable.numBins. However, we include it for completeness.

	FITS		
Attribute	Keyword	UCD	Description
quality	assign	<pre>phot.flux;</pre>	Quality code for the observed flux; in-
		meta.code.qual	valid data are flagged with a quality
			code of 1.
sysError	assign	<pre>phot.flux;</pre>	Systematic error for the observed flux.
		<pre>stat.error.sys</pre>	
sysErrorHigh	assign	<pre>phot.flux;</pre>	Maximum systematic error for the ob-
		<pre>stat.error.sys;</pre>	served flux.
		stat.max	
sysErrorLow	assign	<pre>phot.flux;</pre>	Minimum systematic error for the ob-
		<pre>stat.error.sys;</pre>	served flux.
		<pre>stat.min</pre>	
statError	assign	<pre>phot.flux;</pre>	Statistical error for the observed flux.
		stat.error	
statErrorHigh	assign	<pre>phot.flux;</pre>	Maximum statistical error for the ob-
		<pre>stat.error;</pre>	served flux.
		stat.max	
statErrorLow	assign	<pre>phot.flux;</pre>	Minimum statistical error for the ob-
		<pre>stat.error;</pre>	served flux.
		<pre>stat.min</pre>	

Table 6.28: Accuracy. Observable metadata.

6.3 Provenance

This data model provides support for the description of the data generation model for a particular observation. This includes not only the instrumental configuration, but also a specification of the type of processes/pipelines the data have been through, and of the weather conditions. We will subdivide this class in several sub-data-models, for easier understanding of the Provenance data model.

Provenance.Instrument

Figure 6.6 shows the classes associated with the instrumental configuration for the observation.

InstrumentConf: Each observation is associated to a particular instrumental configuration, which results from the particular configuration of the instrument + antenna + feed system. InstrumentConf instances group those settings.

Instrument: Instances of this class specify the instrument configuration, as used for the observation.

Instrument.Location: This is an instance of a Location class, used for specifying the location for the instrument.

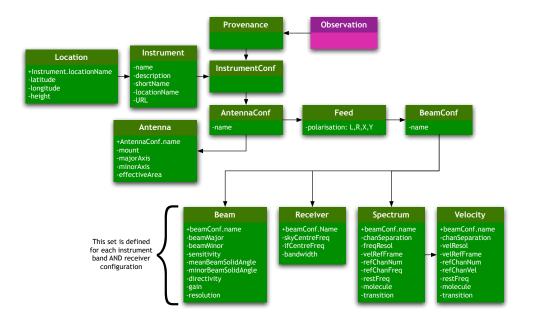


Figure 6.6: Provenance.Instrument data model.

AntennaConf: In the same way InstrumentConf allows the grouping for all the instrumental settings, AntennaConf instances group together Antenna and Feed info (regarding polarization), plus BeamConf —another aggregator or class—. Several AntennaConf instances can provide information for different antennas and feeds. Each possible antenna configuration will be labelled by a name.

Antenna: Instances of this class specify the general properties for each given antenna. We will also use these instances to specify both the type of scan and the type of switching being performed on the source from a controlled vocabulary.

Feed: Instances of this class —one or more per AntennaConf— specify each of the feed horns used for the observation, and their corresponding polarization from a controlled vocabulary: L, R, X, Y.

BeamConf: This class is used to group antennas, feeds and beams. The relationship between BeamConf and Feed instances allows the specification of different beams, formed by the combination of different feeds. In a single-dish single-feed configuration, there is only one beam associated to a given receiver. We can also use this association for a single-dish, multiple-feed configuration where each feed goes to a different receiver.

Beam: Metadata for this class specifies the actual beam for the telescope, associated to a given spectral band.

Receiver: This metadata are used to describe the most relevant properties

	FITS		
Attribute	Keyword	UCD	Description
name	INSTRUME	meta.id;	Instrument name.
		instr;	
		meta.main	
description	assign	<pre>meta.note;</pre>	Instrument description.
		meta.main	
shortName	assign	instr;	Short name for the instrument.
		meta.id	
locationName	assign	<pre>instr; pos;</pre>	Localization of the instrument.
		meta.id	
URL	COMMENT	instr;	URL for the instrument (website for
		meta.ref.url	the instrument, documentation, or
			any other type of instrument descrip-
			tion).
			/

Table 6.29: Provenance instrument metadata.

Table 6.30: Instrument location metadata.

	FITS		
Attribute	Keyword	UCD	Description
locationName	assign	instr; pos; meta.id	Name of a particular instrument
			location.
latitude	SITELAT	instr;	Instrument location latitude.
		pos.earth.lat	
longitude	SITELONG	instr;	Instrument location longitude.
		pos.earth.lon	
altitude	SITEELEV	instr;	Instrument location altitude.
		pos.earth.altitude	

of the receiver, such as receiver type, intermediate frequency —in the case of heterodyne stages—, etc.

Spectrum: In case of spectroscopic observations, the spectral analyzer that has been used is specified by instances of this class. There will be one instance of this class for each of the different bands of the spectrum.

Velocities: This class mirrors the Spectrum class, and is preferred for those cases where we used velocities, instead of frequency.

Provenance.AmbientConditions

The Provenance. Ambient Conditions subclass deals with all the metadata needed to specify weather conditions, air mass, opacity, etc. Figure 6.7 shows the corresponding classes and relationships.

AmbientConditions: Holds all metadata related with weather conditions for the observation, such as humidity, wind speed, opacity at zenith, etc.

	FITS		
Attribute	Keyword	UCD	Description
name	assign	<pre>instr.telescope; meta.title; meta.id</pre>	Name of the particular antenna.
scanType	SCANTYPE	instr.setup; meta.code	Type of scan being performed by this antenna, from a limited vo- cabulary (partially suggested by the RDM [6]): cal, cross, dop- plerTrack, dwell, focus, mo- saic, onOff, onTheFly, point, raster, skyDip, track.
switchType	SWITCHMOD	instr.setup; meta.code	Type of scan being performed by this antenna, from a limited vocabulary (partially suggested by the RDM [6]): beamSwitch, frequencySwitch, holography, positionSwitch, pulsar, wob- blerSwitch.
mount	assign	meta.note	Mount type for the tele- scope from a limited vocabu- lary: azimuthal, equatorial, altazimuthal, dobson, german equatorial.
majorAxis	assign	instr; phys.size.smajAxis	Major axis dimensions.
minorAxis	assign	inst; phys.size.sminAxis	Minor axis dimensions.
effectiveArea	assign	instr; phys.area	Effective instrument area.

