	[image: image1.jpg]

	 International
 Virtual
 Observatory
Alliance

Universal Worker Service
Version 0.2
IVOA Internal Working Draft 2006 May 11
This version:

0.2-2006-05-11
Latest version:

not issued outside GWS-WG
Previous version(s):

Internal Working Draft v0.1, 2005-01-24

Author(s):

Guy Rixon

Abstract

The Universal Worker Service pattern (UWS) defines how to manage asynchronous execution of jobs on a service. Any application of the pattern defines a family of related services with a common service contract. Four possible applications are described.
Status of This Document

This is an internal working draft of the GWS-WG. The first release of this document was on 2005-01-24 within the working group; it has not yet been issued outside the working group.

This is an IVOA Working Draft for review by IVOA members and other interested parties. It is a draft document and may be updated, replaced, or made obsolete by other documents at any time. It is inappropriate to use IVOA Working Drafts as reference materials or to cite them as other than “work in progress”.
A list of current IVOA Recommendations and other technical documents can be found at http://www.ivoa.net/Documents/.
Acknowledgements

The need for the UWS pattern was inspired by AstroGrid’s Common Execution Architecture and particularly by discussions with Paul Harrison and Noel Winstanley. The ideas about statefulness are distilled from debates in the Global Grid Forum in respect of the Open Grid Services Infrastructure that was the fore-runner of Web Services Resource Framework.
Contents

31
Introduction

31.1
Synchronous, stateless services

41.2
Some IVO activities that outgrow synchronous, stateless services

41.3
Asynchronous and stateful services

51.4
Job description language, service contracts and universality

52
Universal Worker Service pattern

52.1
Web-service operations

52.1.1
createjob

62.1.2
startJob

62.1.3
GetResourceProperty

62.1.4
resumeJob

62.1.5
SetTerminationTime

62.1.6
Destroy

62.2
Resource properties

72.3
Resource identifiers

72.4
Interrupted jobs

82.5
Relationship to WS-RF

83
Use cases

83.1
Image service with data staging

123.2
ADQL service with cursor

133.3
VOSpace with controlled lifetime

153.4
Parameterized applications

184
References

1 Introduction

The Universal Worker Service (UWS) pattern defines how to build asynchronous, stateful, job-oriented services (the italicized terms are defined in sub-sections of this introduction). It does so in a way that allows for wide-scale reuse of software and support from software toolkits.
Section 2 of this document describes the pattern and lists the aspects that are common to all its applications. Any such application would involve a service contract that embodies the pattern and fixes the issues left undefined in the pattern itself. The contract would include the XML schemata (XSD and WSDL) for the application. It is intended that each such contract cover a family of related applications, such that the implementations may be widely reused.
Section 3 outlines several possible applications of the pattern. These use-cases may be expanded into full IVOA standards that are siblings of the current document.
1.1 Synchronous, stateless services

Simple web services are synchronous and stateless. Synchronous means that the client waits for each request to be fulfilled; if the client disconnects from the service then the activity is abandoned. Stateless means that the service does not remember results of a previous activity (or, at least, the client cannot ask the service about them).

Synchronous, stateless services work well when two criteria apply.

The length of each activity is less than the “attention span” of the connection.

1. The results of each activity are compact enough to be easily passed back to the client via the connection on which the request was made (and possibly pushed back to the service as parameters of the next activity).

There are various limits to the attention span.

· HTTP assumes that the start of a reply quickly follows its request, even if the body of the reply takes a long time to stream. If the service takes too long to compute the results and to start the reply, then HTTP times out at the request is lost.

· A client runs computer which will not stay on-line indefinitely.

· A network with finite reliability will eventually break communications during an activity.
· A service is sometimes shut down for maintenance.

Synchronous, stateless services, in short, do not scale well.

1.2 Some IVO activities that outgrow synchronous, stateless services

These cases are examples. They are not a complete list!

1. An ADQL [1] service gives access to a large object-catalogue. Most queries run in less than a minute, but some legitimate queries involve a full-table traverse and take hours or days. The service needs to run these special cases in a low-priority queue.
2. An object-finding service runs the Sextractor application on a list of images. Normally, the list is short and the request is quickly satisfied. Occasionally, a list of 10,000 images is sent in the expectation that the work will be finished over the weekend.

