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Abstract 
The Semantic Web and ontologies are emerging technologies which enable 
advanced knowledge management and sharing. Their application to Astronomy 
can offer new ways of sharing information between astronomers, but also 
between machines or software components and allow inference engines to 
perform reasoning on an astronomical knowledge base. 

This document presents the current status of an ontology describing knowledge 
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about astronomical object types, originally based on the standardization of 
objects types used in the SIMBAD database. Specifically, this ontology of defined 
concepts is designed to enable advanced reasoning on astronomical object 
types. The possibilities offered by such a system are semi-automatic or fully-
automatic applications such as checking the semantic consistency of databases 
entries, providing new means of building or refining queries and suggesting 
object types matching a description. 

 

Status of this document 

This is an IVOA Working Draft for review by IVOA members and other interested 
parties. It is a draft document and may be updated, replaced, or obsoleted by 
other documents at any time. It is inappropriate to use IVOA Working Drafts as 
reference materials or to cite them as other than “work in progress”.. 

A list of current IVOA Recommendations and other technical documents can be 
found at http://www.ivoa.net/Documents/.  
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1 Introduction 
 
Until now, the experiments on ontologies regarding astronomy have focused on 
primitive concepts ontologies (i.e. non-defined concepts). With this work, we are 
exploring the possibilities of defined concepts ontologies in the field of astronomy 
(cf. section 2 for a presentation of the components of an ontology.) 
 
Ontologies are structures representing and formalizing knowledge. They can be 
used to guarantee the consistency of knowledge shared between men and 
machines as well as between machines. Their use ranges from basic 
classification in the case of primitive concepts ontologies to advanced inference 
and reasoning in the case of defined concepts ontologies. 
 
This possibility of automated consistency checks and inferences is what interest 
us most. Indeed a few ontologies have been built to represent part of the 
astronomical knowledge, but since they lack formal definitions of the concepts, 
they allow very little reasoning. While this can be sufficient in some cases, it 
tremendously limits the application of the ontology. Though it is much more 
difficult, we are willing to build such definitions to set-up a semantic layer allowing 
to automate operations usually performed by humans since it is the human who 
has the knowledge to do these operations. 
 
To experiment on these possibilities, we are building an ontology of astronomical 
object types along with some applications. This ontology is first based on the 
standardization of object types1 used in the SIMBAD2 database. These choices 
are motivated mainly by the possibilities offered by an astronomical knowledge 
engine coupled to databases, like consistency checks of the semantics of the 
database entries or advanced queries. 
 
Last but not least, ontology-based systems are little dependent of the evolution of 
the ontology. This means that when the astronomical knowledges evolves, one 
just has to update the ontology accordingly and the systems exploiting it will take 
the changes into account, unlike dedicated systems for which each change can 
impact the whole system. 
 
This document covers the following points: the basics of ontologies, the ontology 
construction process, a global3 description of the ontology of astronomical object 
types in its current state, its applications and, to conclude, some perspectives. 
 

                                            
1 Objects and object types in SIMBAD refer to a categorization of the nature of 
astronomical sources, not to objects and types as in object-oriented programming. 
2 http://simbad.u-strasbg.fr/ 
3 A complete description of the ontology is available separately as a Javadoc-like 
document. 
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2 Ontology Components 
 
The following sections will explain the basics of ontologies and description logics. 
For a thorough introduction to Description Logics and their use in ontologies, one 
can look into [Napoli, 2004], the first chapter of [Staab and Studer, 2004] and 
[Napoli, 1997] . 

2.1 Concepts and Instances 
Ontologies are often defined as a representation of a conceptualization. Thus, 
their most fundamental components are concepts (also called classes). A 
Concept is an abstract object which defines the common features of a group of 
concrete objects. The concrete objects are called instances or individuals. 
 
e.g. All the stars are instances of the same concept Star. 
 
 
 
 
 
 
 
  
A concept can be defined as the union of other concepts 

2.2 Properties 
A Property (also called role) represents a binary relationship between two 
concepts or unions of concepts. The domain of a property is the concept to which 
the property can be applied and the range of a property is the concept where the 
property takes it value. 
 
e.g. : To represent that infrared sources (concept InfraredSource) have an 
emission in the infrared part of the electromagnetic spectrum (concept Infrared), 
one can introduce the property hasEmissionIn, defined as follows: 
 
 
 
 
 

2.3 Subsumption relationship 
Both concepts and properties are organized into a hierarchy by the subsumption 
relationship. It can be roughly summarized as a kind of a “is a” relationship, 
meaning that children are more specific than their parents. 
 

� Concept subsumption 
 If A and B are two concepts, A is subsumed by B  (B subsumes A)  

Star 

Sirius AlgolB HR 7001 HIP 12325 

Abstract World 
(Concepts) 

Concrete  World 
(Instances) 

Infrared 
hasEmissionIn 

InfraredSource 

domain range 
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 if and only if all the instances of A are instances of B 
 e.g. the concept GiantStar is subsumed by  the concept StellarObject 
 
 The universal subsumer is called Thing or TOP and is always found at the 
top of a subsumption hierarchy 
 
 
 
 
 
 
 
 
 
 
 
 
 
N.B. A common mistake is to mistake the subsumption relationship for a “part of” 
relationship and build a hierarchy that is really a hierarchy of components 
(i.e.  the concept Vehicle subsumes the concept Car but does not subsume the 
concept Wheel because “a car is a vehicle” but “a wheel is a part of a vehicle, not 
a kind of vehicle") 
 

� Property subsumption 
 If A and B are two properties, A is subsumed by B (B subsumes A) 
 If and only if  domain(A) is subsumed by domain(B)  
   AND range(A) is subsumed by range (B) 
 
 e.g. 
 