Table 6.31: Antenna configuration metadata.

Table 6.32: Feed configuration metadata.

	FITS		
Attribute	Keyword	UCD	Description
polarization	STOKES	<pre>pos.posAng; phys.polarization; meta.code</pre>	Polarization value from a con- trolled vocabulary: $L, R, X, Y, I,$ Q, U, V.

	FITS		
Attribute	Keyword	UCD	Description
beamMajor	BMAJ/HPBW	instr.beam;	Major axis HPBW of
		phys.size.smajAxis	the main lobe of the
			beam.
beamMinor	BMIN/HPBW	instr.beam;	Minor axis HPBW of
		phys.size.sminAxis	the main lobe of the
			beam.
sensitivity	BEAMEFF	<pre>instr.beam;</pre>	Beam average sensitiv-
		instr.sensitivity	ity.
${\it mainBeamSolidAngle}$	assign	<pre>instr.beam;</pre>	Main lobe's beam solid
		<pre>pos.posAng;</pre>	angle.
		meta.main	
${\it total} Beam Solid Angle$	assign	<pre>instr.beam;</pre>	Total beam solid an-
		<pre>pos.posAng; stat.max</pre>	gle, including secondary
			lobes.
directivity	assign	<pre>instr.beam;</pre>	Directivity percentage.
		<pre>instr.setup;</pre>	
		arith.factor	
gain	ANTGAIN	<pre>instr.beam;</pre>	Beam gain ^{a} .
		<pre>instr.setup;</pre>	
		arith.factor	

Table 6.33: Beam configuration metadata.

^aWe still have to clarify if the gain attribute is related to the directivity concept or not, and if it is related with the receiving stages or not.

A 13	FITS	LICE	
Attribute	Keyword	UCD	Description
bandNumber	assing	<pre>instr.setup;</pre>	Band number.
		em.radio;	
		meta.code	
type	BACKEND	<pre>instr.setup;</pre>	Receiver type (Heterodyne, Bolo-
		meta.note	meter).
skyCentreFreq	assign	<pre>src; em.radio;</pre>	Antenna tuning frequency.
		em.freq	
IFCentreFreq	assign	<pre>instr.setup;</pre>	Heterodyne receiver intermediate fre-
		em.freq	quency (or list of frequencies).
bandwidth	BANDWID	instr.bandwidth	Filter-bank total bandwidth.

Table 6.34: Receiver metadata for a given band.

Table 6.35: Spectrum metadata for each spectral band. It might be necessary to change the MOLECULE and TRANSITI keywords by LINE, for better CLASS compatibility.

	FITS		
Attribute	Keyword	UCD	Description
bandNumber	assing	instr.setup;	Band number.
		em.radio; meta.code	
numChannels	NAXISn	<pre>spect; em.freq;</pre>	Number of spectral channels in
		meta.number	the specifiend band.
$chanSeparation^{a}$	assign	spect; em.freq	Mean channel separation (in
			frequency units), or channel
			frequency separation array.
freqResolution	FREQRES	<pre>spect.resolution;</pre>	Frequency resolution.
		em.freq	
refChanNum	assign	<pre>spect; em.freq;</pre>	Spectral reference channel.
		<pre>meta.number;</pre>	
		meta.ref	
refChanFreq	OBSFREQ	<pre>spect; em.freq;</pre>	Spectral reference frequency
		<pre>meta.code; meta.ref</pre>	(observed frequency).
restFreq	FREQn or	<pre>spect.line; em.freq</pre>	Observed spectral line rest fre-
	RESTFREQ		quency.
molecule	MOLECULE ^b	<pre>spect; phys.mol;</pre>	Molecule name.
		meta.id	
transition	$\texttt{TRANSITI}^c$	spect;	Transition.
		phys.atmol.transition;	
		meta.id	

 $^a{\rm There}$ is a certain redundancy between the Provenance. Spectrum.chanSeparation attribute and the Coverage. Spectral.Resolution attributes.

 ${}^b\mathrm{It}$ might be necessary to change the <code>MOLECULE</code> keyword by <code>LINE</code>, for better CLASS compatibility.

OpacityCurve: Includes the opacity curve (linked as a VOTable file) associated to the observing term where the data were observed (which we will derive from the nearest two skydip scans performed before and after the observation). We propose the inclusion of an array of [elevation, Tsky] pairs, together with the azimuth and the starting time of the skydip. Calculation of the opacity curve is different for bolometric or heterodyne observations. It is also necessary to include information on the atmospheric model and/or software used for opacity fitting (ATM is the model used by MOPSIC, at the IRAM 30m antenna).

 $^{^{}c}\mathrm{It}$ might be necessary to change the <code>TRANSITI</code> keyword by <code>LINE</code>, for better CLASS compatibility.

. .	FITS	UCD	
Attribute	Keyword	UCD	Description
numChannels	assign	<pre>spect; phys.veloc;</pre>	Number of velocity channels.
		meta.number	
$chanSeparation^{a}$	assign	<pre>spect; phys.veloc</pre>	Mean channel separation (in
			velocity units), or velocity
			channel separation array.
velResolution	assign	<pre>spect.resolution;</pre>	Velocity resolution.
		phys.veloc	
velRefFrame	assign	<pre>spect; phys.veloc;</pre>	Identification of the reference
		pos.frame; meta.id	system used for the velocity.
refChanNum	assign	<pre>spect; phys.veloc;</pre>	Velocity reference channel.
		<pre>meta.number;</pre>	
		meta.ref	
refChanFreq	assign	<pre>spect; phys.veloc;</pre>	Frequency for the velocity ref-
		<pre>meta.code; meta.ref</pre>	erence channel.
restFreq	RESTFREQ	<pre>spect.line; em.freq</pre>	Observed spectral line rest fre-
			quency.
molecule	$MOLECULE^b$	<pre>spect; phys.mol;</pre>	Molecule name.
		meta.id	
transition	$\texttt{TRANSITI}^c$	spect;	Transition.
		<pre>phys.atmol.transition;</pre>	
		meta.id	

Table 6.36: Velocity metadata.

 a There is a certain redundancy between the Provenance. Velocity.chanSeparation attribute and the Coverage. Spectral.Resolution attributes.

