Astronomical Data Query Language

International
Virtual

Observatory

Alliance

IVOA Astronomical Data Query Language
Version 1.05
IVOA Working Draft 29 May 2006

This version:

1.05: http://www.ivoa.net/Documents/WD/ADQL/ADQL 20060701.doc
Latest version:

http://www.ivoa.net/Documents/latest/ADQL.html
Previous versions:

none

Working Group:
http://www.ivoa.net/twiki/bin/view/IVOA/lvoaVOQL
Editors:

Yuji Shirasaki, Maria A. Nieto-Santisteban, Masatoshi Ohishi, William
O’Mullane, and Alexander Szalay

Authors:
IVOA VOQL Working group

Abstract

This document describes the Astronomical Data Query Language (ADQL) and its two
representations as String (ADQL/s) and XML (ADQL/x). ADQL has been developed
based on SQL. This document describes the subset of the SQL grammar supported by

7/1/2006 11:47 PM Page 1 of 26

Astronomical Data Query Language

ADQL. Special extensions to SQL have been defined in order to support astronomy
specific operations such as a geometric data type and its functions.

Status of this document

This is an IVOA Working Draft for review by IVOA members and other interested parties.
It is a draft document and may be updated, replaced, or obsoleted by other documents
at any time. It is inappropriate to use IVOA Working Drafts as reference materials or to
cite them as other than “work in progress”.

Acknowledgments

This working draft has been developed based on discussions at various IVOA meetings
and continuing emails on the mailing list. The editors express their appreciation for many
valuable contributions by Naoki Yasuda, Clive Page, Bob Mann, Martin Hill, and many
others.

Contents

F Y 013 1 = Tod A O P PP PPPPPUPPTPPTPP 1
Status Of thiS DOCUMENT........coiiiiiiii e e e e e e e e e e ee e 2
ACKNOWIEAGMENTS ...t e et e e e e e e e s e e e e e 2
I |14 {0 To [T 4o) o 1 PP 3
2 Astronomical Data Query Language (ADQL)uuuuiiiiiiiiniieieiiieiiiiii e 3
3 ADQL-S COrE SYNEAX .. ciieiiuuiieiieii e ee ettt e e e e e a e e et e e e e ae e e eeeben e aeeeeannas 4
4 ADQL-S €XIENSION SYNTAX ..utuiuiiiiieieieiiieieeieiita e e e e e e e e e e aeebe bbb e e s e e e e e e aeaeeebesbenanan 6
5 Keyword, Identifier and delimited identifier...............iii i, 9
O B - | = 0 1Y/ 0 = 10
AR AN To | (= To F= (=N U] ox 1o o 14
S U | o] 7o o U 15
LS I \V = = o F= L= R 11 1= Y/ 18
10 Version iNfOMMAtION.........oiiiiiii et 19
11 ADQL EXAMPIE ceiiie i 19
12 ADQL XSD ..iiiiiiitie ettt ettt e e e na e aeaeaeaas 20
13 Changes from Previous VEISIONScciiiiiiieiiieiecieiiiiii e ee e e e n e e e ae e e 20
I Ly (=T (=] Lo = P 20

7/1/2006 11:47 PM Page 2 of 26

Astronomical Data Query Language

Appendix A ADQL GramMaArcccevuieiieeeeieiie e ee et s e e e e e e e e ee e e e eeastn e e e eeann e eeeeenes 22
A- 1 BNF fOor Core QUEINY SYNTAX ...ccevuriieeiiei i eee i ee e e e e e ee e ee e e e e e e e 22
A- 2 BNF for FUll QUEIY SYNEAXcvuiiiiiii i ee e e 23

Introduction

The Astronomical Data Query Language (ADQL) is the language used by the
International Virtua Observatory Alliance (IVOA) to represent astronomy queries posted
to VO services. The IVOA has developed severa standardized protocols to access
astronomical data, e.g., SIAP, and SSAP for image and spectra data respectively, and the
SkyNode Interface protocol to access catalogs. Different VO services have different
needs in terms of query complexity. For example, SIAP and SSAP might be satisfied
using a single table query. However, SkyNodes usually include more than one catalog
table which makes necessary richer language expressivity. ADQL has been designed in a
layered hierarchy so services implement and register the complexity level that meets their
needs. In this way, clients know what type of queriesa VO service will accept.

ADQL is based on the Structured Query Language (SQL). The VO has a number of
tabular data sets and many of them are stored in Relational Databases (RDBs), making
SQL aconvenient access language. ADQL focuses on a subset of the SELECT statement,
adding a few extensions to define specific astronomy operations like a geometric data
type and its function.

SkyNode services (often denoted as nodes) are an example of VO data services accepting
queries in ADQL. The mechanism of passing a query to a node is described in the
SkyNode Interface specification [[]] developed by the IVOA VOQL WG as well.
SkyNodes are defined and implemented as XML Web services. To access some SkyNode
implementations you can visit OpenSkyQuery.net. The Open SkyQuery portal is an
example of how astronomers can use ADQL to query a federation of astronomica
databases which have been published as SkyNodes.

Astronomical Data Query Language (ADQL)

ADQL is based on a subset of SQL, which has been extended to support queries specific
to astronomy. ADQL has two representations:

ADQL/s : A string form based on the SELECT statement of the SQL standard [[]
that conforms to the ADQL grammar (see gppendix). Some non-standard SQL
extensions have been added to support astronomy queries.

7/1/2006 11:47 PM Page 3 of 26

Astronomical Data Query Language

ADQL/x : An XML document conforming to the ADQL schema [[]]. The XML
document is the mechanism used to pass a query to VO services as for example
the SkyNode Web service interface.

