
Astronomical Data Query Language

7/1/2006 11:47 PM Page 1 of 26

 International

 Virtual

 Observatory

Alliance

IVOA Astronomical Data Query Language
Version 1.05
IVOA Working Draft 29 May 2006

This version:

1.05: http://www.ivoa.net/Documents/WD/ADQL/ADQL－20060701.doc

Latest version:
 http://www.ivoa.net/Documents/latest/ADQL.html

Previous versions:
none

Working Group:
 http://www.ivoa.net/twiki/bin/view/IVOA/IvoaVOQL
Editors:
 Yuji Shirasaki, Maria A. Nieto-Santisteban, Masatoshi Ohishi, William
 O’Mullane, and Alexander Szalay
Authors:
 IVOA VOQL Working group

Abstract
This document describes the Astronomical Data Query Language (ADQL) and its two
representations as String (ADQL/s) and XML (ADQL/x). ADQL has been developed
based on SQL. This document describes the subset of the SQL grammar supported by

Astronomical Data Query Language

7/1/2006 11:47 PM Page 2 of 26

ADQL. Special extensions to SQL have been defined in order to support astronomy
specific operations such as a geometric data type and its functions.

Status of this document

This is an IVOA Working Draft for review by IVOA members and other interested parties.
It is a draft document and may be updated, replaced, or obsoleted by other documents
at any time. It is inappropriate to use IVOA Working Drafts as reference materials or to
cite them as other than “work in progress”.

Acknowledgments
This working draft has been developed based on discussions at various IVOA meetings
and continuing emails on the mailing list. The editors express their appreciation for many
valuable contributions by Naoki Yasuda, Clive Page, Bob Mann, Martin Hill, and many
others.

Contents

Abstract...1
Status of this document...2
Acknowledgments ...2
1 Introduction..3
2 Astronomical Data Query Language (ADQL) ...3
3 ADQL-s Core Syntax ...4
4 ADQL-s extension syntax ..6
5 Keyword, Identifier and delimited identifier...9
6 Data type...10
7 Aggregate Function ...14
8 Function ..15
9 Metadata Query...18
10 Version information..19
11 ADQL example ..19
12 ADQL XSD ..20
13 Changes from previous versions ...20
14 References ..20

Astronomical Data Query Language

7/1/2006 11:47 PM Page 3 of 26

Appendix A ADQL Grammar ...22
A- 1 BNF for Core Query Syntax ..22
A- 2 BNF for Full Query Syntax ..23

Introduction
The Astronomical Data Query Language (ADQL) is the language used by the
International Virtual Observatory Alliance (IVOA) to represent astronomy queries posted
to VO services. The IVOA has developed several standardized protocols to access
astronomical data, e.g., SIAP, and SSAP for image and spectral data respectively, and the
SkyNode Interface protocol to access catalogs. Different VO services have different
needs in terms of query complexity. For example, SIAP and SSAP might be satisfied
using a single table query. However, SkyNodes usually include more than one catalog
table which makes necessary richer language expressivity. ADQL has been designed in a
layered hierarchy so services implement and register the complexity level that meets their
needs. In this way, clients know what type of queries a VO service will accept.

ADQL is based on the Structured Query Language (SQL). The VO has a number of
tabular data sets and many of them are stored in Relational Databases (RDBs), making
SQL a convenient access language. ADQL focuses on a subset of the SELECT statement,
adding a few extensions to define specific astronomy operations like a geometric data
type and its function.

SkyNode services (often denoted as nodes) are an example of VO data services accepting
queries in ADQL. The mechanism of passing a query to a node is described in the
SkyNode Interface specification [�] developed by the IVOA VOQL WG as well.
SkyNodes are defined and implemented as XML Web services. To access some SkyNode
implementations you can visit OpenSkyQuery.net. The Open SkyQuery portal is an
example of how astronomers can use ADQL to query a federation of astronomical
databases which have been published as SkyNodes.

Astronomical Data Query Language (ADQL)
ADQL is based on a subset of SQL, which has been extended to support queries specific
to astronomy. ADQL has two representations:

ADQL/s : A string form based on the SELECT statement of the SQL standard [�]
that conforms to the ADQL grammar (see appendix). Some non-standard SQL
extensions have been added to support astronomy queries.

Astronomical Data Query Language

7/1/2006 11:47 PM Page 4 of 26

ADQL/x : An XML document conforming to the ADQL schema [�]. The XML
document is the mechanism used to pass a query to VO services as for example
the SkyNode Web service interface.

ADQL/s and ADQL/x are translatable to each other without loss of information, so this
document is mainly devoted to describe syntax of the ADQL/s and the way of mapping
from ADQL/s to ADQL/x is described briefly.

ADQL/s grammar is described in an extended BNF. The following conventions are used
through this document:

 optional items are enclosed in meta symbols [and],

 a group of items is enclosed in meta symbols (and),

 repetitive item (zero or more times) are followed by *.

 terminal symbols are enclosed by < and >.

 terminals of meta-symbol characters (=,[,],(,),<,>,*) are surrounded by
quotes (") to distinguish them from meta-symbols.

 case should be ignored otherwise stated.

