

 1

 International

 Virtual

 Observatory

Alliance

Ontology of Astronomical Object Types

Version 1.0
IVOA Working Draft 2007 Feb 19

This version:
 http://ivoa.net/Documents/WD/Semantics/AstrObjectOntology-20070219.html
Latest version:
 http://www.ivoa.net/Documents/latest/AstrObjectOntology.html
Previous version(s):

Editors:
 S. Derriere
 A. Preite Martinez
 A. Richard

Author(s):

L. Cambrésy – cambresy@astro.u-strasbg.fr
 S. Derriere – derriere@astro.u-strasbg.fr
 P. Padovani – ppadovan@eso.org
 A. Preite Martinez – andrea.preitemartinez@iasf-roma.inaf.it
 A. Richard – richard@astro.u-strasbg.fr

Abstract
The Semantic Web and ontologies are emerging technologies which enable
advanced knowledge management and sharing. Their application to Astronomy
can offer new ways of sharing information between astronomers, but also
between machines or software components and allow inference engines to
perform reasoning on an astronomical knowledge base.

This document presents the current status of an ontology describing knowledge

 2

about astronomical object types, originally based on the standardization of
objects types used in the SIMBAD database. Specifically, this ontology of defined
concepts is designed to enable advanced reasoning on astronomical object
types. The possibilities offered by such a system are semi-automatic or fully-
automatic applications such as checking the semantic consistency of databases
entries, providing new means of building or refining queries and suggesting
object types matching a description.

Status of this document

This is an IVOA Working Draft for review by IVOA members and other interested
parties. It is a draft document and may be updated, replaced, or obsoleted by
other documents at any time. It is inappropriate to use IVOA Working Drafts as
reference materials or to cite them as other than “work in progress”..

A list of current IVOA Recommendations and other technical documents can be
found at http://www.ivoa.net/Documents/.

Acknowledgments

The Active Galaxy Nuclei section of the ontology is currently being made in
collaboration with Paolo Padovani of ESO, the Young Stellar Objects and diffuse
matter sections with Laurent Cambrésy of the CDS and the variable star and
emission nebulae sections with Andrea Preite Martinez of INAF-Roma.

 3

Contents

 Status of this document 1
 Acknowledgments 2
 Abstract 2
 Contents 3
1 Introduction 5
2 Ontology Components 6
2.1 Concepts and Instances 6
2.2 Properties 6
2.3 Subsumption relationship 6
2.4 Concepts definitions 8

3 Ontology construction 8
3.1 Implementation choices 8
3.2 Limitations and issues 9
3.3 Construction cycle 11
3.4 The building process 11

3.4.1 Analysis 11
3.4.2 Building 12
3.4.3 Consistency Check 13
3.4.4 Overall complexity test 13
3.4.5 Real-use test 14

4 Ontology structure 14
4.1 Concepts 14

4.1.1 Two different kinds of concepts 14
4.1.2 The problem of compound objects 14
4.1.3 The description of astronomical objects 16
4.1.4 Global schema 16

4.2 Overview of the concept hierarchy 17
4.2.1 Top-level concepts 17
4.2.2 The AstrObject section 18
4.2.3 The AstroPortion section 23
4.2.4 The Morphology section 23
4.2.5 The EMSpectrumRange section 24
4.2.6 The Measurement section 24
4.2.7 The Process section 25
4.2.8 The SpectralCharacteristic section 25

4.3 The properties 26
4.3.1 Description of properties 26
4.3.2 An overview of the property subsumption hierarchy 28
4.3.3 Annotations 28

5 Applications 29
5.1 OWL API 29

5.1.1 Jena framework 29
5.1.2 Protégé-OWL API 29

5.2 Registry request builder 29
5.2.1 Why an ontology-based request builder? 29
5.2.2 Implementation method 30
5.2.3 The search for keywords 30

 4

5.2.4 Operation overview 31
5.2.5 Benefits of the registry request builder 32

6 Perspectives and challenges 32
6.1 Completing the ontology 32
6.2 Other use cases 32

 Annex A - Implementation choices 34
 The language of representation 34
 The reasoner 34
 The ontology editor 35

 Appendix B: Changes from previous versions 37
 Glossary 38
 References 39

 5

1 Introduction

Until now, the experiments on ontologies regarding astronomy have focused on
primitive concepts ontologies (i.e. non-defined concepts). With this work, we are
exploring the possibilities of defined concepts ontologies in the field of astronomy
(cf. section 2 for a presentation of the components of an ontology.)

Ontologies are structures representing and formalizing knowledge. They can be
used to guarantee the consistency of knowledge shared between men and
machines as well as between machines. Their use ranges from basic
classification in the case of primitive concepts ontologies to advanced inference
and reasoning in the case of defined concepts ontologies.

This possibility of automated consistency checks and inferences is what interest
us most. Indeed a few ontologies have been built to represent part of the
astronomical knowledge, but since they lack formal definitions of the concepts,
they allow very little reasoning. While this can be sufficient in some cases, it
tremendously limits the application of the ontology. Though it is much more
difficult, we are willing to build such definitions to set-up a semantic layer allowing
to automate operations usually performed by humans since it is the human who
has the knowledge to do these operations.

To experiment on these possibilities, we are building an ontology of astronomical
object types along with some applications. This ontology is first based on the
standardization of object types1 used in the SIMBAD2 database. These choices
are motivated mainly by the possibilities offered by an astronomical knowledge
engine coupled to databases, like consistency checks of the semantics of the
database entries or advanced queries.