ADQL/s and ADQL/x are translatable to each other without loss of information, so this
document is mainly devoted to describe syntax of the ADQL/s and the way of mapping
from ADQL/sto ADQL/x is described briefly.

ADQL /s grammar is described in an extended BNF. The following conventions are used
through this document:

e optional items are enclosed in metasymbols| and],
e agroup of itemsis enclosed in meta symbols (and),
e repetitive item (zero or more times) are followed by *.
e termina symbols are enclosed by < and >.

e terminas of meta-symbol characters(=, [,], (,), <, >, *) aresurrounded by
guotes (") to distinguish them from meta-symbols.

e case should be ignored otherwise stated.

ADQL/s grammar consists of CORE grammar and EXTENSIONS to it. The CORE
grammar is defined aiming for interoperability among all the data services, so it provides
just minimum functionality (selection and projection in the relational database term) so
that a service that conforms to the grammar is easily set up. The EXTENSIONS is
defined to enable the enhancement of service functionality. All VO services accepting
ADQL queriesMUST conform to the CORE specification.

ADQL-s Core Syntax

e Syntax of core ADQL isas follow:

[<comment >]

SELECT [TOP <nunber>]

([<table_alias> .] ™7 | count ("7 “*7)~
| <colum_list>)

FROM <t abl e_nanme> [AS] <table_alias>

[WHERE <condition_core>]

[<comment >]

o SELECT statement defines aquery to a specified table. As aresult of this query, a
subset of the table is returned. The order of the rows MAY be arbitrary. The order
of columns to return SHOULD be the same as the order as specified in the

<col um_I i st > or the order defined on the origind tableif “* ” isspecified.

e TOP <nunber > constructisused to specify the maximum number of rowsto
return. Any arbitrary rows MAY return.

7/1/2006 11:47 PM Page 4 of 26

Astronomical Data Query Language

Selected data are either column values or the number of selected rows. An
expression like a+b is not supported in the core syntax, which is supported as an
extension.

<col umm_I i st >isalist of columnsto return, which is specified in a standard
SQL form, that isalist of comma separated column references. A column name
MAY bediased, and MAY be qudified by atable alias name. Note that the table
name SHOULD NOT be used to qualify the column name. The column reference
is expressed as:

[<table _alias>.] <colum_name> [[AS]

<al i as_nane>]

“* 7 represents all the columns, and MAY be qualified by atable alias name.
Count (*) isan aggregate function which returns the number of selected rows.

Exactly one table SHALL be specified in the FROM clause. A tableis specified
by atable name followed by an alias name. The table alias name MUST be
supplied.

Selection condition <condi t i on_cor e> is specified by aregional condition
and/or anon-regional condition. When both of the regional and non-regional
conditions are specified they SHALL be connected by “AND” logical operator.
Non-regiona condition is one of the following SQL boolean value expression:

 OR

 AND

NOT

<E> <conparison_op> <E>

<E> [NOT] BETWEEBN <L> and <L>

<E> [NOT] LIKE <pattern>

<E> [NOT] IN“(” <L>[, <L>]* %)~

<E> IS [NOT] NULL

<bool ean_val ue_functi on>

“(” <bool ean_val ue_expressi on> “)”

where is a boolean value expression, <E> is any type of value expression,
and <L> isalitera value. <conpar i son_op> supported in the Core syntax is
basic comparison operators listed in table 2. Wild cards that are used for
expressing a string pattern of a L IKE predicate are “_ and “%”. ““_” matches a
single arbitral character and “%” matches arbitrary number (>=0) of characters.

Regional condition SHOULD be supported for atable that has a set of columns

representing a position in atwo dimensional space. Those columns SHOULD have

7/1/2006 11:47 PM Page 5 of 26

Astronomical Data Query Language

metadatarelated to their coordinate frame.

e Allowed region shapes for aregional condition are BOX and CIRCLE. The
region isexpressed by aregion shape type, a coordinate frame, an optional unit of
coordinates and region sizes, center coordinates, and region sizes. Two region sizes
measured along the two coordinate directions are specified in the case of BOX
region, while aradiusis specified in the case of CIRCLE region. The unit of the
box sizes or radius is the same as the one of the center coordinate. The syntax of the
regiona conditionis:

REG ON(*‘BOX <frame> [<unit>] <cl> <c2>
<si zel> <si ze2>')

REG ON(*Cl RCLE <frame> [<unit>] <cl> <c2>
<radi us>")

. <f r ame> is aframe name defined in the STC specification. A table that
supports regional search SHALL accept at least one of the frame names, which
SHALL be provided through a metadata query. A list of all the supported frame
names SHOUL D also be provided through a metadata query. Severa examples of
the frame expression are:

<frame> = FK4 [<epoch>] | FK5 [<epoch>]
| ECLIPTIC [<epoch>] | ICRS | GALACTIC II

<epoch> = J2000 | B1950 |
. An aggregate function supported in core ADQL is count(*).

. A function support is not mandatory in core ADQL specification, however
RECOMMENDED to support basic functions|list in table 5.

o Comments SHALL be supported using the /* ... */ syntax to delimit comments.
Comments are only supported before and after the main query.