ADQL/s grammar consists of CORE grammar and EXTENSIONS to it. The CORE
grammar is defined aiming for interoperability among all the data services, so it provides
just minimum functionality (selection and projection in the relational database term) so
that a service that conforms to the grammar is easily set up. The EXTENSIONS is
defined to enable the enhancement of service functionality. All VO services accepting
ADQL queries MUST conform to the CORE specification.

ADQL-s Core Syntax
 Syntax of core ADQL is as follow:

[<comment>]
SELECT [TOP <number>]
([<table_alias> .] “*” | count “(” “*” “)”
| <column_list>)
FROM <table_name> [AS] <table_alias>
[WHERE <condition_core>]
[<comment>]

 SELECT statement defines a query to a specified table. As a result of this query, a
subset of the table is returned. The order of the rows MAY be arbitrary. The order
of columns to return SHOULD be the same as the order as specified in the
<column_list> or the order defined on the original table if “*” is specified.

 TOP <number> construct is used to specify the maximum number of rows to
return. Any arbitrary rows MAY return.

Astronomical Data Query Language

7/1/2006 11:47 PM Page 5 of 26

 Selected data are either column values or the number of selected rows. An
expression like a+b is not supported in the core syntax, which is supported as an
extension.

 <column_list> is a list of columns to return, which is specified in a standard
SQL form, that is a list of comma separated column references. A column name
MAY be aliased, and MAY be qualified by a table alias name. Note that the table
name SHOULD NOT be used to qualify the column name. The column reference
is expressed as:

[<table_alias>.] <column_name> [[AS]
<alias_name>]

 “*” represents all the columns, and MAY be qualified by a table alias name.

 Count(*) is an aggregate function which returns the number of selected rows.

 Exactly one table SHALL be specified in the FROM clause. A table is specified
by a table name followed by an alias name. The table alias name MUST be
supplied.

 Selection condition <condition_core> is specified by a regional condition
and/or a non-regional condition. When both of the regional and non-regional
conditions are specified they SHALL be connected by “AND” logical operator.

 Non-regional condition is one of the following SQL boolean value expression:
- OR
- AND
- NOT
- <E> <comparison_op> <E>
- <E> [NOT] BETWEEBN <L> and <L>
- <E> [NOT] LIKE <pattern>
- <E> [NOT] IN “(” <L> [, <L>]* “)”
- <E> IS [NOT] NULL
- <boolean_value_function>
- “(” <boolean_value_expression> “)”

where is a boolean value expression, <E> is any type of value expression,
and <L> is a literal value. <comparison_op> supported in the Core syntax is
basic comparison operators listed in table 2. Wild cards that are used for
expressing a string pattern of a LIKE predicate are “_” and “%”. “_” matches a
single arbitral character and “%” matches arbitrary number (>=0) of characters.

 Regional condition SHOULD be supported for a table that has a set of columns
representing a position in a two dimensional space. Those columns SHOULD have

Astronomical Data Query Language

7/1/2006 11:47 PM Page 6 of 26

metadata related to their coordinate frame.
 Allowed region shapes for a regional condition are BOX and CIRCLE. The

region is expressed by a region shape type, a coordinate frame, an optional unit of
coordinates and region sizes, center coordinates, and region sizes. Two region sizes
measured along the two coordinate directions are specified in the case of BOX
region, while a radius is specified in the case of CIRCLE region. The unit of the
box sizes or radius is the same as the one of the center coordinate. The syntax of the
regional condition is:

REGION(‘BOX <frame> [<unit>] <c1> <c2>
<size1> <size2>’)

REGION(‘CIRCLE <frame> [<unit>] <c1> <c2>
<radius>’)

 <frame> is a frame name defined in the STC specification. A table that
supports regional search SHALL accept at least one of the frame names, which
SHALL be provided through a metadata query. A list of all the supported frame
names SHOULD also be provided through a metadata query. Several examples of
the frame expression are:

<frame> = FK4 [<epoch>] | FK5 [<epoch>]
| ECLIPTIC [<epoch>] | ICRS | GALACTIC_II

| …
<epoch> = J2000 | B1950 | …

 An aggregate function supported in core ADQL is count(*).
 A function support is not mandatory in core ADQL specification, however

RECOMMENDED to support basic functions list in table 5.
 Comments SHALL be supported using the /* … */ syntax to delimit comments.

Comments are only supported before and after the main query.

ADQL-s extension syntax
 Syntax of the extended ADQL is:

[<comment>]
SELECT [ALL | DISTINCT]

[OFFSET <unsigned_integer>]
[TOP <unsigned_integer>]
<selection_list_ext>
[INTO <store_reference>]
FROM <table_list>
[WHERE <search_condition_ext>]
[GROUP BY <group_item_list>]
[HAVING <search_condition_ext>]
[ORDER BY <order_list>]
[<comment>]

Astronomical Data Query Language

7/1/2006 11:47 PM Page 7 of 26

 ADQL SELECT statement defines a query to a derived table specified in the
FROM clause. As a result of this query, a subset of the table is returned. The
order of the rows MAY be arbitrary unless ORDER BY clause is specified. The
order of columns to return SHOULD be the same as the order as specified in the
<column_list> or the order defined on the original table if “*” is specified.

 SQL standard of ALL and DISTINCT construct is defined as an extension.