Last but not least, ontology-based systems are little dependent of the evolution of
the ontology. This means that when the astronomical knowledges evolves, one
just has to update the ontology accordingly and the systems exploiting it will take
the changes into account, unlike dedicated systems for which each change can
impact the whole system.

This document covers the following points: the basics of ontologies, the ontology
construction process, a global3 description of the ontology of astronomical object
types in its current state, its applications and, to conclude, some perspectives.

1 Objects and object types in SIMBAD refer to a categorization of the nature of
astronomical sources, not to objects and types as in object-oriented programming.
2 http://simbad.u-strasbg.fr/
3 A complete description of the ontology is available separately as a Javadoc-like
document.

 6

2 Ontology Components

The following sections will explain the basics of ontologies and description logics.
For a thorough introduction to Description Logics and their use in ontologies, one
can look into [Napoli, 2004], the first chapter of [Staab and Studer, 2004] and
[Napoli, 1997] .

2.1 Concepts and Instances
Ontologies are often defined as a representation of a conceptualization. Thus,
their most fundamental components are concepts (also called classes). A
Concept is an abstract object which defines the common features of a group of
concrete objects. The concrete objects are called instances or individuals.

e.g. All the stars are instances of the same concept Star.

A concept can be defined as the union of other concepts

2.2 Properties
A Property (also called role) represents a binary relationship between two
concepts or unions of concepts. The domain of a property is the concept to which
the property can be applied and the range of a property is the concept where the
property takes it value.

e.g. : To represent that infrared sources (concept InfraredSource) have an
emission in the infrared part of the electromagnetic spectrum (concept Infrared),
one can introduce the property hasEmissionIn, defined as follows:

2.3 Subsumption relationship
Both concepts and properties are organized into a hierarchy by the subsumption
relationship. It can be roughly summarized as a kind of a “is a” relationship,
meaning that children are more specific than their parents.

� Concept subsumption
 If A and B are two concepts, A is subsumed by B (B subsumes A)

Star

Sirius AlgolB HR 7001 HIP 12325

Abstract World
(Concepts)

Concrete World
(Instances)

Infrared
hasEmissionIn

InfraredSource

domain range

 7

 if and only if all the instances of A are instances of B
 e.g. the concept GiantStar is subsumed by the concept StellarObject

 The universal subsumer is called Thing or TOP and is always found at the
top of a subsumption hierarchy

N.B. A common mistake is to mistake the subsumption relationship for a “part of”
relationship and build a hierarchy that is really a hierarchy of components
(i.e. the concept Vehicle subsumes the concept Car but does not subsume the
concept Wheel because “a car is a vehicle” but “a wheel is a part of a vehicle, not
a kind of vehicle")

� Property subsumption
 If A and B are two properties, A is subsumed by B (B subsumes A)
 If and only if domain(A) is subsumed by domain(B)
 AND range(A) is subsumed by range (B)

 e.g.

StellarObject

isA

isA

isA

isA isA

isA

AstrObject

Thing

EMSpectrumRange

Infrared EMSource

InfraredSource

AstrObject Process
domain range

hasProcess

Eclipse EclipsingBinaryStar hasPeriodicP

B (A means ''A is
subsumed by B'')

 8

2.4 Concepts definitions
In a formal ontology, concepts can be either primitive (i.e. non-defined) or defined
by necessary and sufficient conditions and/or constrained by necessary
conditions. These conditions are expressed as restrictions on properties.

e.g. “An electromagnetic source is an astronomical object which has an emission
in some part of the electromagnetic spectrum” can be translated as :
 EMSource ≡ AstrObject and hasEmissionIn some EMSpectrumRange4

This means that any instance which verifies the conditions “AstrObject and
hasEmissionIn some EMSpectrumRange” is an instance of EMSource and that
this condition is true for every instance of EMSource.

One of the consequences of this is that subsumees inherit their subsumers'
necessary conditions (which is consistent with the “more specific kind of”
meaning of the subsumption relationship.)

3 Ontology construction

3.1 Implementation choices
The implementation of an ontology is a decisive matter since the different
implementations offer different capabilities and limitations. A detailed explanation
of the following implementation choices is available in Annex A

� The language of representation
Since we wanted to build an ontology of defined concepts, we needed a
formalism that would allow this. Description Logics5 is an adequate and mature
means of representing ontologies. Furthermore, the Web Ontology Language6
(OWL) is based on description logics and is probably the most widespread
language for describing ontologies. So we decided to describe our ontology using
Description Logics and to implement it in OWL-DL at best or in its recent
evolution OWL1.17 if expressiveness beyond OWL-DL was needed. Both of
these flavors are well-supported by existing reasoners and are the best
compromise between complexity and expressiveness.

� The reasoner
After testing the possible reasoners, we chose to use RACER 1.7.23 as our
reasoner since it is by far the best compromise. Though discontinued now, the
years of research and development on it make it at least as valuable and reliable
as its commercial counterpart RacerPro as well as any other inference engine.

