	[image: image1.jpg]

	 International
 Virtual
 Observatory
Alliance

VOSpace-1
Version 0.19
WD 2006 May 16
This version:

0.19-20060516
Previous version(s):

0.18
http://www.ivoa.net/internal/IVOA/IvoaGridAndWebServices/VOStore0.18.pdf

0.17
http://www.ivoa.net/internal/IVOA/IvoaGridAndWebServices/VOStore0.17.pdf

0.15
http://www.ivoa.net/internal/IVOA/IvoaGridAndWebServices /VOStore0.14.pdf

0.13
http://www.ivoa.net/internal/IVOA/IvoaGridAndWebServices /VOStore0.13.pdf

Author(s):

Matthew Graham

 Paul Harrison

David Morris

 William O’Mullane

 Guy Rixon (editor for this draft)
 Ani Thakar

Abstract

VOSpace is a SOAP interface for access to data stores. VOSpace-1 applies the VOSpace concept to flat, unconnected stores.
Status of This Document

This is a working draft. It has not been released outside the working group.
This is an IVOA Working Draft for review by IVOA members and other interested parties. It is a draft document and may be updated, replaced, or made obsolete by other documents at any time. It is inappropriate to use IVOA Working Drafts as reference materials or to cite them as other than “work in progress”.
A list of current IVOA Recommendations and other technical documents can be found at http://www.ivoa.net/Documents/.
Contents

31
Introduction

32
VOSpace identifiers

43
VOSpace web-service operations

53.1
Creating and manipulating data-nodes

53.1.1
createNode

73.1.2
deleteNode

83.1.3
listNodes

93.1.4
moveNode

113.1.5
copyNode

123.2
Manipulating metadata of data-sets

123.2.1
getNodeProperties

133.2.2
setNodeProperties

143.3
Access to node data via streaming URIs

143.3.1
pushDataToVoSpace

183.3.2
pullDataToVoSpace

223.3.3
pullDataFromVoSpace

253.3.4
pushDataFromVoSpace

273.4
Access to node data via DIME attachments to SOAP

273.4.1
getDimeData

293.4.2
putDimeData

30References

1 Introduction

VOSpace is an interface standard for data stores. It specifies how VO agents and applications can use network-attached data-stores to persist and exchange data in a standard way.
A VOSpace web-service is an access point for a distributed storage-network. Through that access point, a client can:

· add or delete data-sets;
· manipulate metadata for the data-sets;

· get URIs through which the content of the data-sets can be got or put.

VOSpace does not define how the data are stored, but only how they are accessed. Thus, the VOSpace interface can readily be added to an existing storage-system.

When we speak of “a VOSpace”, we mean the arrangement of data accessible through one particular VOSpace service. A VOSpace data-node means a data-set within a VOSpace. Nodes in VOSpace have unique identifiers expressed as URIs in the vos:// scheme, as defined below.
In VOSpace 1, the subject of this standard, each VOSpace is a single, flat container of data-sets, like one directory of a file-system. There are no links between VOSpace 1 services. A VOSpace-1 service provides facilities similar to a service in the earlier VOStore standard; VOSpace-1 supercedes VOStore.
Later versions of VOSpace will allow a hierarchical arrangement of data-sets within a space, and will allow VOSpaces to be linked such that a client can navigate them as one tree. Services implementing VOSpace 1 can be linked in as leaf-nodes of this combined tree without needing to change; the VOSpace 2+ services will make the links

2 VOSpace identifiers
The identifier for a node in VOSpace shall be a URI with the scheme vos. Such a URI shall have the following parts:
· scheme;

· naming authority;

· path;

· (optional) query;

· (optional) fragment identifier;

with the meanings defined in RFC??? [ref?].

The naming authority for a VOSpace node shall be the VOSpace service through which the node was created. The authority part of the URI shall be constructed from the IVO identifier [ref?] for that service by deleting the ivo:// prefix and changing all forward-slash characters (‘/’) in the resource key to exclamation marks (‘!’).

This is an example of a possible VOSpace identifier.

vos://org.astrogrid.cam!vospace!container-6/siap-out-1.vot?foo=bar#baz

· org.astrogrid.cam!vospace!container-6 is the authority part of the URI, corresponding to the IVO-ID ivo://org.astrogrid.cam/vospace/container-6. There should be a VOSpace service registered with this identifier.

· /siap-out-1.vot is the path part of the URI. Slashes in the path imply a hierarchical arrangement of data, as is normal with URIs. Since VOSpace 1 does not support data hierarchies, an identifier for a VOSpace-1 node must have one slash at the start of the path and no other slashes.