 
 
 
 
 
 
 
 
 

StellarObject 

isA 

isA 

isA 

isA isA 

isA 

AstrObject 

Thing 

EMSpectrumRange 

Infrared EMSource 

InfraredSource 

AstrObject Process 
domain range 

hasProcess 

Eclipse EclipsingBinaryStar hasPeriodicP

B (A means  ''A is 
subsumed by B'' ) 
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2.4 Concepts definitions 
In a formal ontology, concepts can be either primitive (i.e. non-defined) or defined 
by necessary and sufficient conditions and/or constrained by necessary 
conditions. These conditions are expressed as restrictions on properties. 
 
e.g. “An electromagnetic source is an astronomical object which has an emission 
in some part of the electromagnetic spectrum” can be translated as : 
 EMSource ≡ AstrObject and  hasEmissionIn some  EMSpectrumRange4 
 
This means that any instance which verifies the conditions “AstrObject and  
hasEmissionIn some  EMSpectrumRange” is an instance of EMSource and that 
this condition is true for every instance of EMSource. 
 
One of the consequences of this is that subsumees inherit their subsumers' 
necessary conditions (which is consistent with the “more specific kind of” 
meaning of the subsumption relationship.) 
 

3 Ontology construction 

3.1 Implementation choices 
The implementation of an ontology is a decisive matter since the different 
implementations offer different capabilities and limitations. A detailed explanation 
of the following implementation choices is available in Annex A 
 

� The language of representation 
Since we wanted to build an ontology of defined concepts, we needed a 
formalism that would allow this. Description Logics5 is an adequate and mature 
means of representing ontologies. Furthermore, the Web Ontology Language6 
(OWL) is based on description logics and is probably the most widespread 
language for describing ontologies. So we decided to describe our ontology using 
Description Logics and to implement it in OWL-DL at best or in its recent 
evolution OWL1.17 if expressiveness beyond OWL-DL was needed. Both of 
these flavors are well-supported by existing reasoners and are the best 
compromise between complexity and expressiveness. 
 

� The reasoner 
After testing the possible reasoners, we chose to use RACER 1.7.23 as our 
reasoner since it is by far the best compromise. Though discontinued now, the 
years of research and development on it make it at least as valuable and reliable 
as its commercial counterpart RacerPro as well as any other inference engine. 
 
                                            
4 For legibility purposes, the description logic syntax used in this document is the 
Manchester-OWL  syntax (cf. http://www.co-ode.org/resources/reference/manchester_syntax/) 
5 http://wiki.eurovotech.org/twiki/bin/view/VOTech/DescriptionLogics 
6 http://www.w3.org/TR/owl-guide/ 
7 http://owl1_1.cs.manchester.ac.uk/ 
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� The ontology editor 
The last choice to make for the implementation is to select a graphic editor to 
build and edit the ontology. We settled for Protégé-OWL [Horridge et al., 2004], 
developed by the University of Stanford, which is currently both the most 
complete and most intuitive graphic editor for ontologies.  
Though the editor is well documented, we set up a page of advice8 to ensure 
people willing to use Protégé would not be bothered by some minor problems we 
were ourselves confronted with. 
 

� Naming conventions 
To be sure we had a unified syntax for the names in the ontology, we made the 
following choices :  
− The characters allowed are uppercase and lowercase letters only. 
− Java-like naming: use uppercase letters and no spaces. 

(e.g. PlanetaryNebulaShell) 
− Concept names begin with an uppercase letter, property names begin with a 

lowercase letter. 
(e.g. PlanetaryNebulaShell / hasEmissionIn ) 

− At least during the construction phase, acronyms and shortened names are 
strongly discouraged to avoid risks of mistakes or ambiguity. 

 

3.2 Limitations and issues 
The sheer nature of an ontology and the implementation choices imply some 
limitations one has to be aware of when constructing the ontology.  
 

� Conditions on concepts must be always true: 
This is one of the greatest problems: since concepts describe what all of 
their instances have in common, the conditions constraining or defining 
them must be always true. Specifically, conditions that are “usually true” or 
“true in most cases” or “true 95% of the time” are not allowed. However it 
is important to notice that a statement is considered “true” if the 
considered knowledge says so: if the knowledge evolves, so will the 
ontology. 
 

� Cardinality is allowed, qualified cardinality is allowed but discouraged: 
Cardinality describes a restriction on the number of times a property has 
the concept as its domain. Qualified cardinality also precises the range of 
the property. 
e.g. hasComponent maximum  2 (cardinality) 

  hasComponent maximum  2 StellarObject (qualified cardinality)) 
 
Qualified cardinality is rather CPU-heavy, therefore it is strongly advised to 
replace it by existential restrictions every time it is possible. 