4 For legibility purposes, the description logic syntax used in this document is the
Manchester-OWL syntax (cf. http://www.co-ode.org/resources/reference/manchester_syntax/)
5 http://wiki.eurovotech.org/twiki/bin/view/VOTech/DescriptionLogics
6 http://www.w3.org/TR/owl-guide/
7 http://owl1_1.cs.manchester.ac.uk/

 9

� The ontology editor
The last choice to make for the implementation is to select a graphic editor to
build and edit the ontology. We settled for Protégé-OWL [Horridge et al., 2004],
developed by the University of Stanford, which is currently both the most
complete and most intuitive graphic editor for ontologies.
Though the editor is well documented, we set up a page of advice8 to ensure
people willing to use Protégé would not be bothered by some minor problems we
were ourselves confronted with.

� Naming conventions
To be sure we had a unified syntax for the names in the ontology, we made the
following choices :
− The characters allowed are uppercase and lowercase letters only.
− Java-like naming: use uppercase letters and no spaces.

(e.g. PlanetaryNebulaShell)
− Concept names begin with an uppercase letter, property names begin with a

lowercase letter.
(e.g. PlanetaryNebulaShell / hasEmissionIn)

− At least during the construction phase, acronyms and shortened names are
strongly discouraged to avoid risks of mistakes or ambiguity.

3.2 Limitations and issues
The sheer nature of an ontology and the implementation choices imply some
limitations one has to be aware of when constructing the ontology.

� Conditions on concepts must be always true:
This is one of the greatest problems: since concepts describe what all of
their instances have in common, the conditions constraining or defining
them must be always true. Specifically, conditions that are “usually true” or
“true in most cases” or “true 95% of the time” are not allowed. However it
is important to notice that a statement is considered “true” if the
considered knowledge says so: if the knowledge evolves, so will the
ontology.

� Cardinality is allowed, qualified cardinality is allowed but discouraged:
Cardinality describes a restriction on the number of times a property has
the concept as its domain. Qualified cardinality also precises the range of
the property.
e.g. hasComponent maximum 2 (cardinality)

 hasComponent maximum 2 StellarObject (qualified cardinality))

Qualified cardinality is rather CPU-heavy, therefore it is strongly advised to
replace it by existential restrictions every time it is possible.

� Intervals and enumerations are acceptable:

8 http://wiki.eurovotech.org/twiki/bin/view/VOTech/ProtegeAdvice

 10

Still, both tend to degrade the performances and are therefore to be used
wisely.

e.g hasMeasurement some {SpectralTypeO,SpectralTypeB,SpectralTypeA}

� Restrictions on values are impossible:
You can describe a concept C has being the domain of a property but you
cannot describe C as having a given value for a property.

e.g. You can describe a concept Star as having a temperature, but you
cannot describe this concept as having a temperature of n Kelvin.

� Restrictions with variables are impossible:
There are no variables in description logics. Therefore some relationships
cannot be expressed, like for instance relationships between components
of a given compound object

e.g. you can express that each of both components of a double star
has a gravitational link with an instance of the same concept as the
other but you cannot express that they are linked one with the other.

� Complexity must not be too high:
If the structure is difficult to manipulate for the reasoner, like if there are
too many restrictions that are CPU-heavy (qualified cardinality,
enumerations...), even if the ontology is well-made, its exploitation in
applications will be jeopardized since the reasoning time will be too long
(cf. 3.4.4 Overall complexity test)

� Definitions must be adequate:
Definitions and restrictions in general must fit the use of the ontology. For
instance, if an application never manipulates data on the components of a
galaxy, defining galaxies via their components will be useless at best and
will degrade the overall performance of the application at worst. (cf. Note
in section 3.4.2)
It is important to remember that a usable ontology is not a universal
description. Indeed, it is impossible to have a perfect representation and
even if it were possible, the complexity would be so high that the structure
would be impossible to use and maintain.

� Size must be manageable
An overly detailed ontology, or covering too wide a field, is likely to
become illegible, hard to manage and would yield unrealistic reasoning
times.

� Naming issues
This is a minor problem since it has no impact on the correctness or the
use of the ontology. Still, it is better to have names describing as clearly
as possible concepts and properties. Furthermore, even if the end-user
will never see the ontology, it will be much easier to maintain if it is easy to
read. The only problem with naming is that most of the time names are

 11

ambiguous or misleading and finding a name which naturally evokes a
given concept or property is a very difficult task.

3.3 Construction cycle
There is no unified procedure for building ontologies. Still, it always comes down
to an iterative process like the following one. [Staab and Studer, 2004, [Uschold
and King, 1995]

� Analysis :
- What does the ontology conceptualize?
- What will it be used to do?
- Identifying the concepts.

� Building the ontology
- Defining the concepts.
- Building the subsumption hierarchies.
- Adding annotations.

� Evaluation
- Consistency checks.
- Efficiency tests
- Going back to building step for adjustments if needed

� Maintenance
- Tests in real use
- Update/evolution as needed (going back to the building step)

3.4 The building process

3.4.1 Analysis
We aim to build an ontology to be used as a knowledge layer over existing tools
such as the SIMBAD9 database of astronomical objects. More precisely, we want
to have a semantic tool which would be able to perform automatically operations
such as :

� Building advanced queries on astronomical databases or registries.
� Checking and validating the objects' classification in the SIMBAD

database.
� Making proposals to enhance the classification on SIMBAD objects when

new identifiers or measurements are added.

The idea to rely on an ontology comes from the possibilities of automatic

9 http://simbad.u-strasbg.fr/

Evaluation Building Analysis Maintenance

 12

reasoning allowed by the existing reasoners and APIs. The shortcoming is that to
be able to exploit these tools we have to build an ontology of defined concepts
(i.e. have as many concepts' definitions as possible.)