· ?foo=baz is a query string and thus is something to which the VOSpace service is supposed to respond. No queries of this nature are defined for VOSpace 1, but the query-string systne is reserved for later versions of VOSpace. VOSpace-1 identifiers must not contain the ‘?’ delimiter.
· #baz is a fragment identifier. Its meaning attaches to the data-set stored in the VOSpace node, not to the node itself. The fragment identifier is interpreted by the client, not by the VOSpace service; the service shall ignore any fragment identifier in a received node-identifier.
A VOSpace identifier shall refer to exactly one node in any VOSpace.
A client shall decode a VOSpace identifier for access to the node according to the following procedure.

1. Extract the authority part of the VOSpace URI.

2. Convert the authority back to the IVO-ID of the VOSpace service by changing any ‘!’ characters to ‘/’ and adding the ivo:// prefix.

3. Resolve the IVO-ID to an endpoint for the VOSpace service using the IVO resource-registry.

4. Access the node via the endpoint using the operation defined in this standard.
3 VOSpace web-service operations
A VOSpace-1 service shall be a SOAP service with the following operations.
The contract for the forthcoming VOSpace-2, which will support hierarchies of containers and links between spaces, is a super-set of the contract in this section. Please see the original discussion of VOSpace semantics [1] to see how the contract changes.

3.1 Creating and manipulating data-nodes

3.1.1 createNode

Creates a new node in a space.

This method is used to create empty data nodes, containers and links.

We hope to add more node types to future versions of VoSpace?, and this will be the primary method for creating new types of node.

3.1.1.1 Parameters

· Parent - The URI of an existing parent node

1. vos://[service]/

2. vos://[service]/path/path/

· Name - A (optional) human readable name for the new node. The name must have correct syntax to appear in the path part of a VOSpace identifier.
· my results

· Type - The URI of the node type. Must be set to ivo://org.astrogrid.vospace/types/data.node

· Properties - An optional set of name value properties for the new node

· Type specific data - Any additional data required to create the specific node type

An XML friendly way to include any type specific data required to create the node could be to start with a generic <node> template element,

 <node>

 <name>My new node</name>

 <properties>

 </properties>

 </node>

and then use xsi:type attribute to extend it as required.

 <node xsi:type="DataNode">

 <name>My new node</name>

 <properties>

 </properties>

 <!--+

 | Additional data required for a new DataNode

 +-->

 </node>

3.1.1.2 Returns

A full <node> element for the new node, containing

· The URI encoded identifier for the new node e.g. vos://[service]/000-517

· The node name as a plain string e.g.
· 000-517

· my results

· Type - The URI of the node type; always set to ivo://org.astrogrid.vospace/types/data.node

· Properties - The set of name value properties for the new node

Again, an XML friendly way to include any additional type specific data could be to use a generic <node> element,

 <node>

 <uri>vos://[service]/path/my%20results</uri>

 <type>ivo://org.astrogrid.vospace/types/base.node</type>

 <name>My results</name>

 <properties>

 </properties>

 </node>

and then use xsi:type attribute to extend it as required.

 <node xsi:type="DataNode">

 <uri>vos://[service]/path/my%20results</uri>

 <type>ivo://org.astrogrid.vospace/types/data.node</type>

 <name>My new node</name>

 <properties>

 </properties>

 <!--+

 | Additional data required for a new DataNode

 +-->

 </node>

3.1.1.3 Throws

· The service will throw a NodeNotFound exception if the parent node does not exist.

· The service will throw an OperationNotSupported exception if it does not support the requested type.

· The service will throw a DuplicateNode exception if a node already exists with the same name.

· The service may throw an OperationNotSupported exception if it does not support user defined names.

· The service may throw an InternalFault exception if an operation fails.

· The service may throw a PermissionDenied exception if the user does not have permissions to perform the operation.

3.1.1.4 Notes

· If the name is null, then the service will generate a new unique name for the node.

· In a VOSpace-1, the parent is always the URI for the top-level space. In VOSpace-2 and later, the parent might be a container node at some other point in the hierarchy.

· In VOSpace-1, only data-nodes may be created. In VOSpace-2 and later, container nodes may be supported. For continuity, the VOSpace-1 interface includes the parameters to support the forthcoming features.

3.1.2 deleteNode

Delete a node from VoSpace?.

3.1.2.1 Parameters

· Target - The URI of an existing node e.g.
· vos://[service]/000-517

3.1.2.2 Returns

Nothing.