 OFFSET n construct is defined as an extension to skip the first n-records. It is
RECOMMENDED to use the OFFSET keyword along with the ORDER BY
keyword, since it is meaningless to use this if the order of rows is not specified.

 TOP n construct is used to return first n-rows from the offset position specified
by a OFFSET keyword. The combination of TOP, OFFSET and ORDERBY BY
can be used to retrieve a result by splitting it to smaller peaces. It is
recommended to order the record by primary keys, since most of the database
management system generates an index for the primary keys as a default, and
gives a better response.

 Selection list MAY include any value expression, such as a+b, a-b, a*b, a/b,
+a, -a, a*(b+c), where a, b and c represent a column, function or other
valid value expressions.

 INTO construct is defined as an extension to specify the VOSpace location
where the result is stored. The exact syntax of the VOSpace location is defined
in a separate specification.

SELECT g.* INTO VOS:/JHU/gal FROM galaxy g
WHERE g.redshift > 3.5

 Multiple tables separated by commas MAY be specified at a FROM clause.

 SQL standard of table join construct is defined as an extension. The following
join types are supported:

 CROSS JOIN

 INNER JOIN

 OUTER LEFT, RIGHT, FULL JOIN

 NATURAL JOIN

 USING JOIN

 In addition to the CORE search condition, following SQL standard predicates
are defined as an extension



 EXIST

 ALL

Astronomical Data Query Language

7/1/2006 11:47 PM Page 8 of 26

 SOME

 SQL standard GROUP BY clause is defined as an extension.

 SQL standard HAVING clause is defined as an extension.

 SQL standard ORDER BY clause is defined as an extension.

 #UPLOAD keyword MAY be used at a FROM clause to represents votables.
Using this syntax, table join between internal tables and external votables can be
described. A votable name, which is an attribute of a TABLE element, may be
followed to distinguish the multiple tables in votables. A syntax to refer to the
votable and it example are:

UPLOAD [<votable_name>] [AS] <alias>
FROM galaxy g, UPLOAD name1 vot1,

UPLOAD name2 vot2
 Subquery MAY be used at a FROM clause.

 Table name qualified by a service identifier MAY be supported to specify a table
that belongs to another SkyNode service. A short name of the service MAY be
specified, however note that it does not guaranty the uniqueness in the VO.

[(<service_identifier> | <short_name>) :]
<table_name>
e.g. ivo://jvo/sxds:tableName
e.g. sxds:tableName

 XPath expression in selection list and selection criteria MAY be supported.
Square brackets ([,]) and standard operators such as parent are NOT supported.
An example of a valid query of this form would be:

SELECT /Resource/Contact/Name
 FROM Resource
 WHERE /Resource/Type LIKE ‘catalog’

 Supported extensions SHOULD be provided through a metadata query using
extension IDs that are listed in table 1.

Extension ID Description of the extension

DST ALL or DISTINCT keyword.

OFF OFFSET keyword.

EXP Expressions (the four fundamental rules of arithmetic,
unary operation by + and -, and closed expression) in a
selection list.

Astronomical Data Query Language

7/1/2006 11:47 PM Page 9 of 26

INT INTO keyword.

TML Comma separated multiple tables in a FROM clause.

TJN Table joins: CORSS JOIN, INNER JOIN, OUTER
LEFT, RIGHT, FULL JOIN, NATURAL JOIN and
USING JOIN.

TID A table name qualified by a service identifier.

VOT #UPLOAD keyword to specify VOTables.

TSQ A derived table with a sub-query in a FROM clause

EXI EXISTS, ALL, SOME predicates in a WHERE clause.

GBY GROUP BY clause.

OBY ORDER BY clause.

HVN HAVING clause.

FUN BASIC functions.

CON Concatenation operator “|” for character and character
array data type.

DOP Data/Time operator

NAR Array of numeric data types

ITV Time interval data type

GEO Geometrical data type

AGR All the aggregate functions

Table 1: ADQL syntax extensions

Keyword, Identifier and delimited identifier
ADQL/s is constituted of a reserved and un-reserved keyword, identifier, delimited

identifier, and literal. A reserved keyword has a special meaning in ADQL and cannot be
used as an identifier. A un-reserved keyword has a special meaning in specific contexts
and can be used as an identifier in the other contexts. An identifier and a delimited
identifier are used to express a table name, column name, service specific function and
data type name, and alias name. A literal is used to express a constant value of each data
type.

 Reserved keywords MUST NOT be used as an identifier.

Astronomical Data Query Language

7/1/2006 11:47 PM Page 10 of 26

 A keyword and an identifier SHALL begin with a letter {a-z}. Subsequent
characters SHALL be letters, underscores ‘_’ or digits {0-9}.

 A keyword and an identifier are case insensitive.

 Reserved keywords are:
SELECT, ALL, DISTINCT, TOP, OFFSET, INTO, FROM, WHERE,
GROUP, BY, HAVING, ORDER, AS, UPLOAD, CROSS, JOIN,
NATURAL, INNER, OUTER, LEFT, RIGHT, FULL, ON, USING,
IN, OVERLAPS, COVERS, TRUE, FALSE, BETWEEN, LIKE, IN,
ASC, DESC, NOT, AND, OR, SHORT, INT, LONG, FLOAT,
DOUBLE, CHAR, DATE, TIME, TIMESTAMP, BOOLEAN, CHAR,
TIME_INTERVAL, POSITION_2D, REGION_2D.