 $^b\mathrm{It}$ might be necessary to change the <code>MOLECULE</code> keyword by <code>LINE</code>, for better CLASS compatibility.

 $^{c}\mathrm{It}$ might be necessary to change the <code>TRANSITI</code> keyword by <code>LINE</code>, for better CLASS compatibility.

Provenance. Processing

This class allows us to specify the type of processing applied to the data before storage, including some processes that conform the observation itself, such as determination of frequencySwitching or positionSwitching for source data comparison. We use just two classes, Processing and Calibration —this is a subclass of processing—. Order is relevant, and it should be possible to reconstruct the pipeline by the ordering of Processing and/or Calibration instances. Figure 6.8 shows these classes.

Processing: It holds information specifying the type of processing applied to data before archival. This includes pseudo-observational techniques such as position switching or frequency switching, as well as the type of data averaging, data weighting, etc. Table 6.39 provides minimal initial metadata, using arrays of parameter keywords for extensibility at the expense of complexity.

Calibration: It is a subclass of Processing, where the type of processing is

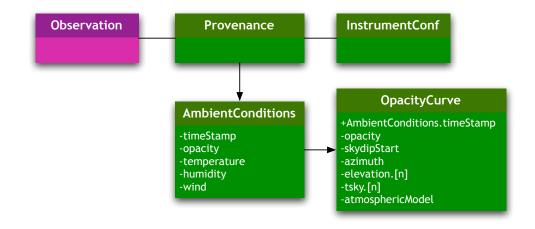


Figure 6.7: Provenance. Ambient Conditions data model.

Attribute	FITS Keyword	UCD	Description
opacity	TAUZEN	phys.absorption.coeff	Opacity at zenith esti-
			mated at the observation
			frequency.
airMass	AIRMASS	obs.airMass	Air mass at zenith at the
			observing site.
temperature	TAMBIENT	phys.temperature	Ambient temperature.
humidity	HUMIDITY	obs.atmos;	Ambient humidity.
		phys.columnDensity	
waterVapour	TAU_WPATH_RD <freq></freq>	obs.atmos;	Equivalent pressure of
		phys.pressure	the water vapour column.
tauFrequency	TAU_WPATH_RD <freq></freq>	obs.atmos; em.freq	Tau radiometer fre-
			quency.
wind	WINDSPEE	obs.atmos;	Wind speed.
		phys.veloc	

Table 6.37	AmbientConditions	metadata.
------------	-------------------	-----------

dataCalibration. In this class there are additional attributes to specify the type of calibration, and the axes to where this calibration will be applied. Table 6.40 provides minimal initial metadata, using arrays of parameter keywords for extensibility at the expense of complexity.

We still have to develop a calibration and/or pointing model; maybe based upon IRAM-Multi-Beam-FITS, or GBT FITS calibration tables.

6.4. TARGET

Attribute	FITS Keyword	UCD	Description
opacity	TAUZEN	phys.absorption.coeff	Opacity at zenith estimated at
			the observation frequency.
skydipStart	DATE-OBS	time.obs.start	Skydip starting time.
azimuth	AZIMUTH	pos.az	Skydip azimuth.
elevation[n]	ELEVATIO	pos.el	Skydip scan elevation.
tsky[n]	assign	instr.skyTemp	Sky temp at n th skydip.
atmosModel	assign	<pre>meta.modelled;</pre>	Atmospheric model identifica-
		obs.atmos; meta.id	tion.

Table 6.38:	Opacity	metadata.
-------------	---------	-----------

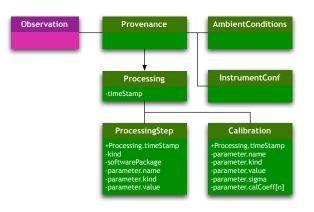


Figure 6.8: Provenance. Processing data model.

6.4 Target

It is necessary to have a systematic storage of the targets being studied, because we have to allow queries by previously studied targets, as it is very likely that query will be the most used one.

The DMO [3] differentiates between several types of targets:

- Astronomical object: It is a target for which some properties are known before the observation.
- **Source**: An entity created after analyzing an observation; represents the actual detection by an instrument.
- Field: A region of the sky, not a single point or collection of points.
- **Pointing target**: A particular location for an observation. It can be part of an Astronomical object, a Field, or other entities, such as a Calibrator.

	FITS		
Attribute	Keyword	UCD	Description
timestamp	DATE-RED	obs.param;	Timestamp for the processing
		time.epoch	step being performed.
type	assign	obs.param;	Type of processing applied
		meta.code	to source data; comes from a
			controlled vocabulary: unproc-
			essed, noiseWeightedAverage,
			nonWeightedAverage, autocor-
			$ extsf{relation}, extsf{FFT}^a, extsf{PFBPolyphase}$
			filter bank.
softwarePackage	assign	<pre>meta.software;</pre>	Software package used for data
		meta.id	processing; should come from
			a controlled vocabulary: CLASS,
			AIPS, AIPS++, CASA, MOPSIC,
			GILDAS, MIRA, MIR, other. In the
			case of other , the actual package
			that was used should be added
			as a parameter, with param-
			eter.name as softwarePackage
			and the parameter.value as the
			package name.
parameter[n].name	assign	obs.param;	Additional processing parameter
		meta.code	name, whose value will be in pa-
			rameter.value; eventually, we will
			have a controlled list of possible
			parameter.name values.
parameter[n].type	assign	obs.param;	From a controlled vocabulary:
		meta.code	integer, float, string At
			least all of FITS data types should
			be present.
parameter[n].value	assign	$obs.param^b$	Value for the parameter indicated
	-	-	by parameter.name.

Table 6.39: Processing Step metadata.

^aFast Fourier Transform

^bThe final UCD to mark parameter[n].value will be calculated when writing the VOTable, as it depends on parameter.type; it will be obs.param; meta.number most of the time, but it could be obs.param; meta.name or obs.param; meta.code, depending on the context.