ADQL-s extension syntax

e Syntax of the extended ADQL is:

[<coment >]
SELECT [ALL | DI STINCT]
[OFFSET <unsi gned_integer>]
[TOP <unsigned_integer>]
<selection_|ist_ext>
[INTO <store_reference> |
FROM <t abl e _|ist>
[WHERE <search_condition_ext>]
[GROUP BY <group_itemlist>]
[HAVI NG <search_condi tion_ext>]
[ORDER BY <order list>]
[

<coment > |

7/1/2006 11:47 PM Page 6 of 26

Astronomical Data Query Language

e ADQL SELECT statement defines aquery to aderived table specified in the
FROMclause. As aresult of this query, a subset of the table isreturned. The
order of the rows MAY be arbitrary unless ORDER BY clause is specified. The
order of columns to return SHOUL D be the same as the order as specified in the
<col um_lI i st > or the order defined on the original tableif “* ” is specified.

e SQL standard of ALL and DISTINCT construct is defined as an extension.

e OFFSET n construct is defined as an extension to skip the first n-records. It is

RECOMMENDED to use the OFFSET keyword dong with the ORDER BY
keyword, sinceit is meaningless to use this if the order of rows is not specified.

e TOP n construct isused to return first n-rows from the offset position specified
by a OFFSET keyword. The combination of TOP, OFFSET and ORDERBY BY
can be used to retrieve aresult by splitting it to smaller peaces. It is
recommended to order the record by primary keys, since most of the database
management system generates an index for the primary keys as adefault, and
gives abetter response.

e Selection list MAY include any value expression, such asa+b, a- b, a*b, a/ b,
+a,-a, a*(b+c),wherea, b and c represent a column, function or other
valid value expressions.

e INTO construct is defined as an extension to specify the VOSpace location
where the result is stored. The exact syntax of the VOSpace location is defined
in a separate specification.

SELECT g.* INTO VOS:/JHU gal FROM gal axy g
WHERE g.redshift > 3.5

e Multiple tables separated by commas MAY be specified at a FROM clause.

e SQL standard of table join construct is defined as an extension. The following
join types are supported:

— CROSS JOIN

— INNER JOIN

— OUTER LEFT, RIGHT, FULL JOIN
— NATURAL JOIN

- USING JOIN

¢ Inaddition to the CORE search condition, following SQL standard predicates
are defined as an extension

- EXIST
- ALL

7/1/2006 11:47 PM Page 7 of 26

Astronomical Data Query Language

- SOME
e SQL standard GROUP BY clause is defined as an extension.
e SQL standard HAVING clause is defined as an extension.
e SQL standard ORDER BY clause is defined as an extension.

o #UPLOAD keyword MAY be used at a FROM clause to represents votables.
Using this syntax, table join between internal tables and external votables can be
described. A votable name, which is an attribute of a TABLE element, may be
followed to distinguish the multiple tables in votables. A syntax to refer to the
votable and it example are:

UPLOAD [<votable nanme>] [AS] <alias>

FROM gal axy g, UPLQOAD nanel votl1,
UPLCAD nane2 vot 2

e Subquery MAY be used at aFROM clause.

e Tablename qualified by aservice identifier MAY be supported to specify atable
that belongs to another SkyNode service. A short name of the service MAY be
specified, however note that it does not guaranty the uniquenessin the VO.

[(<service_identifier> | <short_nanme>) :]
<t abl e_nane>

eg. ivo://jvol sxds:tabl eNane
e.g. sxds: tabl eNane
e XPath expression in selection list and selection criteriaMAY be supported.

Square brackets ([,]) and standard operators such as parent are NOT supported.
An example of avaid query of this form would be:

SELECT / Resour ce/ Cont act/ Nanme
FROM Resour ce
WHERE / Resour ce/ Type LI KE ‘catal og’

e Supported extensions SHOULD be provided through a metadata query using
extension IDsthat are listed in table 1.

Extension ID Description of the extension
DST ALL or DISTINCT keyword.
OFF OFFSET keyword.
EXP Expressions (the four fundamental rules of arithmetic,
unary operation by + and -, and closed expression) in a
selection list.

7/1/2006 11:47 PM Page 8 of 26

Astronomical Data Query Language

INT INTO keyword.

TML Comma separated multiple tablesin aFROM clause.

TJIN Tablejoins: CORSS JOIN, INNER JOIN, OUTER
LEFT, RIGHT, FULL JOIN, NATURAL JOIN and
USING JOIN.

TID A table name qualified by a service identifier.

VOT #UPLOAD keyword to specify VOTables.

TSQ A derived table with a sub-query in aFROM clause

EXI EXISTS, ALL, SOME predicates in aWHERE clause.

GBY GROUP BY clause.

OBY ORDER BY clause.

HVN HAVING clause.

FUN BASIC functions.

CON Concatenation operator “[” for character and character
array datatype.

DOP Data/Time operator

NAR Array of numeric data types

1TV Time interval datatype

GEO Geometrical datatype

AGR All the aggregate functions

Table 1: ADQL syntax extensions

Keyword, Identifier and delimited identifier

ADQL/sis constituted of areserved and un-reserved keyword, identifier, delimited
identifier, and litera. A reserved keyword has a special meaning in ADQL and cannot be
used as an identifier. A un-reserved keyword has a specia meaning in specific contexts

and can be used as an identifier in the other contexts. An identifier and adelimited

identifier are used to express a table name, column name, service specific function and
datatype name, and alias name. A literal is used to express a constant value of each data

type.

e Reserved keywords MUST NOT be used as an identifier.