As for what the concepts of the ontology will be, since we planned to use the
ontology first with the SIMBAD object types10, we decided to first try and
represent these objects as concepts and then see if some concepts were lacking
or inadequate and eventually adjust the structure. This choice of representation
is adequate for the following reasons:

� Since we want to perform operations on astronomical objects and their
types, it is best to have a representation (including the definitions of the
concepts) that is as close as possible to that use.

� There are around 150 object types in SIMBAD, which makes an amount of
defined concepts low enough to keep the ontology core manageable.

3.4.2 Building
As exposed previously, the building process is iterative. Basically it can be
broken down to this :

� Finding conditions to constrain the concepts, fully defining them if
possible.

� Introducing the properties and/or concepts needed to build the conditions.
� Building the subsumption hierarchies of concepts and properties, taking

into account both the conditions expressed on the concepts and the
unexpressed knowledge we may have of these concepts.

� Adding the annotation properties we need for the applications.

e.g. To describe the concept DoubleStar, one can try to describe its components
:
 - a double star is an astronomical object
 - a double star is a system of objects
 - a double star is composed of exactly 2 objects
 - both of the components are stellar objects
Fortunately, these conditions are not only necessary but also sufficient.
Therefore, a possible definition of DoubleStar is:

DoubleStar ≡ AstrObject and hasComponent exactly 2
 and hasComponent only StellarObject

This is not the only definition of a double star and one must keep in mind that
depending on the uses of the ontology, other definitions could give better results
and that having multiple definitions can also be either a good or a bad thing. (e.g.
our definition of DoubleStar is worthless if we never manipulate the components
of systems)

10 Objects and object types in SIMBAD refer to a categorization of the nature of
astronomical sources, not to objects and types as in object-oriented programming.

 13

Having the previous definition, we need to make sure we have already declared
the property hasComponent and the concepts AstrObject and StellarObject. If we
have not, we must declare them before inputting the definition of DoubleStar.

The subsumption hierarchies can be either constructed by describing which
concept/property subsumes which, or they can be inferred by a reasoner. Our
choice was to build them ourselves and then run the reasoner to check if there
was no inconsistency or lack in our structure.

Last, we add annotation properties to our concepts. These annotations have no
impact on the reasoning but can be used to put labels on the different objects.
These labels can be either human-readable text (e.g. names, descriptions) or
information we want to link directly to the object, for example to use them when
accessing the ontology via an API (e.g. SIMBAD database codes).

3.4.3 Consistency Check
An important point is to be sure of the consistency of the ontology since an
inconsistent ontology would yield questionable results. Fortunately, this very
tedious task is well performed by some reasoners, thus we only have to launch
an automated procedure and wait a few seconds for the results. Obviously, given
the importance of the consistency and the convenience of automated tools, we
test the consistency after each set of changes we make, even if the changes are
supposed to be purely cosmetic.

3.4.4 Overall complexity test
Testing the ontology is done in two steps. First, we make sure that the complexity
of the structure is not going to be problematic. One way to evaluate this is to ask
the reasoner to classify the ontology. Indeed, classifying the ontology is the first
thing the inference engine will do before executing any request.
The time taken for this operation depends on three factors:

� the complexity of the logic used
� the size of the ontology
� the completeness of the description of the subsumption links

If this test takes too much time, it is likely that the ontology will not be usable in
real conditions. If such is the case, corrections are to be made. Since usually the
ontology size cannot be reduced, the general idea is to write simpler restrictions
on properties. This means using a less complicated logic if possible. For
instance, using existential restrictions instead of qualified cardinality restrictions
helps keeping the complexity lower for the reasoner. Therefore, such (re-)writing
is strongly advised when possible.
e.g.
 With qualified cardinality:
 PlanetaryNebula
 ≡ CompoundObject
 and hasComponent exactly 1 PlanetaryNebulaCentralStar
 and hasComponent exactly 1 PlanetaryNebulaShell

 14

 Without qualified cardinality:
 PlanetaryNebula
 ≡ CompoundObject
 and hasComponent some PlanetaryNebulaCentralStar
 and hasComponent some PlanetaryNebulaShell
 and hasComponent exactly 2

3.4.5 Real-use test
Once this overall complexity test is performed with adequate performance, we
check the ontology's performance in real use. This is done by testing the
applications exploiting the ontology and evaluate the performance, both in terms
of execution speed and results quality. The analysis of the results help us fine
tune the ontology to our exact needs.

4 Ontology structure

4.1 Concepts

4.1.1 Two different kinds of concepts
As exposed previously, our goal being to build an ontology of astronomical object
types, we need to create a concept for each of them. But we also wish these
concepts to be defined so we can use a reasoner on them.

Therefore, we need to create all the concepts needed to write definitions for
these concepts. To be exact, we need ranges for the properties we use in our
definitions and these additional concepts are the ranges of the properties. But
then, since they are only ranges, we do not need to define them.

So in conclusion, our concept hierarchy is made of two kind of concepts :
− Concepts representing astronomical object types, which we want defined.
− Concepts that are only ranges of properties, which we will keep primitive11.

4.1.2 The problem of compound objects
Though we are limited by the lack of variables in description logics (cf. section
3.2), we can describe most of the relationships between compound objects and
their components. This is interesting because these relationships can take part
into a definition.