Attribute	FITS Keyword	UCD	Description
timestamp	DATE-RED	obs.param; time.epoch	Timestamp for the calibration step being performed.
parameter.name	assign	obs.calib; obs.param; meta.id	Keyword defining the parameter that we will characterise with the remaining attributes.
parameter.type	assign	obs.calib; obs.param; meta.code	Type of calibration parameter used, from a controlled vo- cabulary: additive, factor, polynomial, exponential, logarithmic.
parameter.value	assign	obs.calib; obs.param; meta.number	Value for the main calibra- tion parameter, where parame- ter.type is not polynomial.
parameter.sigma	assign	obs.calib; obs.param; meta.number	Value of sigma, for exponential calibrations.
parameter.calCoeff.[n]	assign	obs.calib; obs.param; meta.number	n th degree coefficient for a polynomial calibration parameter; polynomial degree is derived from the maximum n.

Table 6.40: Calibration metadata^a.

^{*a*}It is mandatory that at least one [parameter.name, parameter.type, parameter.value] triplet appears, with fluxScale as parameter.name, and one of antennaTemperature, mbBrightnessTemperature, or S_nu as the parameter.value, with a parameter.type of string.

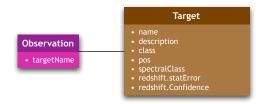


Figure 6.9: Target data model.

IVOA has not developed the Target class as a whole, but the authors of the SDM [5] have developed a set of possible metadata. We will initially adopt that set for the RADAMS, and we can see the associated metadata in Figure 6.9.

Another data model dealing with Targets is the Resource Data Model [14], which considers additional targets for observations, such as radio flux calibrators, pointing calibrators, etc.

We have to take into account that most of the time the archive will store

ObsData associated to Pointing targets, but said Pointing targets can also be related to Astronomical Objects. E.g., in the scientific case we mentioned in Section 6.1, the dish is pointed to a Pointing target in order to find a maser, but that Pointing target will be most likely included within an Astronomical object, such as a planetary nebula. The association of the Astronomical object and the Pointing target will be made by means of the Target class.

6.5 Packaging

The Packaging class is used to specify how data from different sources will be presented together. For instance, if we wanted to retrieve data belonging to our already mentioned maser survey, a VO system could reply with a Multi-Beam FITS file containing all the scans and sub-scans that conform the On-Off patterns for a single issued observation, or with a .zip file with all the FITS files belonging to the survey, or with just a single On-Off pair, etc.

An instance of the Packaging class would describe the contents of the data retrieved, in terms of project organisation, and of the particular files being actually delivered.

Unfortunately, there is no Packaging class defined at the VO level, so we have to resort to other packaging description mechanisms available in other archiving tools.

First, we have to state the requirements for this class:

- The Packaging class will describe the type of compression or grouping, if any, applied to the result of a query. So, possible results should form a controlled vocabulary, such as FITS, VOTable, zip, tar, gz, bz, bz2, tgz, tbz, tbz2, corresponding to: raw files —a FITS file or a VOTable—, a zip file, a tar file, a raw file compressed by gzip, bzip, bzip2, and a gzipped, bzipped or bzipped2 tar file.
- We believe a standard VO packaging scheme is needed in order to facilitate distribution. We propose one such scheme, that we call VOPack —Virtual Observatory Package; .vopack file extension—. We will define the VOPack as a "tarred and gzipped" folder (.tgz file) with an XML content descriptor, which acts as VO-aware manifest of contained assets. The VOPack is further described in Appendix D.

6.6 Policy

The role of the Policy data model is to allow for very different policies to be applied to the data. In the case of a VO archive where the data are not immediately available (they have to be manually incorporated to the archive),

6.6. POLICY

Policy becomes simpler, as in "everything in the archive is available for everyone". Figure 6.10 shows the different classes needed to characterise the archive policy.

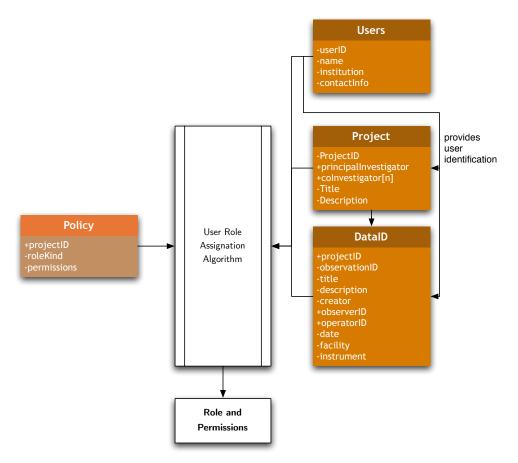


Figure 6.10: Policy data model, with role and permissions.

Policy instances attached to raw data shall need to identify the different roles of agents —not just people, but software packages too— accessing the archive, and give them appropriate access rights to pieces of data.

In the case of the Robledo Archive, the policy to be implemented should be the standard NRAO policy: 18 months since the end of the observations. Such a simple policy is better accomplished by not entering data into the archive until the proprietary period has expired.

A more flexible solution would make use of an array of permissions by role, where roles are derived from the relationship between the principal investigator and/or the observer, and observatory staff.

Such roles would be chosen from a controlled vocabulary (principalInvestigator, observer, coInvestigator, observatoryStaff, none); those

	FITS		
Attribute	Keyword	UCD	Description
projectID	PROJID	<pre>meta.curation.project;</pre>	Project identifier.
		$\texttt{meta.id}^a$	
roleKind	assign	<pre>meta.policy.role;</pre>	Role kind for which permis-
		$\texttt{meta.code; meta.id}^b$	sions will be provided.
permissions	assign	<pre>meta.policy.permissions</pre>	; Permissions provided for
		$\texttt{meta.code}^a$	roleKind users of this project.
			The particular permissions to
			be provided are to be discussed
			by IVOA.

Table 6.41: Policy metadata.

^aThere is no meta.curation.project UCD, but we propose the inclusion of one.

^bThere are no meta.policy.* UCDs, but we propose, at least, the inclusion of the meta.policy atom.

roles are derived from user/project relationships, so that people not belonging to the observatory, and which have nothing to do with the project, would default to **none**.

Each project in the archive should have, at least, an explicit policy of what is allowed for some with none relationship with the Principal Investigator, and people with principalInvestigator roles have all access rights to the archive; people with roles other than principalInvestigator would fallback to the none role, if their role's permissions are not explicitly declared.