3. A cone-search [2] request on a rich catalogue raises 10,000,000 rows of results, but the client is connected via a slow link and cannot read all the results in a reasonable time. The client needs the service to send the results into storage over a faster link. This could mean sending them to VOSpace, or simply holding them temporarily until the user can retrieve them on a fast link.
4. An ADQL service allows users to save query results into new tables such that they can be the target of later queries. However, space is limited and the results tables can only be kept for a short time. The client and service negotiate the lifetime of the results tables.
5. A service performs image stacking on a list of fields. Each field can be processed by a synchronous service but the list is long and the user wants to retrieve the results of the early fields before the last fields are processed.

1.3 Asynchronous and stateful services

Services can be made to scale better by making them asynchronous and stateful. Asynchronous means that a client makes two or more separate requests to the service in the course of one activity, and that the client and service may be disconnected, possibly for days or more, in between those requests. Stateful means that the service stores state information about the activity and the client addresses requests to this state.

Web services that are asynchronous are almost always stateful. Most of special extra arrangements for asynchronous activities are actually managing the state of the activity.
There is an important class of stateful services where the state is peculiar to one job or session and the job is “owned” by one user. These, for the purpose of this document, are called job-oriented services. There are stateful services that are not job-oriented (e.g. a service managing a shared, client-writeable DB table), but UWS does not apply to these.
For the purpose of this discussion, let the term job refer to the work specified by the JDL instructions and the term resource refer to the state of the job as recorded by the service. Both have a finite duration. The lifetime of the resource – i.e. the time from inception until the service forgets the state – is generally finite and must be at least as long the duration of the job.

1.4 Job description language, service contracts and universality
Consider the web-service operation that starts off a job. This operation must express what is to be done in the activity: it must carry parameters in some form.

The parameters may be expressed as a list. E.g., a cone search service takes a list of three parameters: RA, DEC, RADIUS. Alternatively, the parameters may be arranged as an XML document (e.g. ADQL, CEA). The rules for setting and arranging the parameters for a job are called the Job-Description Language (JDL).
The combination of the UWS pattern, a JDL and details of the job state visible to the client defines a service contract; for a SOAP service, this contract can be captured in WSDL. Changing the JDL changes the contract. Thus, it is not meaningful to “implement UWS” in isolation; any implementation standard must specify the rest of the contract.
If the JDL is very general, a single service-contract can be reused for many kinds of service. AstroGrid’s CEA exploits this: one JDL covers all services offering parameterized applications and even ADQL services. In the limit, a sufficiently-general JDL turns a specialized worker service into a universal worker service.

2 Universal Worker Service pattern
2.1 Web-service operations
UWS defines these operations on a SOAP service.

2.1.1 createjob
This submits a job to the service and creates the associated resource. The complete instructions for the job, in the JDL, are sent in the body of the request message. The service returns the resource identifier in the body of the response.

If the service rejects the job outright (due, e.g., to failed authentication or invalid JDL) then createJob returns a SOAP fault. In this case, no resource is created.

This operation makes the job known to the service but does not start it running.
2.1.2 startJob
This starts execution of a job specified by createJob.

2.1.3 GetResourceProperty
This polls the state of a job. The body of the request message names a formal resource property. The body of the response message carries the current value of the property.

The nature of resource properties is discussed below.

2.1.4 resumeJob
This restarts a job that has stalled due to server downtime. See below for the special semantics of interrupted jobs.

2.1.5 SetTerminationTime
 This adjusts the lifetime of the job’s resource. The request body carries the intended termination time. If a time in the past is requested, the resource is destroyed immediately.
A service must provide this operation, but may disallow some or all requested termination times. It does this by returning a fault.

2.1.6 Destroy
This deletes a resource, thereby ending the service’s memory of a job.
2.2 Resource properties

GetResourceProperty has three uses:

1. determine the progress of the job;

2. get an estimate of the time, privileges, cost etc. to complete a job;

3. retrieve results of the job.

In each case, the client uses GetResourceProperty to retrieve a named property of the resource. This is an XML structure expressing some part of the state. The resource property is returned in the response message of the operation.