 Un-reserved keywords are:
COUNT, MIN, MAX, AVG, SUM, ACOS, ASIN, ATAN, ATAN2,
COS, COT, SIN, TAN, ABS, CEILING, DEGREES, EXP, FLOOR,
LOG, LOG10, MODE, PI, POWER, RADIANS, SQRT, RAND,
ROUND, TRUNCATE, GC_DISTANCE, POSITION, CIRCLE, BOX,
JOIN_CHI2, JOIN_DISTANCE, INFO_SPECS, INFO_TABLES,
INFO_COLUMNS, INFO_FRAMES, INFO_FUNCTIONS.

 Identifier that includes a non-permitted character, that is case-sensitive or that
matches the ADQL keywords SHALL be delimited by delimiters. Double
quotations are used a delimiter. Some examples are shown below:

SELECT “select” FROM table t
SELECT “O/Fe” FROM table t
SELECT * FROM “2mass” t

 The way of writing a delimiter within a delimited identifier is to repeat two
adjacent delimiters. E.g. “abc””def” is a literal expression of abc”def.

 Use of a delimited identifier is not encouraged.

Data type
ADQL defines five numeric data types (short, int, long, float, double), one character data
type (char), four date and time data types (date, time, timestamp, time_interval), one
boolean data type (boolenan), two geometric data type (position_2d, region_2d), and
array of numeric and character data types. A service specific data type is also allowed to
be used. The list of the defined data types are shown in Table 2. The time interval data
type is defined as an “interval” data type in the standard SQL, however time_interval is
used in ADQL to distinguish from spatial interval. The geometric data types are not part
of the standard SQL, however these are introduced to express the spatial search condition
in more flexible way than “Region” function.

 A numeric, character, boolean and array of character data types SHALL be
supported.

Astronomical Data Query Language

7/1/2006 11:47 PM Page 11 of 26

 A time_interval, geometric and service specific data type MAY be used.

 Literal expressions of numeric data types are:
<digits>
<digits> . [<digits>] [e [+ | -] <digits>]
[<digits>] . <digits> [e [+ | -] <digits>]
<digits> e [+ | -] <digits>

 A literal expression of boolean is either ADQL keyword TRUE or FALSE.

 A literal expression of character and character array data types are a character or a
string delimited by single quotations.

 Literal expressions of the other data types are described by a type name followed
by a string expression delimited by single quotations. The data type name MAY
be omitted if there is no ambiguity as to the type that the value must be in the
context.

[<type_name>] ‘ <data_string> ’
 String expression data/time data types are:

<date_string> =
<four_digits> - <two_digits> - <two_digits>

<time_string> =
<two_digits> : <two_digits> : <two_digits>
[. <digits>]

<timestamp_string> =
<date_string> T <time_string> | <Julian_day>

<time_interval_string> =
<digit> <unit> [<digit> <unit>]*

where <unit> is either second, minute, hour, day, week, month, or year. Some
examples:

date ‘2006-06-20’
time ‘23:40:24.56’
timestamp ‘2006-06-20T23:40:24.56’
timestamp ‘2453907.486111111’
time_interval ‘30 days 15 hours’

 The timezone SHOULD be the GMT.

 The operations allowed for the date/time data types are summarized in table 3.

 String expression of geometric data types are:
<position_string> = POSITION <frame> <pos2>
<region_string> = CIRCLE <frame> <pos2> <radius>

Astronomical Data Query Language

7/1/2006 11:47 PM Page 12 of 26

| BOX <frame> <pos2> <size2>

 The unit of the coordinates, region radius and sizes are always a “degree”. Some
examples:

POSITION_2D ‘POSITION FK5 120.3 +20.0’
REGION_2D ‘CIRCLE ICRS 120.3 +20.0 1.0’
REGION_2D ‘BOX GALACTIC_II 30.0 45.3 1.0 1.0’

 The operations allowed among the geometric data types are:
<position> IN <region>
<region> IN <region>
<region> OVERLAPS <region>
<region> COVERS <region>

Some examples are:
SELECT * FROM catalog t WHERE Position(ra,dec) IN

Circle(‘FK5’,20,30,1.0)
SELECT t1.*, t2.*

FROM image t1, catalog t2
WHERE t1.region IN
Cirlce(‘FK5’,t2.ra,t2.dec,1.0)

 Service specific data type MAY be defined and used. The literal expression of the
service specific data type SHALL be described by a data type name followed by a
string expression delimited by single quotations as follows:

<type_name> ‘ <value> ’.
 Every column SHALL be assigned one of the Core data types, the extension data

types or the service specific data types. The basic binary and unary operators
shown in the table SHALL be supported.