7/1/2006 11:47 PM

Page 9 of 26

Astronomical Data Query Language

¢ A keyword and an identifier SHALL begin with aletter { a-z} . Subsequent
characters SHALL be letters, underscores ©_’ or digits {0-9} .

e A keyword and an identifier are case insensitive.

e Reserved keywords are:

SELECT, ALL, DI STINCT, TOP, OFFSET, INTO FROM WHERE,
GROUP, BY, HAVING ORDER, AS, UPLOAD, CRGCSS, JA N,
NATURAL, | NNER, OUTER, LEFT, RIGHT, FULL, ON, USI NG
I'N, OVERLAPS, COVERS, TRUE, FALSE, BETVEEN, LIKE, IN,
ASC, DESC, NOT, AND, OR, SHORT, | NT, LONG FLQAT,
DOUBLE, CHAR, DATE, TIME, TI MESTAMP, BOOLEAN, CHAR,

TI ME_I NTERVAL, PGCSI TI ON_2D, REG ON_2D.

e Un-reserved keywords are:

COUNT, M N, MAX, AVG SUM ACOS, ASIN, ATAN, ATANZ,
COS, COT, SIN, TAN, ABS, CElILING DEGREES, EXP, FLOOR,
LOG, LOGLO, MODE, PlI, POWER, RADI ANS, SQRT, RAND,
ROUND, TRUNCATE, GC DI STANCE, POSI TION, Cl RCLE, BOX,
JO N_CH 2, JO N_DI STANCE, | NFO SPECS, | NFO TABLES,

| NFO_COLUWNS, | NFO_FRAMES, | NFO_FUNCTI ONS.

e |dentifier that includes a non-permitted character, that is case-sensitive or that
matches the ADQL keywords SHALL be delimited by delimiters. Double
guotations are used a delimiter. Some examples are shown below:

SELECT “sel ect” FROM tabl e t
SELECT “O Fe” FROM table t
SELECT * FROM “2mass” t

¢ Theway of writing a delimiter within adelimited identifier isto repeat two
adjacent delimiters. E.g. “abc™def ” isaliteral expression of abc”def .

e Useof adelimited identifier is not encouraged.

Data type

ADQL defines five numeric data types (short, int, long, float, double), one character data
type (char), four date and time data types (date, time, timestamp, time_interval), one
boolean data type (boolenan), two geometric data type (position_2d, region_2d), and
array of numeric and character datatypes. A service specific datatype is aso allowed to
be used. The list of the defined datatypes are shown in Table 2. The time interval data
type isdefined as an “interval” data type in the standard SQL, however time _interval is
used in ADQL to distinguish from spatial interval. The geometric datatypes are not part
of the standard SQL, however these are introduced to express the spatial search condition
in more flexible way than “Region” function.

e A numeric, character, boolean and array of character datatypes SHALL be
supported.

7/1/2006 11:47 PM Page 10 of 26

Astronomical Data Query Language

e A time_interval, geometric and service specific datatype MAY be used.

o Literal expressions of numeric datatypes are:

<di gi ts>

<digits> . [<digits>] [e[+ | -] <digits>]
[<digits>] . <digits>[e[+ | -] <digits>]
<digits>e [+ | -] <digits>

e A litera expression of boolean is either ADQL keyword TRUE or FALSE.

o A literal expression of character and character array data types are a character or a
string delimited by single quotations.

o Literal expressions of the other data types are described by atype name followed
by a string expression delimited by single quotations. The datatype name MAY
be omitted if there is no ambiguity as to the type that the value must be in the
context.

[<type_name>] " <data_string> ’
e String expression dataltime data types are:
<date_string> =
<four _digits> - <two_digits> - <two_digits>

<tinme_string> =
<two_digits> : <two_digits>: <two_digits>
[. <digits>]
<timestanp_string> =
<date_string> T <tinme_string> | <Julian_day>
<tinme_interval _string> =
<digit> <unit> [<digit> <unit>]*
where <uni t > is either second, minute, hour, day, week, month, or year. Some
examples:
date ‘2006-06- 20’
time ‘23:40:24. 56’
ti mestanp ‘2006- 06- 20T23: 40: 24. 56"

ti mestanp ‘2453907.486111111'
time_interval ‘30 days 15 hours’

e Thetimezone SHOULD be the GMT.
e Theoperations allowed for the date/time data types are summarized in table 3.
e String expression of geometric datatypes are:

<position_string> = POSI TI ON <franme> <pos2>
<region_string> = Cl RCLE <frame> <pos2> <radi us>
7/1/2006 11:47 PM Page 11 of 26

Astronomical Data Query Language

| BOX <franme> <pos2> <size2>

The unit of the coordinates, region radius and sizes are aways a “degree”. Some
examples:

PCSI TI ON_2D ‘POSI TI ON FK5 120. 3 +20. 0

REG ON_2D ‘Cl RCLE ICRS 120.3 +20.0 1.0”

REG ON_2D ‘BOX GALACTIC_ Il 30.0 45.3 1.0 1.0

The operations allowed among the geometric datatypes are:

<position> I N <regi on>
<regi on> I N <regi on>

<r egi on> OVERLAPS <regi on>
<r egi on> COVERS <r egi on>

Some examples are:

SELECT * FROM catalog t WHERE Position(ra,dec) IN
Crcle(FK57, 20, 30, 1. 0)

SELECT t1.*, t2.*
FROM i mage t1, catalog t2
WHERE t1l.region IN
Crlce(FK5’,t2.ra,t2.dec, 1.0)

Service specific datatype MAY be defined and used. The literal expression of the
service specific datatype SHALL be described by a data type name followed by a
string expression delimited by single quotations as follows:

<type_nane> ' <val ue> ’.

Every column SHALL be assigned one of the Core data types, the extension data
types or the service specific datatypes. The basic binary and unary operators
shown in the table SHAL L be supported.