Still, one problem is that, when we refer to the SIMBAD list of object types, we
find that some compounds are not astronomical objects
 e.g. PartOfCloud, Region, Void.
Furthermore, when we describe the components of a given astronomical object,
we may want to introduce components which are not astronomical objects

11 These concepts could be mapped to another ontology where they would be defined.

 15

themselves.
 e.g. When describing galaxy components, we may want to
introduce the concepts of Halo, Disk or Bulge.

And these non-object components may themselves have some components.
 e.g. The Halo of a Galaxy has Star and GlobularCluster among its
possible components.

To represent correctly these relationships, we have introduced the following
concepts and properties :
− AstrObject:

subsumes all the concepts representing astronomical objects12.

− CompoundObject:
subconcept of AstrObject which subsumes all the concepts representing
astronomical objects which are composed of at least two distinct astronomical
objects

− AstroPortion:
subsumes all the concepts representing portions of astronomical objects
which are not astronomical objects themselves13.

− The following properties:
property name domain range

hasConstituent CompoundObject OR
AstroPortion AstrObject

hasComponent CompoundObject AstrObject

hasPortion CompoundObject OR
AstroPortion AstroPortion

hasConstituent is used to link a CompoundObject or AstroPortion to any of its
constituents (which are necessarily astronomical objects).
hasComponent is used to link a CompoundObject to any of its direct
components (which are necessarily astronomical objects). An important
corollary is that the sum of all the components is a definition of a given
CompoundObject.
hasPortion is used to link a CompoundObject or an AstroPortion to any of its
Astro
Porti
on.

With this
system,
we
should

12 Which include astronomical object types which are not in SIMBAD list of object types like
PlanetaryNebulaShell
13 Including SIMBAD object types which are not astronomical object types like PartOfCloud.

 16

be able to describe all relationships between objects, portions of them and their
components.
 e.g. We can describe that a galaxy has a halo which has a globular cluster
among its components, which itself includes a double star which is composed of
a giant and a white dwarf14:
 Galaxy (CompoundObject) hasPortion Halo (AstroPortion)
 Halo hasConstituent GlobularCluster (CompoundObject)
 GlobularCluster hasConstituent DoubleStar (CompoundObject)
 DoubleStar hasComponent Giant (AstrObject)
 DoubleStar hasComponent WhiteDwarf (AstrObject)

4.1.3 The description of astronomical objects
As evoked in section 4.1.1 we are to write definitions, or at least necessary
conditions, of our concepts representing astronomical object types. More
precisely, we aim at defining the concepts in the AstrObject and AstroPortion
branches. Indeed, as seen in section 4.1.2 the AstroPortion section of the
ontology takes part in composition relationships of astronomical objects. For this
reason we are likely to need definitions on them to get better inferences on
astronomical objects -not to mention that some AstroPortion are actually referred
to as object types in the SIMBAD list.

Within these definitions we use primitive concepts as range for the properties.
These concepts are introduced when we need them. They are organized in
several branches of the concept hierarchy, each branch corresponding to a point
of view used to describe astronomical objects.

� EMSpectrumRange
Set of ranges in the electromagnetic spectrum

� Measurement
Measured observational parameters/properties

� Morphology
Geometry or morphology of astronomical objects

� Process
Phenomenon or associated process

� AtomicElement
Atomic elements

Of course these sections and their content will evolve with our needs. Namely, if
we need new concepts or even a new top-level concept corresponding to a new
descriptive point of view, we will add then (of course the consistency of the
ontology must be preserved when such changes happen).

4.1.4 Global schema
To summarize what has been developed in the previous sections, currently the
concept hierarchy is organized around the following top-level concepts which are:

� AstrObject

14 Between parenthesis is the most specific subsumer of the concept between AstrObject,
CompoundObject, AstroPortion.

 17

� AstroPortion
� AtomicElements
� EMSpectrumRange
� Measurement
� Morphology
� Process

These sections can be split in two categories: AstrObject and AstroPortion
subsume the astronomical object types and their constituents while the other
sections are ranges of properties used to define the concepts of the AstrObject
and AstroPortion sections.

4.2 Overview of the concept hierarchy
We now present a graphic overview of the concept subsumption hierarchy. For
legibility reasons the different subsections of the hierarchy are shown separately.

Color used:
− Yellow: concepts for which we have necessary conditions but no definition
− Orange: concepts for which we have at least one definition
− White: concepts from other branches than the one considered which can be

either defined or not but have been colored white to enhance legibility.

A complete documentation of the ontology is available separately in a Javadoc
format.

4.2.1 Top-level concepts

 18

4.2.2 The AstrObject section

� The Substellar subsection

 19

� The CompoundObject subsection

 20

� The EMsource subsection

 21

� The StellarObject subsection

 22

� The VariableObject subsection

 23

� The InterStellarMedium subsection

4.2.3 The AstroPortion section

4.2.4 The Morphology section

 24

4.2.5 The EMSpectrumRange section

4.2.6 The Measurement section

 25

4.2.7 The Process section

4.2.8 The SpectralCharacteristic section

 26

4.3 The properties

4.3.1 Description of properties
We already introduced the hasConstituent, hasComponent and hasPortion
properties in section 4.1.2. Other properties were introduced to describe
astronomical objects via not only their constituents but also their emission, the
processes they are subject to, the measurements made, their morphological
features or their spectral characteristics.