Name Description

Basic binary
operators (upper =
arithmetic / logical
operator, lower =

comparison
operator)

Basic
unary

operators

Basic
Predicate

Optional
operators /
predicates

Core and
Extension ID

+ - * /
short signed two-

byte integer = <> <= < >=
>

+ - BETWEEN
IN Core

+ - * /
int signed four-

byte integer = <> <= < >=
>

+ - BETWEEN
IN Core

long
signed eight- + - * / + - BETWEEN Core

Astronomical Data Query Language

7/1/2006 11:47 PM Page 13 of 26

byte integer = <> <= < >=
>

IN

+ - * /
float

Single
precision
floating-
point number

= <> <= < >=
>

+ - BETWEEN
IN Core

+ - * /
double

Double
precision
floating-
point number

= <> <= < >=
>

+ - BETWEEN
IN Core

char one-byte

character = <> <= < >=
>

 LIKE IN |
Core,CON

(concatenation
operator
support)

date calendar date

= <> <= < >=
>

+(*) BETWEEN
IN +, -(*)

Core,DOP
(date/time
operator
support)

time time of day = <> <= < >=

>
+(*) BETWEEN

IN +, -(*) Core,DOP

timestamp date and

time = <> <= < >=
>

 BETWEEN
IN +, -(*) Core,DOP

AND OR
boolean Logical

boolean =
NOT Core

char*,
char[n]

array of
character = <> <= < >=

>
 LIKE IN | Core,CON

 short[n],
int[n],

long[n],
float[n],

double[n]

array of
number

NAR (array of
numeric data
type support)

interval time interval

 + - *

/(*)
ITV (interval

data type
support)

position_2D position on a

2D plain

IN

OVERLAPS
COVERS

GEO
(astronomical

coordinate
data types and

operators
support)

region_2D region on a

2D plane

IN
OVERLAPS
COVERS

GEO

Table 2: Data types of ADQL. (*) Refer table 3 for actual allowed operations.

Astronomical Data Query Language

7/1/2006 11:47 PM Page 14 of 26

B
A

date time timestamp time_interval int double

date - + + - + - + -
time + - + -

timestamp - + -
time_interval + + + + - * * /

int *
double *

Table 3: Matrix of allowed data/time operations. Allowed operators for A <op> B are shown.
The result of operation follows the SQL standard.

Aggregate Function
ADQL defines six aggregate functions. The functionality of the aggregate functions

is the same as the standard SQL. Count(*) is a mandatory function and SHOULD be
supported. The others are optional function and MAY be supported. If the optional
aggregate function is supported, extension ID of “AGR” SHOULD be provided as ADQL
extension metadata.

Function Argument type Return type description Core or Extension ID

Count(*) long Core

Count([ALL |
DISTINCT]
expression)

any long

AGR

Min([ALL |
DISTICT]
expression)

Numeric char
char[n]

date/time

Same as the
argument type

AGR

Max([ALL |
DISTINCT]
expression)

Numeric char
char[n]

date/time

Same as the
argument type

AGR

Sum([ALL |
DISTINCT]
expression)

Numeric

Long for
argument of
integer type,
double for

floating type

AGR

Avg([ALL |
DISTINCT]
expression)

number double

AGR

Table 4: ADQL aggregate functions.

Astronomical Data Query Language

7/1/2006 11:47 PM Page 15 of 26

Function
ADQL defines functions listed in table 5.

 Support of the basic functions is not mandatory, however they are
RECOMMEDED to be supported.

 Support of the advanced functions is not mandatory, and MAY be supported.
Extension IDs are not assigned to those functions, instead the supported
functions SHOULD be provided as function metadata.

 Position function takes one optional frame parameter and two double type
coordinates parameters, and returns a position_2d type value corresponding to
the specified position.

Position“(” [‘<frame>’] <coord1>, <coord2>“)”
where, <coord1> is a double value expression for first coordinate of a
position in two dimensional space, and <coord2> is for its second coordinate.

If coordinates parameters are specified by columns for which frame metadata is
defined, the frame parameter MAY be omitted. Otherwise the frame parameter
SHOULD not be omitted. The frame parameter SHOULD be ignored if the
coordinate parameters are assigned frame metadata. The two coordinate
parameters SHOULD have a common frame metadata. As a shorthand, the
function name “Position” MAY be omitted, which reduces the complexity to
write a region using a position function. The following examples shows valid
and invalid usages:

Position(ra, dec) (valid),
Position(‘FK5 J2000’, 20.0 +10.0) (valid),
Position(‘ICRS’, ra, dec) (valid、but ‘ICRS’ is ignored),
Position(dec, ra) (invalid),
Position(ra, mag) (invalid),

Position(‘ICRS’, mag, mag) (valid, but result might be
meaningless)

where ra, dec, mag represent columns of right ascension, declination and
magnitude of brightness, respectively, and frame metadata of “FK5 J2000” is
assigned to the ra and dec column.

 GC_distance function calculates a great circle distance between two
positions on a spherical plane. The two positions are specified in the following
forms:

GC_distance“(” [‘<frame>’], <coord1>, <coord2>,
 [‘<frame>’], <coord1>, <coord2> “)”
| GC_dinstance“(” <position>, <position> “)”

In the first form, the first three parameters including the optional frame
parameter specify the first position and the next three parameters specify

Astronomical Data Query Language

7/1/2006 11:47 PM Page 16 of 26

another position. The frame parameter MAY be omitted or ignored under the
same condition with the Position function. The requirement for the coordinate
parameters (same frame) are also the same as those for the Position function.
In the second form, the two positions are specified by parameters of position_2d
data type.