The available resource-properties are defined by the service contract, not by the UWS pattern, and they vary to suit the JDL. In general, however, a job-oriented service will have the following parts to its accessible state.
· State of the job: e.g. pending, running, failed, completed.
· Error report for the job (empty if the job has no errors).

· Estimate of the total time needed to execute the job. This includes the time already spent. The service makes an initial estimate when the job is accepted and may adjust the estimate during the job.

· Estimate of the cost (e.g. CPU, network bandwidth, storage or monetary cost) to complete the job. The service makes an initial estimate when the job is accepted and may adjust the estimate during the job.

· Estimate of the fraction of the job already completed: useful for driving progress bars in displays and for estimating the time to completion.

These elements are part of one named resource-property such that the entire available state can be read by one call to GetResourceProperty.

2.3 Resource identifiers
Each resource has an identifier, assigned by the service when the resource is created.
The identifier is an XML fragment phrased according to the WS-Addressing standard [3] of OASIS. It contains two elements:

· wsa:Address specifies the endpoint for subsequent operations;

· wsa:ResourceIdentifier names the resource; it is an opaque string to the client and is meaningful only to the service.

(The wsa prefix stands for the WS-Addressing namespace.)

The CreateJob operation returns these two elements wrapped in a wsa: From element. The client includes them in the SOAP header of each subsequent request to the resource, wrapped in a wsa:To element.

A service may use the wsa:Address part of the resource identifier to redirect clients to different endpoints for each resource created. Some load balancing may be done this way. However, the service may not change the endpoint for a resource once it is created.

2.4 Interrupted jobs

A service must record its live resources and must not forget them if it is restarted. The service must be capable of restarting jobs interrupted in this way. Whether or not it restarts them automatically (without intervention by the client) depends on the encapsulation of the jobs.
If job is isolated inside the service such that multiple copies of the same job could run on different services without cross-talk, then the service must restart the job automatically. If the job involves writing to external resources (e.g. nodes in VOSpace), and would therefore create a race condition if multiple copies ran in parallel, then the service must not restart it automatically but must wait for the resumeJob request from a client.
If a service receives a resumeJob request for a job that it has already restarted, then it should return the normal response for a successful resumption.

2.5 Relationship to WS-RF

Web Service Resource Framework (WS-RF) [4] is a group of standards by OASIS that address stateful services. The UWS pattern is based on WS-RF.

· The UWS resource identifier is a resource as defined in the WS-Resource standard [5] of WS-RF.
· The operation GetResourceProperty is defined by the WS-ResourceProperties standard [6] of WS-RF.

· The operations SetTerminationTime and Destroy are defined by the WS-ResourceLifetime standard [7] of WS-RF.

· The other operations of UWS are local to this standard.

There are other operations and features defined in WS-ResourceProperties and WS-ResourceLifetime. A UWS-conformant service need not implement these other operations. Similarly, WS-RF includes the WS-Notification standard [8] for asynchronous notification of state changes. A UWS-conformant service need not implement anything from WS-Notification.

For the operations taken from WS-RF, for the use of resource properties and for the use of resource identifiers, the WS-RF standards are the normative reference.

The intention is that a service or client that implemented using a WS-RF library will automatically have the state-management features needed for UWS. Several such WS-RF libraries are available. However, the required parts of WS-RF used in UWS are not very complicated and the author of a UWS is free to implement them independently of any WS-RF libraries.

3 Use cases

There follow some use cases applying the UWS pattern. Each case uses a different JDL and a different structure for the job-state property; therefore, each case has a different service contract.

The descriptions are neither formal nor complete. The intention is to show a range of ways that the pattern can be applied without burdening the reader with the level of detail needed for a standard implementation.

Any of these cases could be worked up into a full IVOA standard by formalizing the description, adding detail (schemata, WSDL) and generally making the specification more exact and complete. I suggest that each case so treated be broken out into a separate specification-document.

3.1 Image service with data staging
Consider a service that computes images from archive data. The computation takes significant time, so the service is asynchronous. The service keeps the computed images in its own storage until the user downloads them; this is essentially the model of SIAP [9].