3.1.2.3 Throws

· The service will throw a NodeNotFound exception if the target node does not exist.

· The service may throw an InternalFault exception if an operation fails.

· The service may throw a PermissionDenied exception if the user does not have permissions to perform the operation.

3.1.3 listNodes

Lists the data-nodes of a VOSpace-1.
In order to support large numbers of nodes within a container, this method uses a continuation token to enable the list to be split across more than response.

3.1.3.1 Parameters

· Target - The URI of an existing container node e.g.
· vos://[service]/000-517

· Token - An optional continuation token from a previous request.

· 5177-B8

· PageSize? - A (optional) page size, indicating how many results per response.

· 10

3.1.3.2 Returns

A continuation token, indicating that the list is incomplete. The client can use this token to request the next list of nodes in the sequence.

· A service-specific continuation token

· 5177-B8

A list of <node> elements for each child node, containing

· The URI encoded identifier for the node e.g.
· vos://[service]/000-517

· vos://[service]/my%20results

· The node name as a plain string e.g.
· 000-517

· my results

· Type - The URI of the node type

· ivo://org.astrogrid.vospace/types/data.node

· Properties - The set of name value properties for the node

3.1.3.3 Throws

· The service will throw a NodeNotFound exception if the target node does not exist.

· The service may throw an InvalidToken exception if it does not recognise the continuation token.

· The service may throw an InvalidToken exception if the continuation token has expired.

· The service may throw an InternalFault exception if an operation fails.

· The service may throw a PermissionDenied exception if the user does not have permissions to perform the operation.

3.1.3.4 Notes

· The server may impose a limited lifetime on the continuation token.

· If the token has expired, the server will throw an exception, and the client will have to make a new request.

3.1.4 moveNode

Move a node within a VoSpace? service.

Note that this does not cover moving data between separate VoSpace? services.

Moving nodes between separate VoSpace? services should be handled by the client, using the import, export and delete methods.

3.1.4.1 Parameters

· Target - The URI of an existing node, e.g.
· vos://[service]/000-517

· Parent - The URI of an existing parent node, e.g.
· vos://[service]/

· Name - A (optional) human readable name for the new node. This must be

· my results

· Properties - An optional set of name value properties for the node

3.1.4.2 Returns

A full <node> element for the node, containing

· The URI encoded identifier for the new node

· vos://[service]/000-517

· vos://[service]/my%20results

· The node name as a plain string

· 000-517

· my results

· Type - The URI of the node type

· ivo://org.astrogrid.vospace/types/data.node

· Properties - The set of name value properties for the new node

Again, an XML friendly way to include any additional type specific data could be to use a generic <node> element, and then use xsi:type attribute to extend it as required.

3.1.4.3 Throws

· The service will throw a NodeNotFound exception if the target node does not exist.

· The service will throw a NodeNotFound exception if the parent node does not exist.

· The service will throw a DuplicateNode exception if a node already exists with the same name.

· The service may throw an InternalFault exception if an operation fails.

· The service may throw a PermissionDenied exception if the user does not have permissions to perform the operation.

3.1.4.4 Notes

· There is a strong case for making this an asynchronous operation.

· Moving a large data set within a space service may involve transferring the data from one physical disk to another, which may take time to complete.

3.1.4.5 Questions

· Should the identifier in the response be full URIs or just the local path ?

· Should we allow null <parent> to indicate change of name only ?

· Should we allow null <name> to indicate move but keep same name ?

3.1.5 copyNode

Copy a node within a VoSpace? service.

Note that this does not cover copying data between separate VoSpace? services.

Copying nodes between separate VoSpace? services should be handled by the client, using the import and export methods.

3.1.5.1 Parameters

· Target - The URI of an existing node

· vos://[service]/000-517

· Parent - The URI of an existing parent node

· vos://[service]/

· Name - A (optional) human readable name for the new node

· my results

· Properties - An optional set of name value properties for the node

3.1.5.2 Returns

A full <node> element for the new node, containing

· The URI encoded identifier for the new node

· vos://[service]/000-517

· vos://[service]/my%20results

· The node name as a plain string

· 000-517

· my results

· Type - The URI of the node type

· ivo://org.astrogrid.vospace/types/data.node

· Properties - The set of name value properties for the new node

Again, an XML friendly way to include any additional type specific data could be to use a generic <node> element, and then use xsi:type attribute to extend it as required.

3.1.5.3 Throws

· The service will throw a NodeNotFound exception if the target node does not exist.

· The service will throw a NodeNotFound exception if the parent node does not exist.