Basic binary
operators (upper = : .
Name Description arithmetic / logical Er?;; Basic Oggrt:g;l/ Coreand
operator, Ipwer: operators Predicate predicates Extension ID
comparison
operator)
+ - *
signed two-) BETWEEN
SO pyteinteger | = <> <= < >= | * IN Core
>
+ - *
. signed four-) BETVEEN
nt byte integer = <> <= < >= * I'N Core
>
. signed eight- v ¥ w o= BETWEEN Core

7112006 11:47 PM

Page 12 of 26

Astronomical Data Query Language

byte integer =@ 2= < 5= I'N
>
Single + - %/
precision) BETWEEN
float | £ cating- = <=<> | T IN Core
point number >
Double + - *
precision) BETVEEN
double Tarir: > <= < >= + N Core
point number >
Core, CON
one-byte (concatenation
et character — <> <= < >= LIKE "IN operator
> support)
Cor e, DOP
date calendar date +() BETVEEN | = (%) (dateftime
= <> <= < >= I'N ’ operator
> support)
time time of day S @ @s @ S +(") BE"I—V,\\IEEN +, - Cor e, DOP
>
. date and BETWEEN (*)
timestamp g S @ @s @ S I'N +, - Cor e, DOP
>
. AND OR
boolean tgg;g; NOT Core
char*, array of
charn] character > <= < >= LIKE IN Cor e, CON
>
short[n],
int[n], NAR (aray of
long[n], :J;ybg numeric data
J(l)oztg[],] type support)
uble[n
P I TV (interval
interval timeinterval ;) data type
support)
GEO
IN (astronomical
. position on a coordinate
sition_2D ; OVERLAPS
PO — 2D plain COVERS data types and
operators
support)
region_2D rzegi;”a?ga OVERLAPS GEO
COVERS

Table 2: Data types of ADQL. ¢ Refer table 3 for actual allowed operations.
7/1/2006 11:47 PM Page 13 of 26

Astronomical Data Query Language

A B date time timestamp | time_interval int double
date - + - + - + -
time + + -

timestamp - + -

time_interval + + + - * *
int *
double *

Table 3: Matrix of allowed data/time operations. Allowed operators for A <op> B are shown.

The result of operation follows the SQL standard.

Aggregate Function

ADQL defines six aggregate functions. The functionality of the aggregate functions
is the same as the standard SQL. Count(*) is a mandatory function and SHOULD be
supported. The others are optional function and MAY be supported. If the optional
aggregate function is supported, extension ID of “AGR” SHOULD be provided as ADQL

extension metadata.

Function Argument type Retumn type description Core or Extension ID
Count(*) long Core
Count(JALL |
DISTINCT] any long AGR
expression)
Min([ALL | Numeric char
DISTICT] char{n] _omeas Ehee AGR
expression) date/time 9 yp
Max([ALL | Numeric char
DISTINCT] char{n] _omeas Ehee AGR
expression) date/time 9 yp
Long for
SUm([ALL | argument of
DISTINCT] Numeric integer type, AGR
expression) doublefor
floating type
Avg([ALL |
DISTINCT] number double AGR
expression)

Table 4: ADQL aggregate functions.

7/1/2006 11:47 PM

Page 14 of 26

Astronomical Data Query Language

Function
ADQL defines functions listed in table 5.

e Support of the basic functions is not mandatory, however they are
RECOMMEDED to be supported.

e Support of the advanced functions is not mandatory, and MAY be supported.
Extension IDs are not assigned to those functions, instead the supported
functions SHOUL D be provided as function metadata.

e Position function takes one optional frame parameter and two double type
coordinates parameters, and returns aposition_2d type value corresponding to
the specified position.

Position“(” [‘<frame>’] <coordl> <coord2>“)"”

where, <coor d1> isadouble value expression for first coordinate of a
position in two dimensional space, and <coor d2> isfor its second coordinate.

If coordinates parameters are specified by columns for which frame metadatais
defined, the frame parameter MAY be omitted. Otherwise the frame parameter
SHOUL D not be omitted. The frame parameter SHOULD be ignored if the
coordinate parameters are assigned frame metadata. The two coordinate
parameters SHOUL D have acommon frame metadata. As a shorthand, the
function name “Position” MAY be omitted, which reduces the complexity to
write aregion using a position function. The following examples shows valid
and invalid usages:
Position(ra, dec) (vaid),
Posi tion(*FK5 J2000’, 20.0 +10.0) (valid),
Position(‘I CRS’, ra, dec) (vaid but ‘ICRS isignored),
Position(dec, ra) (invaid),
Position(ra, mag) (invalid),
Position(‘ICRS’, nmmg, nag) (vaid, but result might be
meaningless)
where r a, dec, mag represent columns of right ascension, declination and

magnitude of brightness, respectively, and frame metadata of “FK5 J2000” is
assigned to the raand dec column.

e GC_distance function calculates agreat circle distance between two
positions on a spherical plane. The two positions are specified in the following
forms:

GC di stance™(” [‘<frame>’], <coordl>, <coord2>,
[‘<frane>"], <coordl>, <coord2> “)”
| GC_dinstance™(” <position> <position> “)”
In the first form, the first three parameters including the optional frame
parameter specify the first position and the next three parameters specify

7/1/2006 11:47 PM Page 15 of 26

Astronomical Data Query Language

another position. The frame parameter MAY be omitted or ignored under the
same condition with the Position function. The requirement for the coordinate
parameters (same frame) are a so the same as those for the Position function.

In the second form, the two positions are specified by parameters of position_2d
datatype.

. Circle and Box functions return avalue of region_2d data type that corresponds
to the specified region of circle and box shapes, respectively.