The following list describes the current properties, it is likely to evolve to fit our
need as we write new definitions.

name domain range inverse transitive

hasEmissionIn AstrObject EMSpectrumRange none no

hasPeakEmissionIn AstrObject EMSpectrumRange none no

hasMeasurement AstrObject Measurement isMeasuredFor no

hasHighMeasurement AstrObject Measurement none no

hasLowMeasurement AstrObject Measurement none no

isMeasuredFor Measurement AstrObject hasMeasuremen
t no

hasProcess AstrObject Process none no

hasVariabilityProcess VariableObject ProcessVariability none no

hasBurstProcess VariableObject Explosion none no

hasPeriodicProcess VariableObject
Eclipse OR
Rotation OR
Pulsation

none no

hasTransientProcess VariableObject ProcessVariability none no

hasPortion AstrObject OR
AstroPortion

AstroPortion isPortionOf no

isMorphologyOf Morphology AstrObject hasMorphology no

hasMorphology AstrObject Morphology isMorphologyOf no

hasConstituent CompoundObject
OR AstroPortion AstrObject isConstituentOf yes

hasComponent CompoundObject AstrObject isComponent no

isConstituentOf AstrObject CompoundObject
OR AstroPortion

hasConstituent yes

isComponent AstrObject CompoundObject hasComponent no

hasSpectralLine AstrObject AtomicElement none no

hasEmissionSpectralLine AstrObject AtomicElement none no

hasAbsorptionSpectralLine AstrObject AtomicElement none no

hasVariabilityTimeScale VariableObject VariabilityTimeScale none no

isPortionOf AstroPortion AstrObject OR
AstroPortion

hasPortion no

Note that properties hasConstituent and isConstituentOf are transitive to allow
descriptions closer to reality since when considering astronomical objects the

 27

following rule is always true:
if A is a constituent of B and B a constituent of C then A is a constituent of C.

4.3.2 An overview of the property subsumption hiera rchy

4.3.3 Annotations
The annotations do not have any impact on the ontology but are useful for:
− improving the legibility
− adding extra information (eventually usable via an automated process.)

The most common annotations in OWL are RDFS comments and labels. But one
can define annotation properties with specific names and namespaces to fit his
needs. Currently we use the following annotation properties:

� rdfs:comment
General comment about the attached OWL item (concept, property...)

� misc:description
Text definition of a concept, as complete as possible

� simbad:name
Standard name in SIMBAD's object classification

� simbad:shortCode
Short code in SIMBAD's object classification

� vizier:kwd
VizieR registry keyword (used by the registry request builder application,
cf. section 5.2)

Currently, annotation properties to which are attached multiple values are written
as a multiple identical annotation properties, each one having one single value

 28

attached.

5 Applications

5.1 OWL API

5.1.1 Jena framework
To build applications exploiting the ontology, we need an API allowing us to
access and manipulate directly an ontology written in OWL. Only a few exist and
nearly all of them are based on the Jena framework. Jena is a Java framework
for building semantic web applications. It is open source and provides -among
various programming toolboxes- an OWL API.

Since it is reliable, mature and offers a good compatibility with most of the other
RDFS/OWL APIs, Jena was our first choice of API to build our applications. We
since switched to the Protégé-OWL API.

5.1.2 Protégé-OWL API

On the one hand, a shortcoming of the Jena Framework for OWL exploitation is
that it is a general RDF/RDFS framework. Thus Jena lacks specific primitives for
OWL-based applications. On the other hand, the Protégé-OWL API provides
nearly every function needed to exploit an OWL Ontology which results in a
faster and simpler programming. Moreover, since this API is powering the
Protégé ontology editor, it benefits from the same development support as the
editor and is not likely to be forsaken any time soon. So after considering the
pros and cons of the different APIs, the Protégé-OWL API is our final choice for
our programming needs.

It is worth noting that these APIs being Java-based, this implies at least the core
of the applications to be coded in Java.

5.2 Registry request builder
Our first application exploiting the ontology of astronomical object types is a
request builder for querying astronomical registries. This was presented at IAU
XXVIth GA, Prague 08/2006 during Special Session 3

5.2.1 Why an ontology-based request builder?
The idea is to be able to have a tool able to build advanced queries in the VO
registry. Since the ontology is one of astronomical object types, the queries will
be performed on the <subject> element of the Registry scheme, which may
contain a description of astronomical object types.

The idea of such a tool comes from the limitations of existing registry querying
methods. Obviously, when querying on the <subject> field of registry entries, one
must use existing keywords in the query in order to have some results. But the
following problems arise when considering astronomical object types:

 29

− Some object types do not have a keyword associated.
− More specific keywords are not taken into account in a broader query.
− All the keywords have to be selected manually by the user if he wants the

best query possible.

For example, if we consider the registry entires coming from VizieR15:
− Double stars do not have an associated VizieR keyword, so one cannot query

directly on them.
− But specific double stars like eclipsing binaries or cataclysmic variable do

have associated VizieR keywords.
− Moreover, if one queries for the keyword associated with multiple stars, the

query result will only be the entries featuring this keyword, which means that
multiple stars with specific keywords like cataclysmic variables will be
ignored.

− There is no tool for automatically retrieving more specific or more general
keywords.

5.2.2 Implementation method
Since the subsumption relationships in the ontology corresponds to the
knowledge needed to retrieve more specific or more general keywords, our
request builder searches through the ontology to automatically propose adequate
keywords for the user to use.