· The service will throw a DuplicateNode exception if a node already exists with the same name.

· The service may throw an InternalFault exception if an operation fails.

· The service may throw a PermissionDenied exception if the user does not have permissions to perform the operation.

3.1.5.4 Notes

· There is a strong case for making this an asynchronous operation.

· Copying a large data set within a space service may involve transferring the data from one physical disk to another, which may take time to complete.

3.2 Manipulating metadata of data-sets

3.2.1 getNodeProperties

Get the details for a specific node.

3.2.1.1 Parameters

· Target - The URI of an existing container node

· vos://[service]/000-517

3.2.1.2 Returns

A <node> element for the node, containing

· The URI encoded identifier for the node

· vos://[service]/000-517

· The node name as a plain string

· 000-517

· my results

· Type - The URI of the node type

· ivo://org.astrogrid.vospace/types/data.node

· Properties - The set of name value properties for the node

Again, an XML friendly way to include any additional type specific data could be to use a generic <node> element, and then use xsi:type attribute to extend it as required.

3.2.1.3 Throws

· The service will throw a NodeNotFound exception if the target node does not exist.

· The service may throw an InternalFault exception if an operation fails.

· The service may throw a PermissionDenied exception if the user does not have permissions to perform the operation.

3.2.2 setNodeProperties

Set the properties for a specific node.

3.2.2.1 Parameters

· Target - The URI of an existing node

· vos://[service]/000-517

· Properties - A set of updated properties for the node

· Type specific data - Any additional type specific data that can be modified

3.2.2.2 Returns

A <node> element for the node, containing

· The URI encoded identifier for the node

· vos://[service]/000-517

· The node name as a plain string

· 000-517

· my results

· Type - The URI of the node type

· ivo://org.astrogrid.vospace/types/data.node

· Properties - The set of name value properties for the node

Again, an XML friendly way to include any additional type specific data could be to use a generic <node> element, and then use xsi:type attribute to extend it as required.

3.2.2.3 Throws

· The service will throw a NodeNotFound exception if the target node does not exist.

· The service may throw an InternalFault exception if an operation fails.

· The service may throw a PermissionDenied exception if the user does not have permissions to perform the operation.

3.2.2.4 Notes

· Some properties may be read-only e.g. MD5 checksum.

3.3 Access to node data via streaming URIs

3.3.1 pushDataToVoSpace

Request a URL to send data to a VoSpace? node.

This method asks the server for a URL that the client can use to send data to. The data transfer is initiated by the client, after it has received the response from the VoSpace? service. The client sends the data using a put request, and the data is transferred into the target node.

The primary use case for this method is a laptop or desktop client that wants to send some data to a VoSpace? service.

3.3.1.1 Parameters

3.3.1.1.1 Import into an existing node

· Target - The URI of an existing data node

· vos://[service]/000-517

3.3.1.1.2 Import into a new node

· Parent - The URI of an existing parent node

· vos://[service]/

· Name - A (optional) human readable name for the new node

· my results

· Type - The URI of the node type

· ivo://org.astrogrid.vospace/types/data.node

· Replace - A (optional) boolean flag to indicate if the service should replace an existing node (defaults to true).

· Not sure if we need this ?

· Any additional data required to create the node type

As with CreateNode, this could use a generic <node> template element,

 <node>

 <name>My new node</name>

 <properties>

 </properties>

 </node>

and then use xsi:type attribute to extend it as required.

 <node xsi:type="DataNode">

 <name>My new node</name>

 <properties>

 </properties>

 <!--+

 | Additional data required for a new DataNode

 +-->

 </node>

3.3.1.1.3 Generic import params

· Properties - An optional set of name value properties to update the node

· Format - The URI of the data format.

· ivo://org.astrogrid.vospace/formats/binary

· ivo://org.astrogrid.vospace/formats/votable-1.0

· Should we make binary the default, and allow <format> to be optional ?

· Protocol - The URI of the transfer protocol.

· ivo://org.astrogrid.vospace/protocols/http-put

· ivo://org.astrogrid.vospace/protocols/http-put-chunked

· ivo://org.astrogrid.vospace/protocols/dime-put

3.3.1.2 Returns

A <node> element for the updated node, containing

· The URI encoded identifier for the new node

· vos://[service]/000-517

· vos://[service]/my%20results

· vos://[service]/path/path/my%20results

· The node name as a plain string

· 000-517

· my results

· Type - The URI of the node type

· ivo://org.astrogrid.vospace/types/data.node

· Properties - The set of name value properties for the new node

Again, an XML friendly way to include any additional type specific data could be to use a generic <node> element,

 <node>

 <uri>vos://[service]/path/my%20results</uri>

 <type>ivo://org.astrogrid.vospace/types/base.node</type>

 <name>My results</name>

 <properties>

 </properties>

 </node>

and then use xsi:type attribute to extend it as required.