 
� Intervals and enumerations are acceptable: 

                                            
8 http://wiki.eurovotech.org/twiki/bin/view/VOTech/ProtegeAdvice 
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Still, both tend to degrade the performances and are therefore to be used 
wisely. 

e.g hasMeasurement some {SpectralTypeO,SpectralTypeB,SpectralTypeA} 
 

� Restrictions on values are impossible: 
You can describe a concept C has being the domain of a property but you 
cannot describe C as having a given value for a property. 

e.g. You can describe a concept Star as having a temperature, but you 
cannot describe this concept as having a temperature of n Kelvin. 
 

� Restrictions with variables are impossible: 
There are no variables in description logics. Therefore some relationships 
cannot be expressed, like for instance relationships between components 
of a given compound object 

e.g.  you can express that each of both components of a double star 
has a gravitational link with an instance of the same concept as the 
other but you cannot express that they are linked one with the other. 
 

� Complexity must not be too high: 
If the structure is difficult to manipulate for the reasoner, like if there are 
too many restrictions that are CPU-heavy (qualified cardinality, 
enumerations...), even if the ontology is well-made, its exploitation in 
applications will be jeopardized since the reasoning time will be too long 
(cf. 3.4.4 Overall complexity test) 
 

� Definitions must be adequate: 
Definitions and restrictions in general must fit the use of the ontology. For 
instance, if an application never manipulates data on the components of a 
galaxy, defining galaxies via their components will be useless at best and 
will degrade the overall performance of the application at worst. (cf. Note 
in section 3.4.2) 
It is important to remember that a usable ontology is not a universal 
description. Indeed, it is impossible to have a perfect representation and 
even if it were possible, the complexity would be so high that the structure 
would be impossible to use and maintain. 

 
 

� Size must be manageable 
An overly detailed ontology, or covering too wide a field, is likely to 
become illegible, hard to manage and would yield unrealistic reasoning 
times. 
 

� Naming issues 
This is a minor problem since it has no impact on the correctness or the 
use of the ontology. Still, it is better to have names describing as clearly 
as possible concepts and properties. Furthermore, even if the end-user 
will never see the ontology, it will be much easier to maintain if it is easy to 
read. The only problem with naming is that most of the time names are 
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ambiguous or misleading and finding a name which naturally evokes a 
given concept or property is a very difficult task. 
 

3.3 Construction cycle 
There is no unified procedure for building ontologies. Still, it always comes down 
to an iterative process like the following one. [Staab and Studer, 2004, [Uschold 
and King, 1995] 
 
 
 
 
 
 

� Analysis :  
- What does the ontology conceptualize? 
- What will it be used to do? 
- Identifying the concepts.  

� Building the ontology 
- Defining the concepts. 
- Building the subsumption hierarchies. 
- Adding annotations. 

� Evaluation 
- Consistency checks. 
- Efficiency tests 
- Going back to building step for adjustments if needed 

� Maintenance 
- Tests in real use 
- Update/evolution as needed (going back to the building step) 

 

3.4 The building process 

3.4.1 Analysis 
We aim to build an ontology to be used as a knowledge layer over existing tools 
such as the SIMBAD9 database of astronomical objects. More precisely, we want 
to have a semantic tool which would be able to perform automatically operations 
such as : 

� Building advanced queries on astronomical databases or registries. 
� Checking and validating the objects' classification in the SIMBAD 

database. 
� Making proposals to enhance the classification on SIMBAD objects when 

new identifiers or measurements are added. 
 
The idea to rely on an ontology comes from the possibilities of automatic 

                                            
9 http://simbad.u-strasbg.fr/ 

Evaluation Building Analysis Maintenance 
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reasoning allowed by the existing reasoners and APIs. The shortcoming is that to 
be able to exploit these tools we have to build an ontology of defined concepts 
(i.e. have as many concepts' definitions as possible.) 
 
As for what the concepts of the ontology will be, since we planned to use the 
ontology first with the SIMBAD object types10, we decided to first try and 
represent these objects as concepts and then see if some concepts were lacking 
or inadequate and eventually adjust the structure. This choice of representation 
is adequate for the following reasons: 

� Since we want to perform operations on astronomical objects and their 
types, it is best to have a representation (including the definitions of the 
concepts) that is as close as possible to that use. 

� There are around 150 object types in SIMBAD, which makes an amount of 
defined concepts low enough to keep the ontology core manageable. 

 

3.4.2 Building 
As exposed previously, the building process is iterative. Basically it can be 
broken down to this :  

� Finding conditions to constrain the concepts, fully defining them if 
possible. 

� Introducing the properties and/or concepts needed to build the conditions. 
� Building the subsumption hierarchies of concepts and properties, taking 

into account both the conditions expressed on the concepts and the 
unexpressed knowledge we may have of these concepts. 

� Adding the annotation properties we need for the applications. 
 
e.g. To describe the concept DoubleStar, one can try to describe its components 
:  
 - a double star is an astronomical object 
 - a double star is a system of objects 
 - a double star is composed of exactly 2 objects 
 - both of the components are stellar objects 
Fortunately, these conditions are not only necessary but also sufficient. 
Therefore, a possible definition of DoubleStar is: 
 
DoubleStar ≡ AstrObject   and hasComponent exactly  2 
       and  hasComponent only StellarObject 
 
This is not the only definition of a double star and one must keep in mind that 
depending on the uses of the ontology, other definitions could give better results 
and that having multiple definitions can also be either a good or a bad thing. (e.g. 
our definition of DoubleStar is worthless if we never manipulate the components 
of systems) 
 

                                            
10 Objects and object types in SIMBAD refer to a categorization of the nature of 
astronomical sources, not to objects and types as in object-oriented programming. 
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Having the previous definition, we need to make sure we have already declared 
the property hasComponent and the concepts AstrObject and StellarObject. If we 
have not, we must declare them before inputting the definition of DoubleStar.  
 