We will provide Policy metadata in Table 6.41, but also we will specify a subset of Curation attributes needed for successful Policy attribution.

We are also considering a data-oriented policy, instead of a user-oriented policy. Data-oriented policies allow each datum —possibly by means of the DataID or Project classes— to be searched and found, but no additional information, or only partial information —possibly having to do with the owner of the datum— can be retrieved, depending on the data policy in place. This needs at least an additional attribute in the DataID class.

6.7 Curation

The Curation data model groups all metadata mandatory for resources to be published by a VO Registry. Several additional classes are needed for particular instances of data. Such classes and metadata are described by "Resource Metadata for the VO", an IVOA Recommendation [14]. Figure 6.11 encompasses all classes related to metadata for curation.

Observation: The Observation class was discussed earlier. All observations are related to a single Curation class.

Attribute	FITS Keyword	UCD	Description
userID	COMMENT	meta.id	User identifier for all user related op- erations in the archive.
name	COMMENT	meta.name	Real name of the user. Any known user of the archive has to be regis- tered, or be anonymous.
institution	COMMENT	meta.name	Name of the institution to which the user belongs.
contactInfo	COMMENT	meta.note	Contact info (probably e-mail) for this user.

Table 6.42: Policy related Users metadata.

Table 6.43: Policy related Project metadata.

	FITS		
Attribute	Keyword	UCD	Description
projectID	PROJID	<pre>meta.curation.project;</pre>	Project identifier.
		$\texttt{meta.id}^a$	
principalInvestigator	COMMENT	meta.id	User identifier for the
			principalInvestigator of
			the project.
coInvestigator[n]	COMMENT	meta.id	User identificar for each of
			n project coInvestigators.
title	COMMENT	<pre>meta.curation.project;</pre>	Project title.
		$\texttt{meta.title}^a$	
description	COMMENT	<pre>meta.curation.project;</pre>	Project description.
		$\texttt{meta.note}^a$	

^aThere is no meta.curation.project UCD, but we propose the inclusion of one.

Curation: This is the main class that will group all curation related metadata with relationships to complementary classes such as DataID and the rest. It is the same for all data contained in the VO resource (archive) being described.

DataID: There is an instance of this class for each different piece of data stored, or at least for each different way to store data. The Spectral Data Model advocates for this separation.

ObservingProgram: Instances of this class keep common information about different observations, describing its scientific or technical goals. They also specify which is the project and/or proposal to which this observing program belongs. This class allows for easy querying by project or by common goals, such as maser surveys.

While there is debate about whether this class belongs to the Curation or to the Provenance Data Model, we believe it belongs to the Curation Data

	FITS		
Attribute	Keyword	UCD	Description
projectID	PROJID	meta.curation.project meta.id ^a	; Project identifier.
observationID	OBSID	obs; meta.dataset; meta.id	User identifier for the principalInvestigator of the project.
coInvestigator[n]	COMMENT	obs; meta.id	User identifier for the n^{th} project coInvestigator.
title	COMMENT	meta.curation.project meta.title ^a	; Project title.
description	COMMENT	meta.curation.project meta.note ^a	; Project description.
creator	AUTHOR	<pre>meta.curation; meta.id</pre>	User identifier for the cre- ator of the data entry.
observerID	OBSERVER	obs.observer; meta.id	User identifier for the per- son performing the obser- vation producing this data entry.
operatorID	OBSERVER	obs.operator; meta.id ^b	User identifier for the per- son performing operator duties while performing the observation.
date	DATE-OBS	time.obs.start	Date of observation.
facility	TELESCOP	instr.obsty	Facility(observatory)where the telescope/in-strument resides in.
instrument	INSTRUME	instr.tel	Instrument performing the observation c .

Table 6.44: Policy related DataID metadata.

^aThere is no meta.curation.project UCD, but we propose the inclusion of one.

 $^{^{}b}$ We propose the inclusion of either obs.operator or instr.operator as new UCDs to characterise operator-related data. However, obs.observer can be used when providing both observer and operator at the same time.

 $[^]c\mathrm{We}$ have to study whether this should contain an instrument-backend pair, or have different attributes for both.

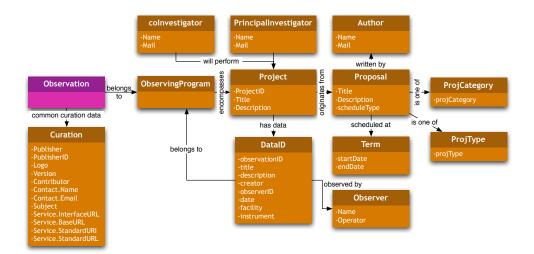


Figure 6.11: Curation data model.

Model, as it is an organisational unit, and in our view it has nothing to do with how the data were taken.

Project: This class is the main class from an organizational point of view. All observations belong to a single project through a single proposal. A **Project** instance is related to a collection of **Proposal** instances.

Proposal: As stated in the Project class, a Project can be divided in a series of Proposals. A Proposal instance can be related to one or more observations. No observation can be related to more than one Proposal instance.

Author: An Author instance contains information about Proposal authors.

Observer: Observer instances represent the observer/s assigned to a Proposal. It also contains a relationship with a Contact acting as the operator for the instrument.

ProjCategory: This instance specifies the scientific category of the project, from a controlled vocabulary; possible values, as specified by the Resource Data Model, are: instrumental, galactic, terrestrial, solarSystem, extragalactic, stellar...

ProjType: This instance specifies the type of observation performed for a particular proposal. Possible values are specified by the Resource Data Model, and form a controlled vocabulary derived from ATNF and NRAO proposals: astrometry, bandwidthSynthesis, circularPolarization, continuum, engineering, fillerTime, highTimeResolution, imaging, instrumental, linearPolarization, mapping, monitoring, mosaic, multibeam, point-Source, phasedArray, polarimetry, snapshot, solar, spectroscopy, survey, timeBinning.

Term: Specifies start and end dates (ISO dates, with time stamp) for the proposal *observing term* or *scheduling block*.

Appendix A

Archive Structure and Implementation Proposal

Figure A.1 illustrates the structure we propose for the archive, with a clear layer separation for the different subsystems.