 <node xsi:type="DataNode">

 <uri>vos://[service]/path/my%20results</uri>

 <type>ivo://org.astrogrid.vospace/types/data.node</type>

 <name>My new node</name>

 <properties>

 </properties>

 <!--+

 | Additional data required for a DataNode

 +-->

 </node>

Plus, a <transfer> element, containing details of the data transfer.

· The URI of the transfer object (if the server supports status queries)

· vos://[service]/[ident]

· Format - The URI of the data format.

· ivo://org.astrogrid.vospace/formats/binary

· ivo://org.astrogrid.vospace/formats/votable-1.0

· Protocol - The URI of the transfer protocol.

· ivo://org.astrogrid.vospace/protocols/http-put

· ivo://org.astrogrid.vospace/protocols/http-put-chunked

· A <location> element containing details of where to send the data to

This could use xsi:type to include specific params required by the transfer protocol.

A standard http transfer only requires the URL to send the data to

 <location xsi:type="HttpPutLocation">

 <url>http://[host]/[path]</url>

 </location>

A SOAP DIME transfer requires the endpoint of the service, and an identifier for the transfer.

 <location xsi:type="HttpPutLocation">

 <url>http://[host]/[path]</url>

 <ident>5117-00BC6</ident>

 </location>

Other protocols may require different a set of params.

· Expiry date - An optional expiry date of the transfer window

· Status - For a new transfer, the status should be 'ready'

3.3.1.3 Throws

3.3.1.3.1 Target node specified

· The service will throw a NodeNotFound exception if the target node does not exist.

3.3.1.3.2 Create node specified

· The service will throw a NodeNotFound exception if the parent node does not exist.

· The service will throw a OperationNotSupported exception if it does not support the requested type.

· The service may throw a OperationNotSupported exception if it does not support user defined names.

· The service may throw a DuplicateNode exception if <replace> is false, and a node with the same name already exists

3.3.1.3.3 Import exceptions

· The service may throw a OperationNotSupported exception if it does not support the requested transfer protocol.

· The service may throw a OperationNotSupported exception if it does not support the requested data format.

· The service may throw an InternalFault exception if an operation fails.

· The service may throw a PermissionDenied exception if the user does not have permissions to perform the operation.

3.3.1.3.4 Notes

· If the new node name is null, then the service will generate a new unique name for the node.

· The transfer 'window' may have a limited lifetime, and may be deleted from the server if it has not been used by its expiry date.

3.3.1.3.5 Questions

· Do we need the <replace> flag to prevent overwriting an existing file ?

· Should we make the default format binary and allow the <format> element to be optional ?

· What status codes do we want for a transfer, or can we use URIs ?

· If we use xsi:type on the <location>, then do we need the <protocol>.

· Or should the xsi:type be on the <transfer> or <protocol> element ?

3.3.2 pullDataToVoSpace

Import data into a VoSpace? node.

This method asks the server to fetch the data from a remote location. The data transfer is initiated by the VoSpace? service, using a get request, and the response is transferred direct into the target data node.

The primary use case for this method is transferring data from one server or service to another. The data source can be another VoSpace? service, or a standard HTTP or FTP server.

3.3.2.1 Parameters

3.3.2.1.1 Import into an existing node

· Target - The URI of an existing data node

· vos://[service]/000-517

3.3.2.1.2 Import into a new node

· Parent - The URI of an existing parent node

· vos://[service]/

· Name - A (optional) human readable name for the new node

· my results

· Type - The URI of the node type

· ivo://org.astrogrid.vospace/types/data.node

· Replace - A (optional) boolean flag to indicate if the service should replace an existing node (defaults to true).

· Not sure if we need this ?

· Any additional data required to create the node type

As with CreateNode, this could use a generic <node> template element,

 <node>

 <name>My new node</name>

 <properties>

 </properties>

 </node>

and then use xsi:type attribute to extend it as required.

 <node xsi:type="DataNode">

 <name>My new node</name>

 <properties>

 </properties>

 <!--+

 | Additional data required for a new DataNode

 +-->

 </node>

3.3.2.1.3 Generic import params

· Properties - An optional set of name value properties to update the node

· Format - The URI of the data format.