The subsumption hierarchies can be either constructed by describing which 
concept/property subsumes which, or they can be inferred by a reasoner. Our 
choice was to build them ourselves and then run the reasoner to check if there 
was no inconsistency or lack in our structure. 
 
Last, we add annotation properties to our concepts. These annotations have no 
impact on the reasoning but can be used to put labels on the different objects. 
These labels can be either human-readable text (e.g. names, descriptions) or 
information we want to link directly to the object, for example to use them when 
accessing the ontology via an API (e.g. SIMBAD database codes). 

3.4.3 Consistency Check 
An important point is to be sure of the consistency of the ontology since an 
inconsistent ontology would yield questionable results. Fortunately, this very 
tedious task is  well performed by some reasoners, thus we only have to launch 
an automated procedure and wait a few seconds for the results. Obviously, given 
the importance of the consistency and the convenience of automated tools, we 
test the consistency after each set of changes we make, even if the changes are 
supposed to be purely cosmetic. 

3.4.4 Overall complexity test 
Testing the ontology is done in two steps. First, we make sure that the complexity 
of the structure is not going to be problematic. One way to evaluate this is to ask 
the reasoner to classify the ontology. Indeed, classifying the ontology is the first 
thing the inference engine will do before executing any request.  
The time taken for this operation depends on three factors: 

� the complexity of the logic used 
� the size of the ontology 
� the completeness of the description of the subsumption links 

 
If this test takes too much time, it is likely that the ontology will not be usable in 
real conditions. If such is the case, corrections are to be made. Since usually the 
ontology size cannot be reduced, the general idea is to write simpler restrictions 
on properties. This means using a less complicated logic if possible. For 
instance, using existential restrictions instead of qualified cardinality restrictions 
helps keeping the complexity lower for the reasoner. Therefore, such (re-)writing 
is strongly advised when possible. 
e.g.  
 With qualified cardinality: 
  PlanetaryNebula  
  ≡ CompoundObject 
  and  hasComponent exactly 1 PlanetaryNebulaCentralStar 
  and  hasComponent exactly 1 PlanetaryNebulaShell 
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 Without qualified cardinality: 
  PlanetaryNebula  
  ≡ CompoundObject 
  and  hasComponent some  PlanetaryNebulaCentralStar 
  and  hasComponent some  PlanetaryNebulaShell 
  and  hasComponent exactly  2 
 

3.4.5 Real-use test 
Once this overall complexity test is performed with adequate performance, we 
check the ontology's performance in real use. This is done by testing the 
applications exploiting the ontology and evaluate the performance, both in terms 
of execution speed and results quality. The analysis of the results help us fine 
tune the ontology to our exact needs. 

4 Ontology structure 

4.1 Concepts 

4.1.1 Two different kinds of concepts 
As exposed previously, our goal being to build an ontology of astronomical object 
types, we need to create a concept for each of them. But we also wish these 
concepts to be defined so we can use a reasoner on them.  
 
Therefore, we need to create all the concepts needed to write definitions for 
these concepts. To be exact, we need ranges for the properties we use in our 
definitions and these additional concepts are the ranges of the properties. But 
then, since they are only ranges, we do not need to define them.  
 
So in conclusion, our concept hierarchy is made of two kind of concepts : 
− Concepts representing astronomical object types, which we want defined. 
− Concepts that are only ranges of properties, which we will keep primitive11. 

4.1.2 The problem of compound objects 
Though we are limited by the lack of variables in description logics (cf. section 
3.2), we can describe most of the relationships between compound objects and 
their components. This is interesting because these relationships can take part 
into a definition. 
 
Still, one problem is that, when we refer to the SIMBAD list of object types, we 
find that some compounds are not astronomical objects 
  e.g. PartOfCloud, Region, Void. 
Furthermore, when we describe the components of a given astronomical object, 
we may want to introduce components which are not astronomical objects 

                                            
11 These concepts could be mapped to another ontology where they would be defined. 



 

  15 

themselves. 
  e.g. When describing galaxy components, we may want to 
introduce the concepts of Halo, Disk or Bulge. 
 
And these non-object components may themselves have some components. 
  e.g. The Halo of a Galaxy has Star and GlobularCluster among its 
possible components. 
 
To represent correctly these relationships, we have introduced the following 
concepts and properties : 
− AstrObject:  

subsumes all the concepts representing astronomical objects12. 
 

− CompoundObject:  
subconcept of AstrObject which subsumes all the concepts representing 
astronomical objects which are composed of at least two distinct astronomical 
objects 
 

− AstroPortion:  
subsumes all the concepts representing portions of astronomical objects 
which are not astronomical objects themselves13.  
 