To make that possible, we have used annotations in the ontology. Concepts
corresponding to existing <subject> keywords were annotated with those
keywords. Currently the VizieR registry keywords have been implemented (cf.
vizier:kwd annotations in the ontology)

The general idea is that the request builder will be fed a query subject and will
refine or broaden the query by adding keywords found during a search within the
subsumed or subsuming concepts ontology, the original query subject being the
starting point of the search.

The registry request builder is being developed in Java/JSP using the Jena OWL
API, an Apache Tomcat server. It also uses the free RACER 1.7 reasoner server
to set-up the ontology during the startup.

5.2.3 The search for keywords
The search for keywords is done in two times: first search through the subsumed
concepts to look for more specific keywords. After this step, if no keyword has
been found for the query another search is performed, this time to get the most
specific subsumer.

For the following examples, we consider the VizieR keywords which will be
written in red on the graphs.

� First search : more specific keywords. The user wants to make a query

15 http://vizier.u-strasbg.fr/viz-bin/VizieR

 30

about double stars. Hence the tool searches for VizieR keywords attached
to subconcepts of DoubleStar (DoubleStar included)

There is no keyword attached to DoubleStar but the tool will retrieve the ones
attached to SpectroscopicBinary, EclipsingBinary, CataclymicVariable and Nova
and will suggest them to the user.

� Second search : more general keywords. The user wants to make a query
about X-ray Binaries. The tool searches within subconcepts without
success. Since XRayBinary does not have an attached keyword either,
the tool searches the superconcepts

In this case, the tool suggests the keyword corresponding to XRaySource since it
is the closest to the original query subject.

5.2.4 Operation overview
� The user selects an astronomical object

type on which he wishes to query the
registry from a list of all the object types
represented in the ontology.

� The search for keywords is performed

 31

� The request builder outputs a list of

suggested keywords corresponding
to the wishes of the user.

� The request builder builds a query corresponding to the checked boxes
and sends it to the registry.

5.2.5 Benefits of the registry request builder
Such a tool offers the comfort to solve the problem of finding adequate keywords
via an automated process. Moreover, the process is highly reliable since it is
based on knowledge formalized with the help of experts from the user community
itself. Finally, the tool is independent from the knowledge evolution. For example,
if a new object type was to be added to the existing list or another changed, all
there is to do is to modify the ontology accordingly, not the request builder.

6 Perspectives and challenges
The future of this work is divided in two main orientations: completing and
improving the ontology and developing applications.

6.1 Completing the ontology
Currently, the ontology includes the greatest majority of SIMBAD's object types,
plus a few more added during the construction. But from the 190 concepts of the
AstrObject and AstroPortion branches only 86 have at least one definition,
meaning that there are still two thirds to define. Moreover, existing definitions
might be improved or backed by additional ones to fit better the applications thus
improving performance.

We are willing to establish collaborations with experts who could help us define
the astronomical object types, like we are already doing for the Active Galaxy
Nuclei section with Paolo Padovani of ESO, or Young Stellar Objects with
Laurent Cambrésy of CDS.

6.2 Other use cases
Besides the registry request builder, the applications we are working on are a
couple of tools for the SIMBAD database:

� A multiple object type auto-completion and validation tool
The idea is, for a given SIMBAD entry relative to an astronomical object,
to identify the concept this entry is instance of. Then use the ontology to
check if the SIMBAD object type(s) associated with this entry are
consistent and suggest missing SIMBAD object types if there are some
(the SIMBAD object types appear as annotations16 on concepts in the

16 simbad:name and simbad:shortCode

 32

ontology). Such a tool could help ensuring that items added to SIMBAD
are consistent an well-described by the SIMBAD keywords.

� A cross-identification validation tool
The idea is to check if the SIMBAD object types derived from the various
identifiers associated to a given entry in SIMBAD are consistent.
Checkable inconsistencies include complex relationships like the presence
of all the necessary components of a system (like a double star). This tool
would help guaranteeing the consistency of already existing entries (since
they must be checked manually if an inconsistency is assumed), so it is a
good complement to the previous tool.

Of course these are not the only possible applications, but they are relevant use
cases for the ontology since it is originally built on SIMBAD list of object types
and designed to be used as a semantic layer on top of astronomical object
databases or similar structures.

 33

Appendix A - Implementation choices

� The language of representation
Since we wanted to build an ontology of defined concepts, we needed a
formalism that would allow this. Description Logics17 is an adequate and mature
means of representing ontologies. Furthermore, the Web Ontology Language
(OWL) is based on description logics and is probably the most widespread
language for describing ontologies, which comforted ourselves in our choices to
describe our ontology using Description Logics and to implement it in OWL.

After choosing to implement in OWL, we chose what OWL flavor is best for us:

flavor logic decidable comments

OWL-Lite SHIF(D) yes least expressiveness of the OWL flavors, least
resource-consuming

OWL-DL SHOIN(D) yes more resource-consuming but a lot more expressive

OWL-1.118 SHROIQ(D) yes
revision of OWL-DL, adds qualified cardinality
restrictions and more expressiveness on roles, even
heavier resource-wise but still decidable

OWL-Full beyond
SHROIQ(D)

no No limit on expressiveness, only subsets are decidable

OWL-Full is inadequate since we need a decidable logic to use a reasoner.
OWL-Lite, though very attractive in terms of performance, allows far less
expressiveness than we need. In fact, to match our expressiveness needs, we
chose to implement in OWL1.1 at most and OWL-DL at best. And since we try to
keep the complexity as low as possible so currently we still are within the
boundaries of OWL-DL.
Last but not least, we need a logic which is supported by a reliable reasoner and
this is the case with OWL-DL since most reliable reasoners like RACER, Pellet or
FaCT++ implement logics corresponding to OWL-DL. Even better : in RACER's
case, nearly all of OWL-1.1 is supported.