Crcle “(” <position> <radius> “)”
Crcle “(” [‘<frame>’,] <coordl>, <coord2>,
<radi us> “)”
Box (<position> <sizel> <size2>)
Box ([<frame>,] <coordl>, <sizel> <size2>)

. Join_chi2 function is used to join multiple tables based on the angular distances
of objects’ positions and on the errors of the coordinates. The chi squareis
calculated for a combination of objects of each table, and if it islessthan a
specified va ue the function returns true. Otherwise it returns fal se.

Join_chi2 “(” <tables> <sigm> “)”
<tabl es> = ‘<table>, [!]<table>, [,
[!]<table>]*"

Where <sigma> is the maximum value of chi-square to select records from the
cross joined tables. The exact algorithm is described in Appendix.

e Join_distance function isused to join multiple tables based on only the angular
distance between the two specified positions. If the two specified position is
neare than a specified distance, it returns true. Otherwise it returns false.

Joi n_di stance “(” [<frane>], <coordl>, <coord2>,
[<frame>], <coordl>, <coord2>, <max_di stance>
\\) r”
Joi n_di stance “(” <position>, <position>,
<max_di stance> “)”

where <max_distance> is a maximum angular distance in degree to select

records.
Name Return type Comment Extension ID

acos(x) double Basic function. Inverse cosine. BFN (Basic
function
support)

asin(x) double Basic function. Inverse sine. BFN

atan(x) double Basic function. Inverse tangent. BFN

atan2(x,y) double Basic function. Inverse tangent of x/y. BFN

cos(x) double Basic function. Cosine. BFN

7/1/2006 11:47 PM Page 16 of 26

Astronomical Data Query Language

cot(x) double Basic function. Cotangent. BFN
sin(x) double Basic function. Sine. BFN
tan(x) double Basic function. Tangent. BFN
abs(x) double Basic function. Absolute value. BFN
ceiling(x) double Basic function. Smallest integer not less BFN

than argument.
degrees(x) double Basic function. Radians to degrees. BFN
exp(x) double Basic function. Exponetial . BFN
floor(x) double Basic function. Larget integer not greater BFN

than argument.
log(x) double Basic function. Natural logarithm. BFN
1og10(x) double Basic function. Base 10 logarithm. BFN
mod(x, y) double Basic function. Remainder of y/x. BFN
pi() double Basic function. Pi congtant. BFN
power(X, y) double Basic function. X raised to the power of Y. BFN
radiang(x) double Basic function. Degreeto radians. BFN
sqrt(x) double Basic function. Squareroot. BFN
rand() double Basic function. Random value between 0.0 | BFN

and 1.0.
round(x, n) double Basic function. Round to nearest integer. BFN
truncate(x, n) double Basic function. Truncateto n decimal BFN

places.
GC _Distance(pl, p2) or | double Advanced function. See text. Not assigned.
GC_Distance(framel, x1,
y1, frame2, x2, y2)
Paosition(x1, x2) or position_2d ADVANCED. See text. Not assigned.
Paosition(frame, x1, x2)
Circle(x1, x2, z) or region_2d ADVANCED. See text. Not assigned.
Circle(p, 2)
Box(x1,y1, z1,z2) or region_2d ADVANCED. See text. Not assigned.
Box(p, s, z2)
join_chi2(s, x) boolean ADVANCED. See text. Not assigned.
join_distance(x1, y1, x2, boolean ADVANCED. See text Not assigned.
y2, z) or join_distance(pl,
p2, 2)

Table 5: ADQL Functions. Where x*, y* and z* represents double, n integer,

7/1/2006 11:47 PM

and s array of character.

p* position_2d

Page 17 of 26

Astronomical Data Query Language

Metadata Query

M etadata about grammar specifications, tables, columns, functions, supported frames and
so on SHALL be able to be queried by an ADQL core syntax, which means metadata
tables for them exits. The name of the metadata tables are prefixed by “I NFO_”.

M etadata of all the table including metadata table as well as datatables SHALL be

registered in al NFO_TABLES table. For an example, following query returns metadata
of atable named “tableName”.

SELECT *
FROM | NFO_TABLES

VWHERE t abl e_nane = ‘tabl eNane’
This document defines mandatory metadata tables ant contents of them. Any service
specific metadata MAY be added to any of the mandatory metadata tables and/or service
specific metadata table.

e Metadatatable “I NFO_SPECS” SHALL have the following columns:
— adql_version: (char*) Supported ADQL version number.
— extention_id: (char[3]) Supported ADQL extension Ids

e Metadatatable “I NFO_TABLES” SHALL have the following columns:
— table_name : (char*) name of atable.
— description : (char*) description of the table.

— max_records : (long) maximum number of returned records if known,
otherwise —1.

— row_count : (long) number of records if known, otherwise -1.

— rank: (int) relative importance of the table if know, otherwise —1. Put alarger
value for amore important table

— ucd : (char*) ucd of thetable.

— class : (char*) class name of the table. The following classis defined as a
canonical name: “genera”, “objects’, “image”, “spectrum”.

— pos_coordl: Name of acolumn that is referred to as afirst coordinate in a
region search.

— pos_coord2: Name of a column that is referred to as a second coordinate in a
region search.

— last_modified: (timestamp) last modified time of contents of a table.
e Metadatatable “l NFO_COLUMNS” SHALL have the following columns:
— column_name: (char*) name of a column. [REQ]
— table_name: (char*) name of atable to which the column belong to. [REQ]

7/1/2006 11:47 PM Page 18 of 26

Astronomical Data Query Language

description: (char*) description of the column.

data_type: (char*) data type of the column. [REQ]

unit: (char*) unit of the column value.

arraysize: (char*) dimension of the column value. Positive integer or “*”.