Since the service is asynchronous, the client is not connected when the computation completes. The service cannot simply return the images to the client and then delete the local copies. Equally, the client cannot assume that the images will be available indefinitely; the service does not have infinite storage! The client needs a way to find the images and the client and service must negotiate the duration for which the images remain on the server. UWS supports both these needs.

The XML description of the images (possibly as a SIAP-like VOTable) is made a part of the job-state resource-property which the client can read. The cached images are associated with the resource that represents the job and stay in the cache for the lifetime of the resource. That means that:
· the client has a way to find the images;

· the client knows immediately how long the images will be cached;

· the client can explicitly remove the images from the cache, once it has downloaded them, by destroying the resource.

The sequence of messages is shown in the diagram.
[image: image2.png]Client senice

EER——
i

2 startiob(-void

WsResource

3 GaResourcePropery) I fustate

¥

21

]
T 4 GetResourceProperty0-JfbState

;
.

¥

-

U |

T_5: GetResourcePropery):Jibstate

T
0 i
| |
| 8 fetch result files |

7: Destroy(void

;
U
T
i
|
|

S S

Job

Once the WSResource is created, the client interacts with that entity rather than the parent service. (This distinction only matters if the service implementor exploits it. The resource could be accessible via a subordinate web-service on a different node of a computer cluster. However, the resource can equally well be accessible via the original service.)

The job itself is an internal part of the service site and the client cannot talk to it directly. The jobs run asynchronously with respect to the resource, such that the resource is free to response to queries by the client.

In this use-case, the VOTable of results in the job-state is null until the job completes. The client gets the results all at once (c.f. the following use-case).

The details of fetching the image files are not part of the UWS pattern.

The service can be enhanced to provide progressive staging. This is the same is for the basic image-service, but the results become available at intervals during the job. The available results are shown in the job-state resource property. The VOTable of image details is added to the job state when the resource is created but initially has no rows. Rows are added as the job progresses. The client can download new results as they are announced.

[image: image3.png]Client senice
|

- crealeJob(DLWeResoueeld_ | 4

. WsResource

1
| 2 GetResourceProperty0 Jobstate

3 download image

¥
-

|
4 GetResourcsProperbQobstate |
I

P N

|
|
I
15 dowrioa mage

6 GetResourcePropery):JobState

¥

7: download image

=

8 GetResourcePropery):JobState

9: Destroy(void

¥

v
B

:

- OO-- -

If the client is satisfied with the images downloaded before the job completes, the client can cancel the rest of job by destroying the resource. However, destroying the resource deletes the job’s cached images so the client has to download them first.

3.2 ADQL service with cursor
ADQL [1] can serve as a JDL. Consider an ADQL service that supports long-running queries as asynchronous operations. In general, the results of the query may be a large set of data. They may be too large to download comfortably. We might like to cache these results on the service and to operate a cursor, drawing down from the resource a few rows of the table at a time.
The cursor can be implemented by adding an extra operation to the contract and an extra element to the job-state resource-property. The operation is exposeRows and it selects all rows between a start and end index. The element carries the output VOTable, containing only the rows selected with exposeRows.
[image: image4.png]Client senice

1: createdobUDL WeResourseld |

| T

2 startiob(-void

ADGLResource

]
| 3 GetResourceProperty0: obtate]
U |

T |
| 4 GetResourceProperty).JobState|

[i

|5 GetResourceProperty(:JobState]
0 T

exposeRows(intnt)void

GetResourceProperty(:JobState)

9 GetResourcePropery):JobState|

SN /S US 5 S NS A S A

1J 8 sxposeRows it void
|
|
|
|
i

3.3 VOSpace with controlled lifetime

The VOSpace [10] standard describes how a distributed network of storage can be built up from individual VOSpace services. It is intended that much of this storage be short-term scratch space, that some be available for a longer period, and that only a tiny part be permanent. Most VOSpaces have finite lifetimes.

VOSpace itself does not address how the lifetime of a particular space is determined, controlled, enforced or communicated to a user. This could lead to confusion, and may involve the operators of a space in much work when seeking to reclaim storage. The UWS pattern can make the lifetime of the space explicit.