· ivo://org.astrogrid.vospace/formats/binary

· ivo://org.astrogrid.vospace/formats/votable-1.0

· Should we make binary the default, and allow <format> to be optional ?

· Protocol - The URI of the transfer protocol.

· ivo://org.astrogrid.vospace/protocols/http-get

· ivo://org.astrogrid.vospace/protocols/dime-get

· A <location> element containing details of where to get the data from

This could use xsi:type to include specific params required by the transfer protocol.

A standard http transfer only requires the URL to send the data to

 <location xsi:type="HttpPutLocation">

 <url>http://[host]/[path]</url>

 </location>

A SOAP DIME transfer requires the endpoint of the service, and an identifier for the transfer.

 <location xsi:type="DimePutLocation">

 <url>http://[host]/[path]</url>

 <ident>5117-00BC6</ident>

 </location>

Other protocols may require different a set of params.

3.3.2.2 Returns

A <node> element for the updated node, containing

· The URI encoded identifier for the new node

· vos://[service]/000-517

· The node name as a plain string

· 000-517

· my results

· Type - The URI of the node type

· ivo://org.astrogrid.vospace/types/data.node

· Properties - The set of name value properties for the new node

· Additional type specific data.

An XML friendly way to include the additional type specific data could be to use a generic <node> element,

 <node>

 <uri>vos://[service]/path/my%20results</uri>

 <type>ivo://org.astrogrid.vospace/types/base.node</type>

 <name>My results</name>

 <properties>

 </properties>

 </node>

and then use xsi:type attribute to extend it as required.

 <node xsi:type="DataNode">

 <uri>vos://[service]/path/my%20results</uri>

 <type>ivo://org.astrogrid.vospace/types/data.node</type>

 <name>My new node</name>

 <properties>

 </properties>

 <!--+

 | Additional data required for a DataNode

 +-->

 </node>

Plus, a <transfer> element, containing details of the data transfer.

· The URI of the transfer object (if the server supports status queries)

· vos://[service]/[ident]

· Format - The URI of the data format.

· ivo://org.astrogrid.vospace/formats/binary

· ivo://org.astrogrid.vospace/formats/votable-1.0

· Protocol - The URI of the transfer protocol.

· ivo://org.astrogrid.vospace/protocols/http-get

· A <location> element containing details of how the data was transferred

· Again, this could use xsi:type to include specific params required by the transfer protocol.

· Status - For a synchronous transfer, the status should be 'completed'

3.3.2.3 Throws

3.3.2.3.1 Target node specified

· The service will throw a NodeNotFound exception if the target node does not exist.

3.3.2.3.2 Create node specified

· The service will throw a NodeNotFound exception if the parent node does not exist.

· The service will throw an OperationNotSupported exception if it does not support the requested type.

· The service may throw a OperationNotSupported exception if it does not support user defined names.

· The service may throw a DuplicateNode exception if <replace> is false, and a node with the same name already exists

3.3.2.3.3 Import exceptions

· The service may throw a OperationNotSupported exception if it does not support the requested transfer protocol.

· The service may throw a OperationNotSupported exception if it does not support the requested data format.

· The service may throw a TransferFailed exception if the data transfer does not complete.

· The service may throw an InternalFault exception if an operation fails.

· The service may throw a PermissionDenied exception if the user does not have permissions to perform the operation.

3.3.2.3.4 Notes

· If the new node name is null, then the service will generate a new unique name for the node.

· In VoSpace? version 1.0, the transfer is synchronous, and the SOAP call does not return until the transfer has been completed.

· For a SOAP DIME transfer, the VoSpace? service will need to authenticate with the remote service using a proxy certificate.

3.3.2.3.5 Questions

· Do we need the <replace> flag to prevent overwriting an existing file ?

· Should we make the default format binary and allow the <format> element to be optional ?

· What status codes do we want for a transfer, or can we use URIs ?

· If we use xsi:type on the <location>, then do we need the <protocol>.

· Or should the xsi:type be on the <transfer> or <protocol> element ?

3.3.3 pullDataFromVoSpace

Request a URL that the client can read data from.

This will probably be the primary data access method for reading data from a VoSpace?. The client requests access to a data node, and the server responds with a URL that the client can read the data from.

3.3.3.1 Parameters

· Target - The URI of an existing data node

· vos://[service]/000-517

· Format - The URI of the data format.

· ivo://org.astrogrid.vospace/formats/binary

· ivo://org.astrogrid.vospace/formats/votable-1.0

· Should we make binary the default, and allow <format> to be optional ?