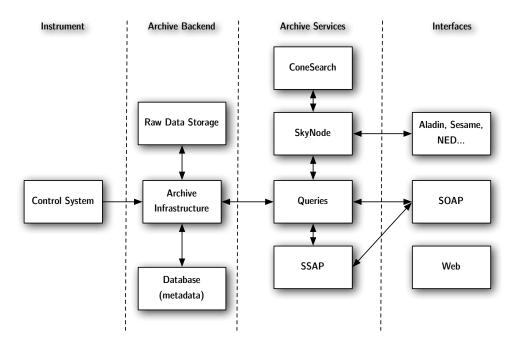


Figure A.1: High level, layered architecture for the Robledo Archive. Dotted lines represent the logical separation between layers. Arrows represent data flow between sub-systems. Communications between layers are confined to the communications established between common components.

We have divided responsibilities in four layers: Instrument, Backend,

Archive Services and Interfaces:

- The **Instrument**, with regards to the archive, is nothing else but the Instrument Control System, which will provide us with observational data and configuration metadata.
- The **Archive Backend** (not to be confused with any of the instrument's back-ends) is responsible for database and metadata access and maintenance.
- The Archive Services layer allows access to the archive to VO clients (software packages and services). In this layer is where we implement machine-to-machine interaction.
- The **Interfaces** layer allows human interaction with the Archive Services, or any other external services we might wish to replicate.

A.1 Instrument Control System

The Instrument Control System is by definition instrument-dependant, and changes to it will not be required. However, we will monitor the activity of the Control System, so that we can learn when new data are available for incorporation into the archive. Of course, instrument engineers might wish to upgrade the Control System in order to better integrate it with the archive.

A.2 Archive Backend

The Archive Backend comprehends all the software packages involved with Control System interaction —so that we can react to Control System's notifications, or to changes in the file system—, with archive database population, with semi-automated metadata generation, and information access and recovery.

For the Backend we will need:

• A relational database where data will be recorded. We will select it among widely available products, and which use, at least, the complete SQL92 instruction set. The database will support transactions and validations, so that transactions maintain relational integrity, and changes to table belonging to the same transaction either succeed or fail together. It should provide also triggers, so that erasing/marking procedures can be conveniently tracked, validated, and logged. XML support is not mandatory, but desirable. Possible candidates are MySQL, PostgreSQL, Oracle, DB2, and others.

- Interaction with the Control System, either via file system monitoring, or explicit procedure call for database population.
- Connection to the Internet, for access to external VO services (Sesame, NED, etc), and to provide SOAP services for external tools.
- A data storage system for the database and final service products (FITS, VOTables, etc). We will not store files in the DB, but instead we will store pointers to files, for later retrieval. We will try to use as much as possible of the pre-existing infrastructure. In fact, for the Robledo Archive its parent organization, INTA, will provide this infrastructure, which will be hosted in their premises.
- Automated or semi-automated archive cataloguing and archive storage software; for each new FITS, we will explore its headers, in order to derive the maximum amount of metadata from them; additional metadata will be gathered from additional sources —observation logs, control system logs— if available, and the user will always be able to add or correct existing metadata.
- Automated logging software, for system audit. We will need to devise a set of users, and database access profiles.

A.3 Archive Services

The Archive Services will be built both for external access and as a basis for the Interfaces layer. These services will be built with platform neutral languages, and will allow automated coupling of database and interface, so that database updates are translated with ease into changes to the Interfaces, either by automatic code generation tools, or dynamic systems with introspection.

In order to do this, we will study web and web-services frameworks such as Tomcat and Axis (Java), Ruby on Rails (Ruby), WASP (PHP), Django (Python), and similar systems.

Archive Services will be built using standard SOAP web services, described by the Web Services Description Language (WSDL).

The service with the highest priority for the Robledo Archive will be the SSAP (Simple Spectra Access Protocol) [15], that will allow for direct machine-to-machine discovery of spectra available for a given sky region.

A.4 Interfaces

Visual interfaces will be of two kinds: standard browser interfaces (thin clients), and desktop clients (thick clients). Thick clients will not be developed in this first phase of the archive, but will be built on top of the existing Archive Services functionality. Browser interfaces will also make use of this Archive Services, and will present standard XHTML (XML-based HyperText Markup Language) content, with CSS (Cascading Style Sheets) for formatting. This way, we will also be able to use XLST transformations to create XHTML from the XML information provided by the database system.

Interactivity will make use of modern techniques, such as AJAX (Asynchronous JavaScript And XML), in order to provide online visualization tools.

Appendix B

Archive Workflow

The archive architecture tell us how to divide the archive functionality in several more manageable, modular units, and how does information flow between them. However, that architecture comprises only the elements needed to retrieve already stored data from the archive. We still need to establish how will information be incorporated into the archive, and that is what we call Archive Workflow.

In order for a particular set of FITS files to be incorporated to the archive, the following actions will have to be performed :

- 1. File selection.
- 2. Automatic metadata generation.
- 3. Web-based interface for metadata edition.
- 4. Data query and XML and VOTable serialization.

The following sections detail this steps.

B.1 File selection

The first step is the selection of the files to be incorporated to the archive. Initially, we will only support FITS files. We will either provide a commandline or a web-based tool for file upload, with the ability to recursively scan folders in order to incorporate files.

The web-based tool will allow a further refinement of the selection, to exclude some of the initially scanned files.

B.2 Automatic metadata generation

For the finally selected FITS files, all of their headers will be read, and the following information derived from either FITS headers, FITS HDUs, or *a priori* knowledge of the telescope and instruments.