Consider a VOSpace service that creates spaces on demand for authorized users. “Creating a space” means that the service creates VOSpace container-node (a kind of virtual directory), assigns a VOSpace identifier for it, records internally that the container belongs to the requesting user (such that only that user can create, modify or delete data-nodes and container nodes within the initial container) and sets a finite lifetime for the container.
This is a job-oriented service. The job is the created space and the JDL specifies how much storage and the desired lifetime. The management can be done with the UWS pattern, but with one special addition: the job itself – i.e. the space – is exposed to the client.
[image: image5.png]Client
I

createJobUDLyWeResourceld |
=

GetResourcePropery(:JobState

senice

WsResource

startlobgoid

GetResourcePropery(:JobState

Ea Rl

createNodeQvaid

¥

SetTerminationTimeq:void

createNodeQvaid

Destroygvoid

v
. R

In the JDL passed with createJob, the client says how much space it wants and for how long it is needed. In response, the service indicates how much space it is prepared to allocate and the time for which it is available. Both of these figures may be less than the client wanted. The VOSpace is not created at this stage.

The client finds out the service’s offer in the first call to GetResourceProperty. If the answer is satisfactory, the space is created when the client invokes startJob.

After the space is created, the client retrieves the VOSpace identifier in the second call to GetResourceProperty.

The client can now use the space directly, without reference to the initial service and the WSResource. I.e., the VOSpace is available through a separate endpoint that the client finds from the VOSpace identifier. This might point back to the original service, but in general it leads to a different service. I have used the createNode operation of VOSpace to illustrate the client’s usage.

If the client needs to keep the space beyond its initial lifetime, then it can renegotiate the lifetime using the SetTerminationTime operation.

Finally, the client can release the storage tied up in the space using the Destroy operation. If the client simply abandons the space, then it is released at the end of the lifetime.
3.4 Parameterized applications

There is a class of applications on which a job may be defined by a list of simple parameters. “Simple” here means unstructured: a scalar value such as a number, a string of text or a Boolean value. If the parameters are allowed to name files, so that structured data are passed indirectly, then the class of applications is very large indeed: almost any non-interactive application can be driven in this way.
Turning each application of choice into a service (with or without UWS semantics) would be onerous. However, if the application’s interface is entirely characterized, through the JDL, in terms of typed input and output parameters, then one service contract will work for all the applications and a single implementation of the contract can be reused for all cases.

AstroGrid’s Common Execution Architecture (CEA) [11] works in this way. It has just one service contract for all applications (including ADQL services; the ADQL query is passed in the list of parameters). It has four implementations, one for each of the possible interfaces between the service and a kind of job (jobs can be implemented with Java classes, command-line applications, HTTP-get services or JDBC databases). CEA also specifies stateful, asynchronous services and makes use of VOSpace.
Consider a CEA reworked to use the UWS pattern for consistency with other (future) IVOA standards. Call it CEA v2 to distinguish it from CEA v1 as currently maintained by AstroGrid. For this example, consider the particular kind of CEA service that runs applications supplied as executable binaries (known as the command-line Common Execution Connector or CL-CEC).
A CL-CEC has a library of applications co-located with its service and defined in the service configuration set by the service provider. It does not accept code from the client for local execution.
The JDL in CEA v2 is similar to that in CEA v1 [11]. It is a formal XML vocabulary for expressing parameter lists [12]. Parameters may be inputs or outputs of the job.
Parameters have two attributes, locality and storage, that influence their handling in the service. Locality may be “local”, meaning that the parameter value is written directly in the JDL, or “remote”, meaning that a URI is passed in the JDL pointing to a remote file. Typically, the URI identifies data in VOSpace. (CEA v1 called these modes “direct” and “indirect”.) Storage may be set to “file”, meaning that the parameter value is recorded in a file in the job’s working directory, or “in-line” meaning that the value is recorded as an element in the resource property for the job.
The job involves running an executable binary programme asynchronously to the service and resource. This executable may be run either in a local process on the host running the CEA service or in a remote process started by a job-management protocol such as Condor. In the latter case, CEA jobs may be distributed over a cluster or computers to balance the load and improve performance. However, each CEA job runs on one node only.
The state of the resource consists in the state of the job – pending, running, completed or failed – plus the parameter list for the application. In-line parameters are stored as elements in the resource property. File parameters are stored in files, and the resource property contains URIs by which copies of those files may be obtained. At the end of the job, all the output parameters are available through the resource properties either as values or a URIs for data-files. Indirect output parameters are also copied automatically to the external locations specified in the JDL. The output parameters remain available for the lifetime of the resource.