− The following properties: 
property name domain range 

hasConstituent CompoundObject OR 
AstroPortion AstrObject 

hasComponent CompoundObject AstrObject 

hasPortion CompoundObject OR 
AstroPortion AstroPortion 

hasConstituent is used to link a CompoundObject or AstroPortion to any of its 
constituents (which are necessarily astronomical objects). 
hasComponent is used to link a CompoundObject to any of its direct 
components (which are necessarily astronomical objects). An important 
corollary is that the sum of all the components is a definition of a given 
CompoundObject. 
hasPortion is used to link a CompoundObject or an AstroPortion to any of its 
Astro
Porti
on. 

With this 
system, 
we 
should 
                                            
12 Which include astronomical object types which are not in SIMBAD list of object types like 
PlanetaryNebulaShell 
13 Including SIMBAD object types which are not astronomical object types like PartOfCloud. 
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be able to describe all relationships between objects, portions of them and their 
components. 
 e.g. We can describe that a galaxy has a halo which has a globular cluster 
among its components, which itself includes a double star which is composed of 
a giant and a white dwarf14: 
 Galaxy (CompoundObject) hasPortion Halo (AstroPortion) 
 Halo hasConstituent GlobularCluster (CompoundObject) 
 GlobularCluster hasConstituent DoubleStar (CompoundObject)  
 DoubleStar hasComponent Giant (AstrObject) 
 DoubleStar hasComponent WhiteDwarf (AstrObject) 

4.1.3 The description of astronomical objects 
As evoked in section 4.1.1 we are to write definitions, or at least necessary 
conditions, of our concepts representing astronomical object types. More 
precisely, we aim at defining the concepts in the AstrObject and AstroPortion 
branches. Indeed, as seen in section 4.1.2 the AstroPortion section of the 
ontology takes part in composition relationships of astronomical objects. For this 
reason we are likely to need definitions on them to get better inferences on 
astronomical objects -not to mention that some AstroPortion are actually referred 
to as object types in the SIMBAD list. 
 
Within these definitions we use primitive concepts as range for the properties. 
These concepts are introduced when we need them. They are organized in 
several branches of the concept hierarchy, each branch corresponding to a  point 
of view used to describe astronomical objects.  

� EMSpectrumRange 
Set of ranges in the electromagnetic spectrum 

� Measurement 
Measured observational parameters/properties 

� Morphology 
Geometry or morphology of astronomical objects 

� Process 
Phenomenon or associated process 

� AtomicElement 
Atomic elements 

 
Of course these sections and their content will evolve with our needs. Namely, if 
we need new concepts or even a new top-level concept corresponding to a new 
descriptive point of view, we will add then (of course the consistency of the 
ontology must be preserved when such changes happen). 

4.1.4 Global schema 
To summarize what has been developed in the previous sections, currently the 
concept hierarchy is organized around the following top-level concepts which are:  

� AstrObject 

                                            
14 Between parenthesis is the most specific subsumer of the concept between AstrObject, 
CompoundObject, AstroPortion. 
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� AstroPortion 
� AtomicElements 
� EMSpectrumRange 
� Measurement 
� Morphology 
� Process 

These sections can be split in two categories: AstrObject and AstroPortion 
subsume the astronomical object types and their constituents while the other 
sections are ranges of properties used to define the concepts of the AstrObject 
and AstroPortion sections. 

4.2 Overview of the concept hierarchy 
We now present a graphic overview of the concept subsumption hierarchy. For 
legibility reasons the different subsections of the hierarchy are shown separately. 
 
Color used: 
− Yellow: concepts for which we have necessary conditions but no definition 
− Orange: concepts for which we have at least one definition 
− White: concepts from other branches than the one considered which can be 

either defined or not but have been colored white to enhance legibility. 
 
A complete documentation of the ontology is available separately in a Javadoc 
format. 
 

4.2.1 Top-level concepts 
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4.2.2 The AstrObject section 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

� The Substellar subsection 
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� The CompoundObject subsection 
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� The EMsource subsection 
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� The StellarObject subsection 
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� The VariableObject subsection 
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� The InterStellarMedium subsection 
 
 

 

4.2.3 The AstroPortion section 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.2.4 The Morphology section 
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4.2.5 The EMSpectrumRange section 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

4.2.6 The Measurement section 
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4.2.7 The Process section 
 

 
 

4.2.8 The SpectralCharacteristic section 
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4.3 The properties  

4.3.1 Description of properties 
We already introduced the hasConstituent, hasComponent and hasPortion 
properties in section 4.1.2. Other properties were introduced to describe 
astronomical objects via not only their constituents but also their emission, the 
processes they are subject to, the measurements made, their morphological 
features or their spectral characteristics.  
 