 Circle and Box functions return a value of region_2d data type that corresponds
to the specified region of circle and box shapes, respectively.

Circle “(” <position>, <radius> “)”
Circle “(” [‘<frame>’,] <coord1>, <coord2>,

<radius> “)”
Box (<position>, <size1>, <size2>)
Box ([<frame>,] <coord1>, <size1>, <size2>)

 Join_chi2 function is used to join multiple tables based on the angular distances
of objects’ positions and on the errors of the coordinates. The chi square is
calculated for a combination of objects of each table, and if it is less than a
specified value the function returns true. Otherwise it returns false.

Join_chi2 “(” <tables>, <sigma> “)”
<tables> = ‘<table>, [!]<table>, [,

[!]<table>]*’
Where <sigma> is the maximum value of chi-square to select records from the
cross joined tables. The exact algorithm is described in Appendix.

 Join_distance function is used to join multiple tables based on only the angular
distance between the two specified positions. If the two specified position is
neare than a specified distance, it returns true. Otherwise it returns false.

Join_distance “(” [<frame>], <coord1>, <coord2>,
[<frame>],<coord1>, <coord2>, <max_distance>

“)”
Join_distance “(” <position>, <position>,

<max_distance> “)”
where <max_distance> is a maximum angular distance in degree to select
records.

Name Return type Comment Extension ID

acos(x) double Basic function. Inverse cosine. BFN (Basic
function
support)

asin(x) double Basic function. Inverse sine. BFN

atan(x) double Basic function. Inverse tangent. BFN

atan2(x,y) double Basic function. Inverse tangent of x/y. BFN

cos(x) double Basic function. Cosine. BFN

Astronomical Data Query Language

7/1/2006 11:47 PM Page 17 of 26

cot(x) double Basic function. Cotangent. BFN

sin(x) double Basic function. Sine. BFN

tan(x) double Basic function. Tangent. BFN

abs(x) double Basic function. Absolute value. BFN

ceiling(x) double Basic function. Smallest integer not less
than argument.

BFN

degrees(x) double Basic function. Radians to degrees. BFN

exp(x) double Basic function. Exponetial. BFN

floor(x) double Basic function. Larget integer not greater
than argument.

BFN

log(x) double Basic function. Natural logarithm. BFN

log10(x) double Basic function. Base 10 logarithm. BFN

mod(x, y) double Basic function. Remainder of y/x. BFN

pi() double Basic function. Pi constant. BFN

power(x, y) double Basic function. X raised to the power of Y. BFN

radians(x) double Basic function. Degree to radians. BFN

sqrt(x) double Basic function. Square root. BFN

rand() double Basic function. Random value between 0.0
and 1.0.

BFN

round(x, n) double Basic function. Round to nearest integer. BFN

truncate(x, n) double Basic function. Truncate to n decimal
places.

BFN

GC_Distance(p1, p2) or
GC_Distance(frame1, x1,
y1, frame2, x2, y2)

double Advanced function. See text. Not assigned.

Position(x1, x2) or
Position(frame, x1, x2)

position_2d ADVANCED. See text. Not assigned.

Circle(x1, x2, z) or
Circle(p, z)

region_2d ADVANCED. See text. Not assigned.

Box(x1, y1, z1, z2) or
Box(p, s1, z2)

region_2d ADVANCED. See text. Not assigned.

join_chi2(s, x) boolean ADVANCED. See text. Not assigned.

join_distance(x1, y1, x2,
y2, z) or join_distance(p1,
p2, z)

boolean ADVANCED. See text Not assigned.

Table 5: ADQL Functions. Where x*, y* and z* represents double, n integer, p* position_2d
and s array of character.

Astronomical Data Query Language

7/1/2006 11:47 PM Page 18 of 26

Metadata Query
Metadata about grammar specifications, tables, columns, functions, supported frames and
so on SHALL be able to be queried by an ADQL core syntax, which means metadata
tables for them exits. The name of the metadata tables are prefixed by “INFO_”.
Metadata of all the table including metadata table as well as data tables SHALL be
registered in a INFO_TABLES table. For an example, following query returns metadata
of a table named “tableName”.

SELECT *
FROM INFO_TABLES
WHERE table_name = ‘tableName’

This document defines mandatory metadata tables ant contents of them. Any service
specific metadata MAY be added to any of the mandatory metadata tables and/or service
specific metadata table.

 Metadata table “INFO_SPECS” SHALL have the following columns:

 adql_version: (char*) Supported ADQL version number.

 extention_id: (char[3]) Supported ADQL extension Ids

 Metadata table “INFO_TABLES” SHALL have the following columns:

 table_name : (char*) name of a table.

 description : (char*) description of the table.

 max_records : (long) maximum number of returned records if known,
otherwise –1.

 row_count : (long) number of records if known, otherwise -1.

 rank : (int) relative importance of the table if know, otherwise –1. Put a larger
value for a more important table

 ucd : (char*) ucd of the table.

 class : (char*) class name of the table. The following class is defined as a
canonical name: “general”, “objects”, “image”, “spectrum”.

 pos_coord1: Name of a column that is referred to as a first coordinate in a
region search.

 pos_coord2: Name of a column that is referred to as a second coordinate in a
region search.

 last_modified: (timestamp) last modified time of contents of a table.