[image: image6.png]"m

 resteschUDL s
]
| 2 starobgyoid

ExecuionControl

WsResource

21: startjob

!

3: GetResourcePropery):obstate

| |
| |
| |
| 8l
T
I i
i |
| & CaiReeaiisarrapenansite
WJ I
|
| |
|

5 GetResourcePropery:obstate

i
I
I I
| B: GetResourceProperty(:JobState

|
7: download direct output parameters

I
[1
8: Destroy)void !

R

2.1.1: get remate parameters

2.3 put emote pafameters

voSpace

It is important to note that this application of the pattern can subsume some other uses. It is more nearly universal than the others because its JDL is more general.

The parameterized-application contract can implement the image service with data staging. SIAP parameters can easily be represented in the CEA JDL and the VOTable of results is simply an in-line, output parameter. (Some sophistication of the execution controller and job may be needed to post results progressively, but this is an implementation detail and does not affect the contract.)

The parameterized-application contract can implement the lifetime on the VOSpace. The act of creating and maintaining the space is an application with two in-line, input parameters (size and desired lifetime) and one in-line, output parameter (VOSpace identifier for the created container-node).

The parameterized-application contract can implement a form of ADQL service but it cannot quite implement the ADQL service described above; it cannot do the cursor. The act of querying the archive is represented as an application with one input parameter – the ADQL query itself – and one output parameter – the VOTable of results. This is the interface offered by AstroGrid’s Data Set Access component. Note that ADQL has been “demoted” from being all of the JDL to being just another parameter. The cursor on the results is not available because the parameterized-application contract does not include the exposeRows operation; the semantics of that operation would not be obvious for a general application. The cursor function could be restored in a parameterized application by redefining the exposeRows request to take as parameter the name of the output parameter on which to operate. The implementation would be required to check that the named parameter was tabular. The job-state resource-property would need to have an element to receive the result of exposeRows. There might be other, desirable operations for introspection of parameters.
4 References

[1] M. Ohishi, A. Szalay (eds.), IVOA Astronomical Data query Language, http://www.ivoa.net/Documents/latest/ADQL.html
[2] US NVO project, NVO compliance: Simple Cone Search, http://us-vo.org/pubs/files/conesearch.html
[3] D. Box, F. Curbera (eds.), Web Services Addressing (WS-Addressing), http://www.w3.org/Submission/ws-addressing/
[4] T. Banks (ed.), Web Service Resource Framework (WSRF) – Primer, http://docs.oasis-open.org/wsrf/wsrf-primer-1.2-primer-cd-01.pdf
[5] S. Graham, A. Karmarkar, J. Mischkinsky, I. Robinson, I. Sedukhin (eds.), Web Services Resource 1.2 (WS-Resource), http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-os.pdf
[6] S. Graham,, J. Treadwell (eds.), Web Services Resource Properties 1.2 (WS-ResourceProperties), http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-os.pdf
[7] L. Srinivasan, T. Banks (eds.), Web Services Resource Lifetime 1.2 (WS-ResourceLifetime), http://docs.oasis-open.org/wsrf/wsrf-ws_resource_lifetime-1.2-spec-os.pdf
[8] S. Graham, D. Hull, B. Murray, Web Services Base Notification 1.3, http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-pr-02.pdf
[9] D. Tody, R. Plante, Simple Image Access Specification, http://www.ivoa.net/Documents/latest/SIA.html
[10] Grid and Web Services Working Group of IVOA, work in progress, http://www.ivoa.net/twiki/bin/view/IVOA/IvoaGridAndWebServices
[11] P. Harrison, Proposal for a Common Execution Architecture, http://www.ivoa.net/Documents/latest/CEA.html
[12] P. Harrison, XML schema for namespace http://www.astrogrid.org/schema/CommonExecutionArchitectureBase/v1, http://software.astrogrid.org/schema/cea/CommonExecutionArchitectureBase/v1.0/CommonExecutionArchitectureBase.xsd