The following list describes the current properties, it is likely to evolve to fit our 
need as we write new definitions. 
 

name domain range inverse transitive 

hasEmissionIn AstrObject EMSpectrumRange none no 

hasPeakEmissionIn AstrObject EMSpectrumRange none no 

hasMeasurement AstrObject Measurement isMeasuredFor no 

hasHighMeasurement AstrObject Measurement none no 

hasLowMeasurement AstrObject Measurement none no 

isMeasuredFor Measurement AstrObject hasMeasuremen
t no 

hasProcess AstrObject Process none no 

hasVariabilityProcess VariableObject ProcessVariability none no 

hasBurstProcess VariableObject Explosion none no 

hasPeriodicProcess VariableObject 
Eclipse OR 
Rotation OR 
Pulsation 

none no 

hasTransientProcess VariableObject ProcessVariability none no 

hasPortion AstrObject OR 
AstroPortion 

AstroPortion isPortionOf no 

isMorphologyOf Morphology AstrObject hasMorphology no 

hasMorphology AstrObject Morphology isMorphologyOf no 

hasConstituent CompoundObject 
OR AstroPortion AstrObject isConstituentOf yes 

hasComponent CompoundObject AstrObject isComponent no 

isConstituentOf AstrObject CompoundObject 
OR AstroPortion 

hasConstituent yes 

isComponent AstrObject CompoundObject hasComponent no 

hasSpectralLine AstrObject AtomicElement none no 

hasEmissionSpectralLine AstrObject AtomicElement none no 

hasAbsorptionSpectralLine AstrObject AtomicElement none no 

hasVariabilityTimeScale VariableObject VariabilityTimeScale none no 

isPortionOf AstroPortion AstrObject OR 
AstroPortion 

hasPortion no 

 
Note that properties hasConstituent and isConstituentOf are transitive to allow 
descriptions closer to reality since when considering astronomical objects the 
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following rule is always true: 
if A is a constituent  of B and B a constituent of C then A is a constituent of C. 
 

4.3.2 An overview of the property subsumption hiera rchy 

 
 

4.3.3 Annotations 
The annotations do not have any impact on the ontology but are useful for: 
− improving the legibility 
− adding extra information (eventually usable via an automated process.) 
 
The most common annotations in OWL are RDFS comments and labels. But one 
can define annotation properties with specific names and namespaces to fit his 
needs. Currently we use the following annotation properties: 

� rdfs:comment  
General comment about the attached OWL item (concept, property...) 

� misc:description 
Text definition of a concept, as complete as possible 

� simbad:name 
Standard name in SIMBAD's object classification 

� simbad:shortCode 
Short code in SIMBAD's object classification 

� vizier:kwd 
VizieR registry keyword (used by the registry request builder application, 
cf. section 5.2) 

Currently, annotation properties to which are attached multiple values are written 
as a multiple identical annotation properties, each one having one single value 
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attached. 

5 Applications 

5.1 OWL API 

5.1.1 Jena framework 
To build applications exploiting the ontology, we need an API allowing us to 
access and manipulate directly an ontology written in OWL. Only a few exist and 
nearly all of them are based on the Jena framework. Jena is a Java framework 
for building semantic web applications. It is open source and provides -among 
various programming toolboxes- an OWL API. 
 
Since it is reliable, mature and offers a good compatibility with most of the other 
RDFS/OWL APIs, Jena was our first choice of API to build our applications. We 
since switched to the Protégé-OWL API. 

5.1.2 Protégé-OWL API 
 
On the one hand, a shortcoming of the Jena Framework for OWL exploitation is 
that it is a general RDF/RDFS framework. Thus Jena lacks specific primitives for 
OWL-based applications. On the other hand, the Protégé-OWL API provides 
nearly every function needed to exploit an OWL Ontology which results in a 
faster and simpler programming. Moreover, since this API is powering the 
Protégé ontology editor, it benefits from the same development support as the 
editor and is not likely to be forsaken any time soon. So after considering the 
pros and cons of the different APIs, the Protégé-OWL API is our final choice for 
our programming needs. 
 
It is worth noting that these APIs being Java-based, this implies at least the core 
of the applications to be coded in Java. 

5.2 Registry request builder 
Our first application exploiting the ontology of astronomical object types is a 
request builder for querying astronomical registries. This was presented at IAU 
XXVIth GA, Prague  08/2006 during Special Session 3 

5.2.1 Why an ontology-based request builder? 
The idea is to be able to have a tool able to build advanced queries in the VO 
registry. Since the ontology is one of astronomical object types, the queries will 
be performed on the <subject> element of the Registry scheme, which may 
contain a description of astronomical object types. 
 
The idea of such a tool comes from the limitations of existing registry querying 
methods. Obviously, when querying on the <subject> field of registry entries, one 
must use existing keywords in the query in order to have some results. But the 
following problems arise when considering astronomical object types:  
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− Some object types do not have a keyword associated. 
− More specific keywords are not taken into account in a broader query. 
− All the keywords have to be selected manually by the user if he wants the 

best query possible. 
 
For example, if we consider the registry entires coming from VizieR15: 
− Double stars do not have an associated VizieR keyword, so one cannot query 

directly on them. 
− But specific double stars like eclipsing binaries or cataclysmic variable do 

have associated VizieR keywords. 
− Moreover, if one queries for the keyword associated with multiple stars, the 

query result will only be the entries featuring this keyword, which means that 
multiple stars with specific keywords like cataclysmic variables will be 
ignored. 

− There is no tool for automatically retrieving more specific or more general 
keywords. 

5.2.2 Implementation method 
Since the subsumption relationships in the ontology corresponds to the 
knowledge needed to retrieve more specific or more general keywords, our 
request builder searches through the ontology to automatically propose adequate 
keywords for the user to use. 
 