· Protocol - The URI of the transfer protocol.

· ivo://org.astrogrid.vospace/protocols/http-get

· ivo://org.astrogrid.vospace/protocols/dime-get

· Properties - Is this useful ?

3.3.3.2 Returns

A <node> element for the updated node.

· Not sure if we need this or not.

· The data node should not be changed by the operation, so do we need to include the node properties in the response ?

Plus, a <transfer> element, containing details of the data transfer.

· The URI of the transfer object (if the server supports status queries)

· vos://[service]/[ident]

· Format - The URI of the data format.

· ivo://org.astrogrid.vospace/formats/binary

· ivo://org.astrogrid.vospace/formats/votable-1.0

· Protocol - The URI of the transfer protocol.

· ivo://org.astrogrid.vospace/protocols/http-get

· A <location> element containing details of where to get the data from

This could use xsi:type to include specific params required by the transfer protocol.

A standard http transfer only requires the URL to send the data to

 <location xsi:type="HttpPutLocation">

 <url>http://[host]/[path]</url>

 </location>

A SOAP DIME transfer requires the endpoint of the service, and an identifier for the transfer.

 <location xsi:type="HttpPutLocation">

 <url>http://[host]/[path]</url>

 <ident>5117-00BC6</ident>

 </location>

Other protocols may require different a set of params.

· Status - For a transfer that has not ben used yet, the status should be 'ready'

3.3.3.3 Throws

· The service will throw a NodeNotFound exception if the target node does not exist.

· The service may throw a OperationNotSupported exception if it does not support the requested transfer protocol.

· The service may throw a OperationNotSupported exception if it does not support the requested data format.

· The service may throw an InternalFault exception if an operation fails.

· The service may throw a PermissionDenied exception if the user does not have permissions to perform the operation.

3.3.3.4 Notes

· The URL or URI supplied in the response should be considered as a 'one shot' URL.

· A VoSpace? service connected to a standard web server may return the public URL for the data.

· However, a different implementation may create a unique URL specifically for this transfer, which can only be used once, and may have a limited lifetime.

3.3.3.5 Questions

· If the data has not changed, do we need to include the node properties in the response ?

· Should we make the default format binary and allow the <format> element to be optional ?

· What status codes do we want for a transfer, or can we use URIs ?

· If we use xsi:type on the <location>, then do we need the <protocol>.

· Or should the xsi:type be on the <transfer> or <protocol> element ?

Should the server response include details of the lifetime of the transfer object ?

3.3.4 pushDataFromVoSpace

Ask the server to send data to a remote location.

The client supplies a URL or URI, and asks the server to send the data to the remote location. The transfer is initiated by the server, and the data is transferred direct from the server to the remote location.

3.3.4.1 Parameters

· Target - The URI of an existing data node

· vos://[service]/000-517

· Format - The URI of the data format.

· ivo://org.astrogrid.vospace/formats/binary

· ivo://org.astrogrid.vospace/formats/votable-1.0

· Should we make binary the default, and allow <format> to be optional ?

· Protocol - The URI of the transfer protocol.

· ivo://org.astrogrid.vospace/protocols/http-get

· A <location> element containing details of where to send the data to

This could use xsi:type to include specific params required by the transfer protocol.

A standard http transfer only requires the URL to send the data to

 <location xsi:type="HttpPutLocation">

 <url>http://[host]/[path]</url>

 </location>

A SOAP DIME transfer requires the endpoint of the service, and an identifier for the transfer.

 <location xsi:type="HttpPutLocation">

 <url>http://[host]/[path]</url>

 <ident>5117-00BC6</ident>

 </location>

Other protocols may require different a set of params.

3.3.4.2 Returns

A <node> element for the updated node.

· Not sure if we need this or not.

· The data node should not be changed by the operation, so do we need to include the node properties in the response ?

A <transfer> element, containing details of the data transfer.

· The URI of the transfer object (if the server supports status queries)

· vos://[service]/[ident]

· Format - The URI of the data format.

· ivo://org.astrogrid.vospace/formats/binary

· ivo://org.astrogrid.vospace/formats/votable-1.0

· Protocol - The URI of the transfer protocol.

· ivo://org.astrogrid.vospace/protocols/http-get

· A <location> element containing details of where the data was sent to

· Again, this could use xsi:type to include specific params required by the transfer protocol.

· Status - For a synchronous transfer, the status should be 'completed'

3.3.4.3 Throws

· The service will throw a NodeNotFound exception if the target node does not exist.

· The service may throw a OperationNotSupported exception if it does not support the requested transfer protocol.