- **ObsData**: Observation data will be directly retrieved from the FITS HDU.
- **Characterisation**: Characterisation data will be partially derived from FITS headers, while some other parts of the metadata will need *a priori* knowledge of the telescope or instruments. In particular:
 - Coverage.Location can be retrieved from the FITS headers for all AxisFrames.
 - Coverage.Bounds can be calculated from the FITS headers for AxisFrame.Spatial and AxisFrame.Temporal; it can be calculated from the ObsData for AxisFrame.Observable; and it can be calculated from the FITS headers and knowledge of the instrument for AxisFrame.Spectral.
 - Coverage.Support can be calculated from the FITS headers for AxisFrame.Spatial and AxisFrame.Temporal; it can be calculated from the ObsData for AxisFrame.Observable; and it can be calculated from the FITS headers and knowledge of the instrument for AxisFrame.Spectral.
 - Coverage.Sensitivity needs a priori knowledge of the telescope and instruments, apart from the data in the FITS headers or HDUs.
- **Provenance** metadata cannot be directly retrieved from FITS header information; however, it is possible to build sensible defaults for the Provenance metadata from the FITS headers, regarding some of the calibrations being performed, and antenna settings, while user input will be necessary for the remaining metadata.
- **Target** metadata can be retrieved from FITS header information AND an additional Target database; with that information sensible values will be provided for confirmation or alteration by the user.
- **Packaging** metadata will be built from the selection of files conforming an archive entry. These files will be related by belonging to the same VOPack.
- **Policy** metadata can be derived from default policies, together with the FITS header information.

• **Curation** metadata will have sensible defaults for a given telescopeinstrument-curator triplet. Telescope and instrument can be obtained from the FITS header, and the Curator can be obtained from the logged in user. However, Curation metadata will remain editable.

B.3 Web-based interface for metadata edition

After all metadata have been calculated or set to sensible default values, the user will be shown a web-based interface that will allow him to edit the assigned values, including defaults that were not applicable, or entering metadata not available from elsewhere.

In any case, the interface will be organised so that an executive summary shows most commonly altered values, and the remaining metadata will be available through different tabs, corresponding to the different metadata classes.

B.4 Data query and XML and VOTable serialization

After metadata editing, all pieces of metadata are available, and both raw data and metadata will be entered in the database, enabling data queries.

The XML classes, VOTables, or VOPacks will be created on the fly from user requests and the data available in the database. Data queries will be built from a web-based interface to the archive, or by means of web-services' requests.

Appendix C

Policy Determination

We will use Policy, Users and ObsData metadata in order to select the corresponding role for the agent just logged in. Figure C.1 shows the flow diagram for the role selection.

This could be easily changed into a role-enabling algorithm that enables different roles for the same user, and displays all the different roles the user can access. If this is not needed, we will stick to the proposed algorithm.

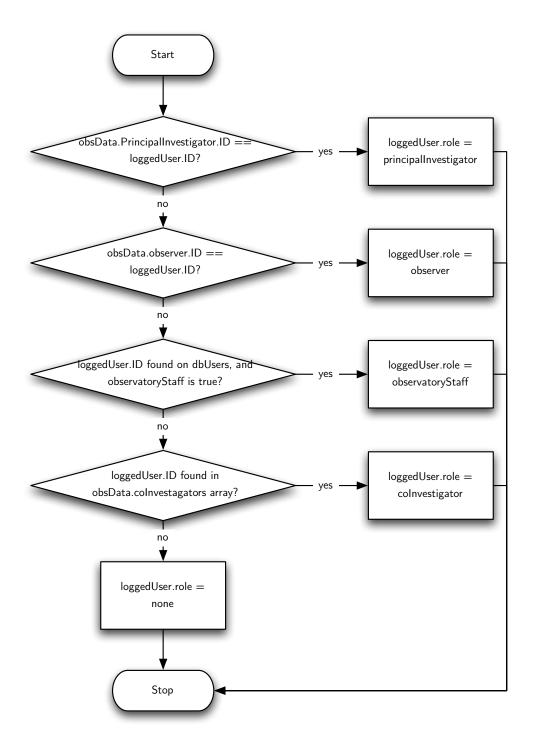


Figure C.1: Flow diagram for the role determination algorithm.

Appendix D

VOPack

The VOPack is a way of distributing VO-compliant content, in a way that makes it easy to reuse and point to existing content, either remote or locally.

A VOPack consists of a compressed file that contains at least a voPack.xml file —following the VOPack XML Schema— that describes all the additional content of the compressed VOPack, and their relationships between them. Figure D.1 shows the structure diagram of a VOPack.

In that diagram, the voPack element is the root for the XML document. It includes a description, the originating query, and one or more packUnits, which actually point to the information being retrieved. The originatingQuery element contains the string with the URI that allows the retrieval of the voPack. Additional characterisation elements, following the Characterisation schema, can be used to further specify properties on the data being delivered with the VOPack.

The packUnit corresponds to a single piece of data, or to another packUnits, in case of more structured data. The depth of inclusion is arbitrary.

packUnits have a type attribute that can be one of:

- votable
- fits
- otherXML
- otherNonXML
- vopack
- compressedFolder
- folder

For the last three types, a new vopack.xml file has to be provided for their description. This allows for meta-packaging of ready-made VOPacks.

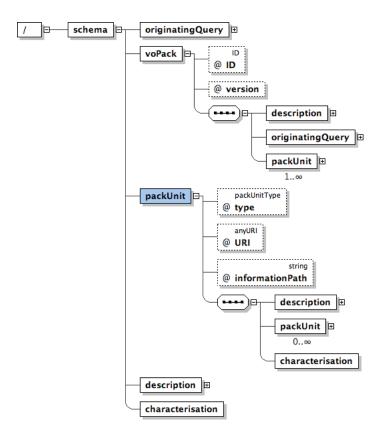


Figure D.1: VOPack structure. Diagram generated by **Oxygen** from the XML schema.

For the first three types, the informationPath attribute gives an XPath to the actual data being pointed, just in case the packUnit contains several tables, and not all of them are to be considered. In the case of FITS files, the informationPath looks XPath-like, but points to the HDU or Image holding the data.