To make that possible, we have used annotations in the ontology. Concepts 
corresponding to existing <subject> keywords were annotated with those 
keywords. Currently the VizieR registry keywords have been implemented (cf. 
vizier:kwd annotations in the ontology) 
 
The general idea is that the request builder will be fed a query subject and will 
refine or broaden the query by adding keywords found during a search within the 
subsumed or subsuming concepts ontology, the original query subject being the 
starting point of the search. 
 
The registry request builder is being developed in Java/JSP using the Jena OWL 
API, an Apache Tomcat server. It also uses the free RACER 1.7 reasoner server 
to set-up the ontology during the startup.   

5.2.3 The search for keywords 
The search for keywords is done in two times: first search through the subsumed 
concepts to look for more specific keywords. After this step, if no keyword has 
been found for the query another search is performed, this time to get the most 
specific subsumer.  
 
For the following examples, we consider the VizieR keywords which will be 
written in red on the graphs. 

� First search : more specific keywords. The user wants to make a query 
                                            
15 http://vizier.u-strasbg.fr/viz-bin/VizieR 
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about double stars. Hence the tool searches for VizieR keywords attached 
to subconcepts of DoubleStar (DoubleStar included) 

 
 
 
 
 
 
 
 
 
 
 
 
 
There is no keyword attached to DoubleStar but the tool will retrieve the ones 
attached to SpectroscopicBinary, EclipsingBinary, CataclymicVariable and Nova 
and will suggest them to the user. 
 

� Second search : more general keywords. The user wants to make a query 
about X-ray Binaries. The tool searches within subconcepts without 
success. Since XRayBinary does not have an attached keyword either, 
the tool searches the superconcepts 

 
 
 
 
 
 
 
 
 
 

In this case, the tool suggests the keyword corresponding to XRaySource since it 
is the closest to the original query subject. 

5.2.4 Operation overview 
� The user selects an astronomical object 

type on which he wishes to query the 
registry from a list of all the object types 
represented in the ontology. 

 
 
 

� The search for keywords is performed 
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� The request builder outputs a list of 

suggested keywords corresponding 
to the wishes of the user. 

 
 
 

� The request builder builds a query corresponding to the checked boxes 
and sends it to the registry. 

5.2.5 Benefits of the registry request builder 
Such a tool offers the comfort to solve the problem of finding adequate keywords 
via an automated process. Moreover, the process is highly reliable since it is 
based on knowledge formalized with the help of experts from the user community 
itself. Finally, the tool is independent from the knowledge evolution. For example, 
if a new object type was to be added to the existing list or another changed, all 
there is to do is to modify the ontology accordingly, not the request builder. 

6 Perspectives and challenges 
The future of this work is divided in two main orientations: completing and 
improving the ontology and developing applications. 

6.1 Completing the ontology 
Currently, the ontology includes the greatest majority of SIMBAD's object types, 
plus a few more added during the construction. But from the 190 concepts of the 
AstrObject and AstroPortion branches only 86 have at least one definition, 
meaning that there are still two thirds to define. Moreover, existing definitions 
might be improved or backed by additional ones to fit better the applications thus 
improving performance.  
 
We are willing to establish collaborations with experts who could help us define 
the astronomical object types, like we are already doing for the Active Galaxy 
Nuclei section with Paolo Padovani of ESO, or Young Stellar Objects with 
Laurent Cambrésy of CDS. 

6.2 Other use cases 
Besides the registry request builder, the applications we are working on are a 
couple of tools for the SIMBAD database: 
 

� A multiple object type auto-completion and validation tool 
The idea is, for a given SIMBAD entry relative to an astronomical object, 
to identify the concept this entry is instance of. Then use the ontology to 
check if the SIMBAD object type(s) associated with this entry are 
consistent and suggest missing SIMBAD object types if there are some 
(the SIMBAD object types appear as annotations16 on concepts in the 

                                            
16 simbad:name and simbad:shortCode 
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ontology). Such a tool could help ensuring that items added to SIMBAD 
are consistent an well-described by the SIMBAD keywords. 
 

� A cross-identification validation tool 
The idea is to check if the SIMBAD object types derived from the various 
identifiers associated to a given entry in SIMBAD are consistent. 
Checkable inconsistencies include complex relationships like the presence 
of all the necessary components of a system (like a double star). This tool  
would help guaranteeing the consistency of already existing entries (since 
they must be checked manually if an inconsistency is assumed), so it is a 
good complement to the previous tool. 

 
Of course these are not the only possible applications, but they are relevant use 
cases for the ontology since it is originally built on SIMBAD list of object types 
and designed to be used as a semantic layer on top of astronomical object 
databases or similar structures.
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Appendix A - Implementation choices 
 

� The language of representation 
Since we wanted to build an ontology of defined concepts, we needed a 
formalism that would allow this. Description Logics17 is an adequate and mature 
means of representing ontologies. Furthermore, the Web Ontology Language 
(OWL) is based on description logics and is probably the most widespread 
language for describing ontologies, which comforted ourselves in our choices to 
describe our ontology using Description Logics and to implement it in OWL. 
 