· The service may throw a OperationNotSupported exception if it does not support the requested data format.

· The service may throw an InternalFault exception if an operation fails.

· The service may throw a PermissionDenied exception if the user does not have permissions to perform the operation.

3.3.4.4 Notes

· In VoSpace? version 1.0, the transfer is synchronous, and the SOAP call does not return until the transfer has been completed.

· If the DIME PUT protocol is selected, then the server will need to authenticate with the remote service using a proxy certificate.

3.3.4.5 Questions

· What additional params would we need to support asynchronous transfers ?

· If the data has not changed, do we need to include the node properties in the response ?

· Should we make the default format binary and allow the <format> element to be optional ?

· What status codes do we want for a transfer, or can we use URIs ?

· If we use xsi:type on the <location>, then do we need the <protocol>.

· Or should the xsi:type be on the <transfer> or <protocol> element ?

3.4 Access to node data via DIME attachments to SOAP

3.4.1 getDimeData

This defines the service endpoint for a DIME get transfer.

Note, this is not part of the main VoSpace? interface. This may be implemented as a capability of a VoSpace? service, or it may be implemented as a separate webservice.

When a client requests a DIME get transfer via ExportInit?, the VoSpace? service replies with the endpoint address of a service that implements this interface, and a URI identifier for the transfer.

If the VoSpace? service does not support transfer transactions, then this may be just a URI of a VoSpace? data node. However, if the VoSpace? service does support transfer transactions, then the URI may point to a data transfer setup by a call to ExportInit?.

The content of the identifier is service specific, and the client should not try to interpret it as anything other than an opaque URI.

3.4.1.1 Parameters

· Target - The transfer URI

· vos://[service]/000-517-889

3.4.1.2 Returns

A <node> element, including the node properties.

The content of the node, sent as a DIME attachment.

3.4.1.3 Throws

· The service will throw a InvalidIdentifier exception if the identifier is not valid.

· The service will throw a ExpiredTransaction exception if the transaction has expired.

· The service may throw an InternalFault exception if an operation fails.

· The service may throw a PermissionDenied exception if the user does not have permissions to perform the operation.

3.4.1.4 Notes

· DIME is supported in many of the current SOAP toolkits. However, it is a deprecated protocol, and is being replaced by MTOM.

· As toolkit support for MTOM becomes stable, this method will be replaced by a similar MTOM based one.

3.4.1.5 Questions

· Should we have a version of this that accepts the URI of a data node, enabling clients to get the data directly without setting up a transfer using ExportInit? ?

· It does give us a direct 'get' method. However, it also links the VoSpace? interface with a specific transfer protocol.

· Current thinking is keep it separate, and look at closer integration if people need it.

3.4.2 putDimeData

This defines the service endpoint for a DIME put transfer.

Note, this is not part of the main VoSpace? interface. This may be implemented as a capability of a VoSpace? service, or it may be implemented as a separate webservice.

When a client requests a DIME put transfer via ImportInit?, the VoSpace? service replies with the endpoint address of a service that implements this interface, and a URI identifier for the transfer.

If the VoSpace? service does not support transfer transactions, then this may be just a URI of a VoSpace? data node. However, if the VoSpace? service does support transfer transactions, then the URI may point to a data transfer setup by a call to ExportInit?.

The content of the identifier is service specific, and the client should not try to interpret it as anything other than an opaque URI.

3.4.2.1 Parameters

· Target - The URI of transfer

· vos://[service]/000-517-889

· The data, sent as a DIME attachment.

3.4.2.2 Returns

A <node> element, including the updated node properties.

3.4.2.3 Throws

· The service will throw a InvalidIdentifier exception if the identifier is not valid.

· The service will throw a ExpiredTransaction exception if the transaction has expired.

· The service may throw an InternalFault exception if an operation fails.

· The service may throw a PermissionDenied exception if the user does not have permissions to perform the operation.

3.4.2.4 Notes

· DIME is supported in many of the current SOAP toolkits. However, it is a deprecated protocol, and is being replaced by MTOM.

3.4.2.5 Questions

· Should we have a version of this that accepts the URI of a data node, enabling clients to get the data directly without setting up a transfer using ExportInit? ?

· It does give us a direct 'put' method. However, it also links the VoSpace? interface with a specific transfer protocol.

· Current thinking is keep it separate, and look at closer integration if people need it.

References

[1] Statement VOSpace operations, including VOSpace-2 facilities, http://wiki.astrogrid.org/bin/view/Astrogrid/VoSpace20060426