[REQ]
— precision: (char*) precision of the column value.
— ucd: (char*) UCD of the column.
— utype: (char*) UTY PE of the column.

— ordinal_position: (char*) position number (>=0) of the column in the table.

[REQ]

— primary_key: (bolean) true if acolumn isprimary key. Multiple primary keys
are allowed in atable.

— rank: (int) relative importance of the table if known, otherwise —1. Put alarger
value for amore important column.

o Metadatatable “I NFO_FUNCTI ONS” SHALL have the following columns:
— function_name: name of afunction.
— description: description of the function.
— return: return data of the function.
— arguments: List of arguments data types.
e Metadatatable “l NFO_FRAMES” SHALL have the following columns:
— table_name: name of atable.

— frame: supported frames for the tables in regiona query.

Version information

ADQL/x documents SHALL contain a version identifier for the version of ADQL. This
will start as 1.0. The version number is a dot separated string of numbers. The version
number is included in the document solely so the receiving node may decide if it wishes
to deal with the document or to return an exception. This is assumed to only come into
use at some later stage when there may be a major version change causing some possible
incompatibility between versions.

ADQL example
An ADQL/s might be as follows:

SELECT a.objid, a.ra, a.dec
7/1/2006 11:47 PM Page 19 of 26

Astronomical Data Query Language

FROM Phot opri mary a
VWHERE Regi on(' Cl RCLE FK5 181.3 -0.76 6.5")

Thiswould be represented in ADQL/x as follows:

<?xm version="1.0" encodi ng="utf-8"?>
<Sel ect xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schemnma"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns="http://ww.ivoa. net/xm /ADQ/v1. ?">
<Sel ecti onLi st >
<Item xsi:type="col umRef erenceType" Tabl e="a" Nanme="objid" />
<Item xsi:type="col umRef erenceType" Tabl e="a" Nanme="ra" />
<Item xsi:type="col umRef erenceType" Tabl e="a" Nanme="dec" />
</ Sel ecti onLi st >
<Fr onp
<Tabl e xsi:type="tabl eType" Name="Photoprimary" Alias="a" />
</ Fron®
<Wher e>
<Condi tion xsi:type="regi onSear chType" >
<Regi on xm ns:stc="http://ww.ivoa. net/xm /STC stc-v1l. 30. xsd"
Xsi :type="stc: STCRegi on"
xlink:href="ivo://STA i b/ Coor dSys#UTC- FK5- TOPO'
i d="UTC FK5- TOPO' >
<stc:Circle coord_system.i d="UTC- FK5- TOPO' >
<stc: Center unit="deg”>
<stc: C1>181. 3<stc: Cl><std: C2>- 0. 76<stc: C2>
</stc: Center>
<stc: Radi us>6. 5</ st c: Radi us>
<stc:Crcle>
</ Regi on>
</ Condi ti on>
</ V\her e>
</ Sel ect >

ADQL XSD

The XML schemafor ADQL is found at http://www.ivoanet/xml/ADQL/ADQL -
v1.?2.xsd.

Changes from previous versions
¢ None. Thisisthe first release.
References
¢ |VOA SkyNode Interface 1.? http://www.ivoanet/Documents/latest/SNI.html

e |SO/IEC 9075-2 Foundation (SQL/Foundation)
e ADQL XML schema. http://www.ivoa.net/xml/ADQL/ADQL-v1.?.xsd

7/1/2006 11:47 PM Page 20 of 26

Astronomical Data Query Language

e Space-Time Coordinates for the Virtual Observatory Version 1.30
http://www.ivoa.net/xml/STC/ST Cregion/v1.30

7/1/2006 11:47 PM Page 21 of 26

Astronomical Data Query Language

Appendix A ADQL Grammar

A- 1 BNF for Core Query Syntax

<sel ect _core> = [<comment >]
SELECT [TOP <unsi gned_i nteger>]
([<table_alias> .] ™7 | count “(” “*7)~
| <colum_list>)
FROM <table name> [AS] <table_ alias>
[WHERE <condition_core>] [<comrent>]

<comment> =/ “*7” <string> “*” [/

<colum_list> = <colum> [, <colum>]*
<colum> = [<table_alias> “.”] <colum_nane>
[[AS] <alias>]

<condition_core> =
<regi on_function> [AND <sqgl _condition>]
| <sgl _condition> [AND <region_function>]
[AND <sqgl _condition>]]
<regi on_function> = REGION “(” ' <region_string> " “)”
<region_string> = <box_string> | <circle_string>

<box_string> = BOX <frame> [<unit>] <coordl> <coord2>
<si ze2> <si ze2>

<circle_string> = CIRCLE <frame> [<unit>] <coordl>
<coor d2> <radi us>

<sqgl _condition> = <bool ean_val ue>

<bool ean_val ue> = <bool ean_t er n»
| <bool ean_val ue> OR <bool ean_ternp

<bool ean_ternm> = <bool ean_f act or >
| <bool ean_ternm> AND <bol ol ean_f act or >

<bool ean_factor> = [NOT] <bool ean_pri mary>

<bool ean_primary> = <conpari son_predi cat e>
| <null _predicate> | <between_predicate>
| <in_predicate> | <like_predicate>
| <bool ean_val ue_functi on>

7/1/2006 11:47 PM Page 22 of 26

Astronomical Data Query Language

| “(” <bool ean_val ue> “)”
<conpari son_predi cate> = <val ue_expressi on>
<comnpari son_oper at or > <val ue_expr essi on>