After choosing to implement in OWL, we chose what OWL flavor is best for us: 
 

flavor logic decidable comments 

OWL-Lite SHIF(D) yes least expressiveness of the OWL flavors, least 
resource-consuming 

OWL-DL SHOIN(D) yes more resource-consuming but a lot more expressive  

OWL-1.118 SHROIQ(D) yes 
revision of OWL-DL, adds qualified cardinality 
restrictions and more expressiveness on roles, even 
heavier resource-wise but still decidable 

OWL-Full beyond 
SHROIQ(D) 

no No limit on expressiveness, only subsets are decidable 

 
OWL-Full is inadequate since we need a decidable logic to use a reasoner. 
OWL-Lite, though very attractive in terms of performance, allows far less 
expressiveness than we need. In fact, to match our expressiveness needs, we 
chose to implement in OWL1.1 at most and OWL-DL at best. And since we try to 
keep the complexity as low as possible so currently we still are within the 
boundaries of OWL-DL.  
Last but not least, we need a logic which is  supported by a reliable reasoner and 
this is the case with OWL-DL since most reliable reasoners like RACER, Pellet or 
FaCT++ implement logics corresponding to OWL-DL. Even better : in RACER's 
case, nearly all of OWL-1.1 is supported. 
 
 

� The reasoner 
Various efficient reasoners are available for description logics. All are based on 
different description logics and their implementations are summarized in the 
following table :  
 

                                            
17 http://wiki.eurovotech.org/twiki/bin/view/VOTech/DescriptionLogics 
18 http://owl1_1.cs.manchester.ac.uk/ 
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reasoner test 
version logic implementation License comments 

RACER 
1.7.23 
and 

1.7.24 
SHRIQ(D) CommonLISP free license 

discontinued since 1.7.24 
(authors went commercial with 

RacerPro) 

RacerPro 1.9 SHRIQ(D) LISP commercial 
DIG-only interface is free but 
not as flexible as the original 

RACER 

FaCT++ 1.1.3 SHOIQ(D) C++ GPL difficulties with large scale 
hierarchies  

Pellet 1.3 SHOIN(D) Java 
MIT  

(GPL-like) 

Theoretically supports 
SHOIQ(D) but  difficulties with 
cardinalities and larger scale 

hierarchies 

 
To determine which is best for our needs, we performed various tests19. The 
tests compared the performances of the different reasoners for the following 
tasks : 

� Checking the consistency of the ontology  

� Classifying the ontology (i.e. inferring subsumption relationships for 
both concepts and properties from the constraints on the concepts) 

The tests led to the following conclusions : 

� RACER/RacerPro is currently the best reasoner in terms of both 
performance and reliability if a higher expressiveness is needed, 
especially regarding cardinality.  

� RacerPro being commercial, prices and possible incompatibility with 
some OWL APIs (e.g. Jena) may be a problem. 

� RACER 1.7.23 is known to be compatible with all APIs 

� RACER 1.7.24 is a debugged revision of RACER 1.7.23. Specifically, it 
handles properly complex description logics expressions like 
anonymous concepts as ranges, which RACER 1.7.23 reports as 
inconsistent. 

Thus, we chose to use RACER 1.7.24 as our reasoner since it is by far the best 
compromise. And even if it is discontinued now, the years of research and 
development on it make it at least as valuable and reliable as its commercial 
counterpart. 

� The ontology editor 
The last choice to make for the implementation is to select a graphic editor to 
build and edit the ontology. We settled for Protégé-OWL [Horridge et al., 2004], 
developed by the University of Stanford, which is currently both the most 
complete and most intuitive graphic editor for ontologies.  

                                            
19 http://wiki.eurovotech.org/twiki/bin/view/VOTech/InferenceEngineTests 
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� Protégé view of concepts 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Protégé view of properties 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Though the editor is well documented, we set up a page of advice20 to ensure 
people willing to use Protégé would not be bothered by some minor problems we 

                                            
20 http://wiki.eurovotech.org/twiki/bin/view/VOTech/ProtegeAdvice 
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were ourselves confronted with. 
 
 
 
 
 
 
 

Appendix B - Changes from previous versions 
 
From  TN v1.0 : 

� New properties and ranges (4.1.3, 4.3.1) 
� Concept and overviews updated (4.2, 4.3.2) 
� Change of API to Protégé-OWL API (5.1.2) 
� Change of reasoner from RACER 1.7.23 to RACER 1.7.24  

(including the description of a RACER 1.7.23 serious bug) (Appendix A)
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Glossary 
 
defined concept 
Concept which is defined by at least one set of necessary and sufficient 
conditions 
 
domain (of a property) 
Concept to which a property can be applied. 
 
Jena   
Java framework for building Semantic Web applications. It provides a 
programmatic environment for RDF, RDFS and OWL, SPARQL and includes a 
rule-based inference engine. Jena is open source and grown out of work with the 
HP Labs Semantic Web Programme. (http://jena.sourceforge.net/) 
 
primitive concept   
Concept which is not defined by at least one set of necessary and sufficient 
conditions. 
 
property (role) 
Binary relationship between two concepts or unions of concepts (since you can 
define a concept as the union of other concepts). 
 
Protégé   
Protégé is a WYSIWYG ontology editor developed by the University of Stanford 
(http://protege.stanford.edu/). It features a version dedicated to OWL ontologies: 
Protégé-OWL revolving around an API partially compatible with Jena: the 
Protégé-OWL API 
 
range (of a property) 
Concept where a property takes its value. 
 
subsumption  
Relationship between concepts or properties. It can be roughly summarized as a 
kind of a “is a” relationship, meaning that children are more specific than their 
parents. 
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