� The reasoner
Various efficient reasoners are available for description logics. All are based on
different description logics and their implementations are summarized in the
following table :

17 http://wiki.eurovotech.org/twiki/bin/view/VOTech/DescriptionLogics
18 http://owl1_1.cs.manchester.ac.uk/

 34

reasoner test
version logic implementation License comments

RACER
1.7.23
and

1.7.24
SHRIQ(D) CommonLISP free license

discontinued since 1.7.24
(authors went commercial with

RacerPro)

RacerPro 1.9 SHRIQ(D) LISP commercial
DIG-only interface is free but
not as flexible as the original

RACER

FaCT++ 1.1.3 SHOIQ(D) C++ GPL difficulties with large scale
hierarchies

Pellet 1.3 SHOIN(D) Java
MIT

(GPL-like)

Theoretically supports
SHOIQ(D) but difficulties with
cardinalities and larger scale

hierarchies

To determine which is best for our needs, we performed various tests19. The
tests compared the performances of the different reasoners for the following
tasks :

� Checking the consistency of the ontology

� Classifying the ontology (i.e. inferring subsumption relationships for
both concepts and properties from the constraints on the concepts)

The tests led to the following conclusions :

� RACER/RacerPro is currently the best reasoner in terms of both
performance and reliability if a higher expressiveness is needed,
especially regarding cardinality.

� RacerPro being commercial, prices and possible incompatibility with
some OWL APIs (e.g. Jena) may be a problem.

� RACER 1.7.23 is known to be compatible with all APIs

� RACER 1.7.24 is a debugged revision of RACER 1.7.23. Specifically, it
handles properly complex description logics expressions like
anonymous concepts as ranges, which RACER 1.7.23 reports as
inconsistent.

Thus, we chose to use RACER 1.7.24 as our reasoner since it is by far the best
compromise. And even if it is discontinued now, the years of research and
development on it make it at least as valuable and reliable as its commercial
counterpart.

� The ontology editor
The last choice to make for the implementation is to select a graphic editor to
build and edit the ontology. We settled for Protégé-OWL [Horridge et al., 2004],
developed by the University of Stanford, which is currently both the most
complete and most intuitive graphic editor for ontologies.

19 http://wiki.eurovotech.org/twiki/bin/view/VOTech/InferenceEngineTests

 35

� Protégé view of concepts

Protégé view of properties

Though the editor is well documented, we set up a page of advice20 to ensure
people willing to use Protégé would not be bothered by some minor problems we

20 http://wiki.eurovotech.org/twiki/bin/view/VOTech/ProtegeAdvice

 36

were ourselves confronted with.

Appendix B - Changes from previous versions

From TN v1.0 :

� New properties and ranges (4.1.3, 4.3.1)
� Concept and overviews updated (4.2, 4.3.2)
� Change of API to Protégé-OWL API (5.1.2)
� Change of reasoner from RACER 1.7.23 to RACER 1.7.24

(including the description of a RACER 1.7.23 serious bug) (Appendix A)

 37

Glossary

defined concept
Concept which is defined by at least one set of necessary and sufficient
conditions

domain (of a property)
Concept to which a property can be applied.

Jena
Java framework for building Semantic Web applications. It provides a
programmatic environment for RDF, RDFS and OWL, SPARQL and includes a
rule-based inference engine. Jena is open source and grown out of work with the
HP Labs Semantic Web Programme. (http://jena.sourceforge.net/)

primitive concept
Concept which is not defined by at least one set of necessary and sufficient
conditions.

property (role)
Binary relationship between two concepts or unions of concepts (since you can
define a concept as the union of other concepts).

Protégé
Protégé is a WYSIWYG ontology editor developed by the University of Stanford
(http://protege.stanford.edu/). It features a version dedicated to OWL ontologies:
Protégé-OWL revolving around an API partially compatible with Jena: the
Protégé-OWL API

range (of a property)
Concept where a property takes its value.

subsumption
Relationship between concepts or properties. It can be roughly summarized as a
kind of a “is a” relationship, meaning that children are more specific than their
parents.

 38

References

[Horridge et al., 2004] M. Horridge, H. Knublauch, A. Rector, R. Stevens, C.
Wroe A Practical Guide To Building OWL Ontologies Using The Protégé-OWL
Plugin and CO-ODE Tools Edition 1.0. University Of Manchester, 2004

[Napoli, 1997] A. Napoli Une introduction aux logiques de descriptions. Rapport
de recherche RR 3314, INRIA, 1997.

[Napoli, 2004] A. Napoli Description Logics (DL): general introduction. In :
Summer School on Semantic Web and Ontologies, Aussois, June 23, 2004.

[Staab and Studer, 2004] S. Staab and R. Studer Handbook on Ontologies.
Springer, Berlin, 2004.

[Uschold and King, 1995] M. Uschold and M. King Towards a Methodology for
Building Ontologies. Uschold M. Towards a Methodology for Building Ontologies
Workshop on Basic Ontological Issues in Knowledge Sharing, held in conduction
with IJCAI-95, 1995.