<corrpari son_operator> =
N\—r | w7 | NP4 | N/ WS | WS/ W= | AP

<bet ween_pr edi cat e> = <val ue_expr essi on>
[NOT] BETWEEN <literal> AND <literal >

<i n_predi cate> = <val ue_expression> [NOT] IN
“(” <literal> [, <literal>]*)~
<l i ke_predi cate> = <val ue_expressi on>
- [NOT] LIKE <string_pattern>

<val ue_expressi on> = <val ue_ternp

—_r

| <val ue_expression> (+ | -) <nuneric_value_terne

<val ue_term = <val ue_factor>
| <value_ternm> (“*” | [/) <value_factor>

<value_factor> =] + | -] <value_prinmary>

<val ue_pri mary> = <parent hesi sed_val ue_expr essi on>

| <unparent hesi sed_val ue_pri mary>

<par ent hesi zed_val ue_expressi on> =
“(” <val ue_expressi on> “)”

<unpar ent hesi sed_val ue_primary> =
<columm_reference> | <literal> | <function>

<aggregate_function> = count (*)

A- 2 BNF for Extended ADQL/s Syntax

<sel ect_e> = [<conment >]
SELECT [ALL | DISTINCT]
[OFFSET <unsigned_i nteger>]
[TOP <unsi gned_int eger>]
<selection_ |ist_e>
[INTO <store_reference>]
FROM <table |ist>
[WHERE <search_condition_e>]
[GROUP BY <group_itemlist>]
[HAVING <search_condition_e>]
[ORDER BY <order_list>] [<coment>]

<selection list e> = <table alias> .] “*~
| <aliased_select_itemlist>

7/1/2006 11:47 PM

Page 23 of 26

Astronomical Data Query Language

<aliased_select _itemlist> =
ali ased_select _item(, <aliased_select_itenr)*

<al i ased _select itenr =
<val ue_expression> [[AS] <alias>]
| <xpath_expression>|[[AS] <alias>]

<xpatch_exprssion> = / rel ative_el enent _path
[/7 @ attribute_nane]

<relative_el ement _path> =
<el enent _nane> [/ <el ement _nanme>]*

<aliased table list = <aliased_table>
[, <aliased table>]*
<al i ased_tabl e> = <al ased_table_primry> |
<al i ased_deri ved_t abl e>

<al iased_table_primary> = <db_table> | <votabl e>

<db_table> =] (<service_identifier> |
<short_nane>) :] <table name> [AS] <alias>

<vot abl e> = UPLOAD [<table nane>] [AS] <alias>

<al i ased_derived_table> = (<cross_joi n>
| <conditional _join>| <natural_join>
| “(” <select_e>)") [AS] <alias>

<cross_join> = <aliased_tabl e> CROSS JOIN
<al i ased_tabl e_pri mary>
<conditional join> = <aliased_table> [<join_type>] JOIN

<al iased _table primary> (ON <conpari son_predi cat e>
| USING “(” <colum_nane_list> “)”)

<natural _join> = <aliased_tabl e> NATURAL
[<join_type>]
JOIN <al i ased_t abl e_pri mary>

<join_type> = INNER | (LEFT | RIGHT | FULL) [OUTER]
<col um_name_list> = <col um_name> [, <col um_name>]*

<search_condi tion_e> =
<region_function> [AND <sgl _condition_e>]

| <sql _condition_e> [AND <region_function>]
[AND <sgl _condition>]]

<sqgl _condi tion_e> = <bool ean_val ue_e>

7/1/2006 11:47 PM Page 24 of 26

Astronomical Data Query Language

<bool ean_val ue_e> = <bool ean_term e>
| <bool ean_val ue_e> OR <bool ean_term e>

<bool ean_term e> = <bool ean_factor_e>
| <bool ean_term e> AND <bol ol ean_f actor_e>

<bool ean_factor_e> = [NOT] <bool ean_prinmary_e>

<bool ean_primary_e> = <conpari son_predi cate_e>
| <between_predicate> | <in_predicate>
| <like_predicate> | <bool ean_val ue_function>
| <exist_predicate> | <sone_predi cate>
| <all _predicate>

<conpari son_predi cate_e> = <val ue_expressi on>
<conpari son_operat or _e> <val ue_expressi on>

<conpari son_operat or _e> = <conpari son_oper at or >
| “]” | IN | OVERLAPS | COVERS

<group_itemlist> =
<val ue_expression> [, <val ue_expression>]*

<order_list> = <order_itenr [,
<order_itenpr |*

<order_itenr = <val ue_expression> [ASC | DESC]

Appendix B Algorithm of join_chi2 function

An example for the cross-matching a gorithm is a probabilistic calculation that minimizes
the chi-sguare parameter as defined by:

7= [-n)) g P Al eyt s]

where X, y, z are the Cartesian coordinates corresponding to the best estimate of ra and
dec, a isaweighting parameter calculated from the astrometric precision of the survey,
and A isthe Langrange multiplier in the minimization to ensure that the (x,y,z) isaunit
vector.

We compute four cumulative quantities at each cross-identification step — these are
1 X Fi Zs
@@= »— @, =¥, =y S a = —
2 _ D2 S D Vo D P

The best position is given by the direction of ‘%% The log-likelihood at that point is
given by

T f.2 N
¥r=a @, tay tag

7/1/2006 11:47 PM Page 25 of 26

Astronomical Data Query Language

e Thisisdivided by the number of surves, and compared to the tolerance. If a
Tuple’s log-likelihood exceeds this threshold, it return false. Otherwise true.

7/1/2006 11:47 PM Page 26 of 26