 Metadata table “INFO_COLUMNS” SHALL have the following columns:

 column_name: (char*) name of a column. [REQ]

 table_name: (char*) name of a table to which the column belong to. [REQ]

Astronomical Data Query Language

7/1/2006 11:47 PM Page 19 of 26

 description: (char*) description of the column.

 data_type: (char*) data type of the column. [REQ]

 unit: (char*) unit of the column value.

 arraysize: (char*) dimension of the column value. Positive integer or “*”.
[REQ]

 precision: (char*) precision of the column value.

 ucd: (char*) UCD of the column.

 utype: (char*) UTYPE of the column.

 ordinal_position: (char*) position number (>=0) of the column in the table.
[REQ]

 primary_key: (bolean) true if a column is primary key. Multiple primary keys
are allowed in a table.

 rank: (int) relative importance of the table if known, otherwise –1. Put a larger
value for a more important column.

 Metadata table “INFO_FUNCTIONS” SHALL have the following columns:

 function_name: name of a function.

 description: description of the function.

 return: return data of the function.

 arguments: List of arguments data types.

 Metadata table “INFO_FRAMES” SHALL have the following columns:

 table_name: name of a table.

 frame: supported frames for the tables in regional query.

Version information
ADQL/x documents SHALL contain a version identifier for the version of ADQL. This
will start as 1.0. The version number is a dot separated string of numbers. The version
number is included in the document solely so the receiving node may decide if it wishes
to deal with the document or to return an exception. This is assumed to only come into
use at some later stage when there may be a major version change causing some possible
incompatibility between versions.

ADQL example
An ADQL/s might be as follows:

SELECT a.objid, a.ra, a.dec

Astronomical Data Query Language

7/1/2006 11:47 PM Page 20 of 26

FROM Photoprimary a
WHERE Region('CIRCLE FK5 181.3 -0.76 6.5')

This would be represented in ADQL/x as follows:

<?xml version="1.0" encoding="utf-8"?>
<Select xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://www.ivoa.net/xml/ADQL/v1.?">
 <SelectionList>
 <Item xsi:type="columnReferenceType" Table="a" Name="objid" />
 <Item xsi:type="columnReferenceType" Table="a" Name="ra" />

<Item xsi:type="columnReferenceType" Table="a" Name="dec" />
 </SelectionList>
 <From>
 <Table xsi:type="tableType" Name="Photoprimary" Alias="a" />
 </From>
 <Where>
 <Condition xsi:type="regionSearchType">
 <Region xmlns:stc="http://www.ivoa.net/xml/STC/stc-v1.30.xsd"

xsi:type="stc:STCRegion"
xlink:href="ivo://STClib/CoordSys#UTC-FK5-TOPO"
id="UTC-FK5-TOPO">
<stc:Circle coord_system_id="UTC-FK5-TOPO">

<stc:Center unit=”deg”>
<stc:C1>181.3<stc:C1><std:C2>-0.76<stc:C2>

</stc:Center>
<stc:Radius>6.5</stc:Radius>

<stc:Circle>
 </Region>
 </Condition>
 </Where>
</Select>

ADQL XSD
The XML schema for ADQL is found at http://www.ivoa.net/xml/ADQL/ADQL-

v1.?.xsd.

Changes from previous versions
 None. This is the first release.

References
 IVOA SkyNode Interface 1.? http://www.ivoa.net/Documents/latest/SNI.html

 ISO/IEC 9075-2 Foundation (SQL/Foundation)

 ADQL XML schema. http://www.ivoa.net/xml/ADQL/ADQL-v1.?.xsd

Astronomical Data Query Language

7/1/2006 11:47 PM Page 21 of 26

 Space-Time Coordinates for the Virtual Observatory Version 1.30
http://www.ivoa.net/xml/STC/STCregion/v1.30

Astronomical Data Query Language

7/1/2006 11:47 PM Page 22 of 26

Appendix A ADQL Grammar

A- 1 BNF for Core Query Syntax
<select_core> = [<comment>]
SELECT [TOP <unsigned_integer>]
([<table_alias> .] “*” | count “(” “*” “)”
| <column_list>)
FROM <table_name> [AS] <table_alias>
[WHERE <condition_core>] [<comment>]

<comment> = / “*” <string> “*” /

<column_list> = <column> [, <column>]*
<column> = [<table_alias> “.”] <column_name>

[[AS] <alias>]

<condition_core> =
<region_function> [AND <sql_condition>]
| <sql_condition> [AND <region_function>]
[AND <sql_condition>]]

<region_function> = REGION “(” ‘ <region_string> ’ “)”
<region_string> = <box_string> | <circle_string>

<box_string> = BOX <frame> [<unit>] <coord1> <coord2>
<size2> <size2>

<circle_string> = CIRCLE <frame> [<unit>] <coord1>
<coord2> <radius>

<sql_condition> = <boolean_value>

<boolean_value> = <boolean_term>
| <boolean_value> OR <boolean_term>

<boolean_term> = <boolean_factor>
| <boolean_term> AND <bololean_factor>

<boolean_factor> = [NOT] <boolean_primary>

<boolean_primary> = <comparison_predicate>
| <null_predicate> | <between_predicate>
| <in_predicate> | <like_predicate>
| <boolean_value_function>