Figure D.2 shows the complete listing for the VOPack XML Schema.

```
<!-- voPack schema, by Juan de Dios Santander Vela, IAA-CSIC -->
<!-- Ideas for voPach schema</pre>
       voPack as a list of packUnits; packUnit is an abstract type
       packUnits: fits, votable, folder, compressedFile, voxml, non-voxml, other
       voxml types: sed, characterisation, stc, stcoords
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
    <xs:import namespace="http://www.w3.org/2001/XMLSchema" ></xs:import>
    <xs:complexType name="anyText" mixed="true">

          <xs:sequence>
               <xs:any minOccurs="0" maxOccurs="unbounded" processContents="skip"/>
           </xs:sequence>
     </xs:complexType>
     <xs:enumeration value="votable"/>
<xs:enumeration value="fits"/>
                <xs:enumeration value="otherXML"/>
               <xs:enumeration value="otherNML"/>
<xs:enumeration value="otherNonXML"/>
<xs:enumeration value="compressedFolder"/>
<xs:enumeration value="folder"/>
           </xs:restriction>
     </rs:simpleType>
     <!-- voPack is the root element of the schema -->
     <xs:element na
                             voPack">
          <xs:complexType>
                <xs:sequence>
                    cstelement ref="description" minOccurs="1" />
<xs:element ref="originatingQuery" minOccurs="1" maxOccurs="1"/>
<xs:element ref="packUnit" minOccurs="1" maxOccurs="unbounded"></xs:element>
                </xs:sequence>
                <xs:attribute name="ID" type="xs:ID"/>
<xs:attribute name="version" use="required">
                     <xs:simpleType>
                          <xs:restriction base="xs:NMTOKEN">
                                <xs:enumeration value="0.1"/>
                          </xs:restriction>
                     </xs:simpleType>
                </xs:attribute>
           </r></r>
     </xs:element>
     <xs:element name="description">
          <xs:complexType mixed="true">
               <xs:complexContent>
                     <xs:extension base="anyText">
                          <xs:attribute name="ID" type="xs:ID" />
<xs:attribute name="ID" type="xs:string" use="required" />
                     </xs:extension>
                </xs:complexContent>
          </xs:complexType>
     </xs:element>
     <xs:element name="originatingQuery">
          <xs:complexType>
               <xs:attribute name="value" type="xs:string" use="required"/>
<xs:attribute name="URL" type="xs:anyURI" use="required"/>
          </xs:complexType>
     </xs:element>
     <xs:element name="characterisation">
          <xs:complexType>
    <!-- To be defined; should follow the characterisation schema -->
                <xs:sequence>
                    <!-- Sequence of axis characterisations for the given pack unit -->
                </xs:sequence>
           </xs:complexType>
     </xs:element>
     <xs:element name="packUnit">
           <xs:complexType>
                <xs:sequence>
                     <xs:element ref="description" minOccurs="1" />
<xs:element ref="packUnit" minOccurs="0" maxOccurs="unbounded"/>
                      <xs:element ref="characterisation" minOccurs="1" maxOccurs="1"/>
                </xs:sequence>
                </sciences
<xs:attribute name="type" type="packUnitType" use="required"/>
<xs:attribute name="URI" type="xs:anyURI" use="required" />
<xs:attribute name="informationPath" type="xs:string" use="optional"></xs:attribute>
                <!-- The URI provides information either for the local file system, or remotely -->
          </xs:complexType>
     </xs:element>
</xs:schema>
```

75

Bibliography

- [1] T. Murphy, P. Lamb, C. Owen, and M. Marquarding, "Data storage, processing and visualisation for the ATCA," *ArXiv Astrophysics e-prints*, Enero 2006.
- [2] P. Warner, "NOAO Science Archive Domain Model," tech. rep., National Optical Astronomy Observatory, 2004.
- [3] J. McDowell, F. Bonnarel, D. Giaretta, G. Lemson, M. Louys, and A. Micol, "Data Model for Observation," *IVOA Data Model WG Internal Draft*, May 2004.
- [4] J. McDowell, F. Bonnarel, I. Chilingarian, M. Louys, A. Micol, and A. Richards, "Data Model for Astronomical DataSet Characterisation," *IVOA Note*, p. 40, May 2006.
- [5] J. McDowell, D. Tody, T. Budavari, M. Dolensky, F. Valdés, P. Protopapas, and A. Rots, "IVOA Spectral Data Model," *IVOA Data Access Layer WG Working Draft*, May 2006.
- [6] P. Lamb and R. Power, "IVOA Data model for raw radio telescope data," IVOA Radio Astronomy Interest Group Note for Discussion, October 2003.
- [7] I. de Gregorio Monsalvo, Radio Astronomical Study of the Physical Conditions, Kinematics, and Chemistry of the Environment Surrounding Low-Mass Young Stellar Objects. PhD thesis, Universidad Autónoma de Madrid, Facultad de Ciencias Físicas, Departamento de Física Teórica, May 2006.
- [8] R. J. Hanisch, W. D. Pence, B. M. Schlesinger, A. Farris, E. W. Greisen, P. J. Teuben, R. W. Thompson, and A. Warnock, "Definition of the Flexible Image Transport System (FITS)," Tech. Rep. NOST 100-2.0, NASA/Science Office of Standards and Technology (NOST), NASA Goddard Space Flight Center, Greenbelt MD 20771, USA, 1999.
- [9] D. Muders, E. Polehampton, and J. Hatchell, "Multi-Beam FITS Raw Data Format," tech. rep., Max-Planck-Instituts f
 ür Radioastronomie, December 2005.

- [10] R. M. Prestage and M. H. Clark, "Device and Log FITS Files for the GBT," tech. rep., NRAO Green Bank, December 2004.
- [11] A. Preite Martínez, S. Derriere, N. Gray, R. Mann, J. McDowell, T. Mc Glynn, F. Ochsenbein, P. Osuna, G. Rixon, and R. Williams, "The UCD1+ controlled vocabulary," *IVOA Semantics WG Recommendation*, December 2005.
- [12] J. Schwarz and R. Heald, "Software glossary," Tech. Rep. Version 0.2, Atacama Large Millimeter Array, May 2003.
- [13] A. Rots, "Space-Time Coordinate metadata for the Virtual Observatory," IVOA Proposed Recommendation, March 2005.
- [14] R. Hanisch, G. Greene, A. Linde, R. Plante, A. M. S. Richards, E. Auden, K. T. Noddle, and W. O'Mullane, "Resource metadata for the Virtual Observatory," in ASP Conf. Ser. 314: Astronomical Data Analysis Software and Systems (ADASS) XIII (F. Ochsenbein, M. G. Allen, and D. Egret, eds.), pp. 273-+, 2004.
- [15] M. Dolensky, D. Tody, T. Budavari, I. Busko, J. McDowell, P. Osuna, and F. Valdés, "Simple Spectral Access Protocol," *IVOA Data Access Layer WG Working Draft*, May 2006.