Astronomical Data Query Language

7/1/2006 11:47 PM Page 23 of 26

| “(” <boolean_value> “)”
<comparison_predicate> = <value_expression>

<comparison_operator> <value_expression>

<comparison_operator> =
“=” | “>” | “<” | “<” “>” | “>” “=” | “<” “=”

<between_predicate> = <value_expression>
[NOT] BETWEEN <literal> AND <literal>
<in_predicate> = <value_expression> [NOT] IN

“(” <literal> [, <literal>]* “)”
<like_predicate> = <value_expression>

- [NOT] LIKE <string_pattern>
<value_expression> = <value_term>

| <value_expression> (+ | -) <numeric_value_term>
<value_term> = <value_factor>

| <value_term> (“*” | /) <value_factor>

<value_factor> = [+ | -] <value_primary>

<value_primary> = <parenthesised_value_expression>
| <unparenthesised_value_primary>

<parenthesized_value_expression> =
“(” <value_expression> “)”

<unparenthesised_value_primary> =
<column_reference> | <literal> | <function>
<aggregate_function> = count(*)

A- 2 BNF for Extended ADQL/s Syntax
<select_e> = [<comment>]

SELECT [ALL | DISTINCT]
[OFFSET <unsigned_integer>]
[TOP <unsigned_integer>]
<selection_list_e>
[INTO <store_reference>]
FROM <table_list>
[WHERE <search_condition_e>]
[GROUP BY <group_item_list>]
[HAVING <search_condition_e>]
[ORDER BY <order_list>] [<comment>]

<selection_list_e> = [<table_alias> .] “*”

| <aliased_select_item_list>

Astronomical Data Query Language

7/1/2006 11:47 PM Page 24 of 26

<aliased_select_item_list> =
aliased_select_item (, <aliased_select_item>)*

<aliased_select_item> =
<value_expression> [[AS] <alias>]
| <xpath_expression> [[AS] <alias>]

<xpatch_exprssion> = / relative_element_path
[/ @ attribute_name]

<relative_element_path> =
<element_name> [/ <element_name>]*

<aliased_table_list = <aliased_table>

[, <aliased_table>]*
<aliased_table> = <alased_table_primary> |

<aliased_derived_table>
<aliased_table_primary> = <db_table> | <votable>

<db_table> = [(<service_identifier> |
<short_name>) :] <table_name> [AS] <alias>

<votable> = UPLOAD [<table_name>] [AS] <alias>

<aliased_derived_table> = (<cross_join>
| <conditional_join> | <natural_join>
| “(” <select_e> “)”) [AS] <alias>

<cross_join> = <aliased_table> CROSS JOIN
<aliased_table_primary>

<conditional_join> = <aliased_table> [<join_type>] JOIN
<aliased_table_primary> (ON <comparison_predicate>
| USING “(” <column_name_list> “)”)
<natural_join> = <aliased_table> NATURAL

[<join_type>]
JOIN <aliased_table_primary>

<join_type> = INNER | (LEFT | RIGHT | FULL) [OUTER]
<column_name_list> = <column_name> [, <column_name>]*

<search_condition_e> =
<region_function> [AND <sql_condition_e>]
| <sql_condition_e> [AND <region_function>]
[AND <sql_condition>]]

<sql_condition_e> = <boolean_value_e>

Astronomical Data Query Language

7/1/2006 11:47 PM Page 25 of 26

<boolean_value_e> = <boolean_term_e>
| <boolean_value_e> OR <boolean_term_e>

<boolean_term_e> = <boolean_factor_e>
| <boolean_term_e> AND <bololean_factor_e>

<boolean_factor_e> = [NOT] <boolean_primary_e>

<boolean_primary_e> = <comparison_predicate_e>
| <between_predicate> | <in_predicate>
| <like_predicate> | <boolean_value_function>
| <exist_predicate> | <some_predicate>
| <all_predicate>

<comparison_predicate_e> = <value_expression>
<comparison_operator_e> <value_expression>

<comparison_operator_e> = <comparison_operator>
| “|” | IN | OVERLAPS | COVERS

<group_item_list> =
<value_expression> [, <value_expression>]*

<order_list> = <order_item> [,
<order_item>]*

<order_item> = <value_expression> [ASC | DESC]

Appendix B Algorithm of join_chi2 function
An example for the cross-matching algorithm is a probabilistic calculation that minimizes
the chi-square parameter as defined by:

where x, y, z are the Cartesian coordinates corresponding to the best estimate of ra and
dec, a is a weighting parameter calculated from the astrometric precision of the survey,
and  is the Langrange multiplier in the minimization to ensure that the (x,y,z) is a unit
vector.

We compute four cumulative quantities at each cross-identification step – these are

<
The best position is given by the direction of The log-likelihood at that point is
given by

Astronomical Data Query Language

7/1/2006 11:47 PM Page 26 of 26

 This is divided by the number of surves, and compared to the tolerance. If a
Tuple’s log-likelihood exceeds this threshold, it return false. Otherwise true.

