
Recommendations for a
Table Access Protocol

Ray Plante,
Tamas Budavari, Gretchen Greene, John Goode,

Tom McGlynn, Maria Nieto-Santistaban,
Alex Szalay, Roy Williams

THE INTERNATIONAL VIRTUAL OBSERVATORY ALLIANCE

19 September 2006 IVOA Interoperability Meeting – Moscow 2

Some Lessons Learned
• Experience with ADQL/x

– Motivation behind ADQL/x:
• Query Transformation is commonly necessary

– Few databases are 100% compliant with the SQL standard.
» Transform to local SQL dialect

– Semantic filtering possible (transforming metadata).
– Easier to adapt to non-relational databases (e.g. XML database)

• Supposition: A pre-parsed form on the wire makes transformations easier to implement

– Experience:
• Shifts parsing problem to the client – ACCESS BARRIER!
• Minor transformations can often be handled via simple SQL string manipulations
• More careful adherence to SQL92 would eliminate most common difference between

native SQLs (TOP, functions)
• The emergence of parser/conversion tools make choice of wire format less important

– Lesson:
• Allow string-based SQL on wire
• Stick closer to standard SQL syntax

19 September 2006 IVOA Interoperability Meeting – Moscow 3

Some Lessons Learned
• Regions and Cross-match

– “Magical” function definitions
• (originally) functions did not specify what columns should be used in

the calculation
• Cross-matching required certain, unspecified columns to appear in the

response.
– Consistency required in use of cross-match

• Implementation must be well defined
• Users will want to use same implementation at all sites being matched

– Import/export of XML table data is costly
• Can we take advantage of fact that multiple surveys are on the same

server?

• Implementing a SkyNode is hard
– Can the simplest implementation send simple SQL to a database

without tranformation?

How might we benefit from these lessons in a
Table Access Protocol?

19 September 2006 IVOA Interoperability Meeting – Moscow 4

TAP taps into a “Table Set”

• A collection of tables accessible via a single access URL
– One or more tables
– Join between tables is, in principle, is possible

• E.g. within a single DBMS or logical equivalent

• Tables typically logically related
– e.g. A CDS “catalog”, all tables of SDSS DR4

• Collections can be aggregated for performance purposes
– e.g. all CDS catalogs, SDSS+2MASS+FIRST

• Client can take advantage of tables being co-located
– Local joins, XMatches

19 September 2006 IVOA Interoperability Meeting – Moscow 5

Character of a TAP
• Carrier protocol

– GET, POST, or SOAP supportable
– Some advanced queries may not be supportable with GET, POST

• Operations
– Search

• Query
• Query format used

– Native SQL, ADQL/s, ADQL/x, …
• Output format desired
• Top/Offset selections
• Disposition – what to do with results

– Return to caller synchronously, save in store for later retrieval
– Upload: returns a name and longevity
– getCapabilities: what QL features are supported
– TableSet: describe tables, columns available (as queryable tables?)

• Notice that Query Language does not require…
– TOP/OFFSET
– SELECT INTO
– UPLOAD

19 September 2006 IVOA Interoperability Meeting – Moscow 6

Approach to a Standard Query
Language

• Maximize adherence to SQL92
– Enable minimal transformation to native SQL
– Makes string format convenient on wire

• XML format may defined (perhaps separately) if useful for an
implementation

• Allow features to be grouped into sets for graduated
support
– Core language feature set
– Protocols (e.g. TAP) indicate which sets are considered

required, which optional
– Protocol capability metadata declare support for which optional

feature sets

19 September 2006 IVOA Interoperability Meeting – Moscow 7

Standard Query Language

Basic Syntax
• Core Syntax

SELECT id, ra, dec, jmag FROM objcat
WHERE jmag < 18.0

– No SELECT INTO, no data manipulation
– Optional: aliases, standard schema names

SELECT p.id, p.ra, p.dec, m.jmag
FROM survey.objcat p, survey.magnitudes m
WHERE m.jmag < 18.0 AND p.id=m.id

– Core operators:
• AND, OR; >, <, >=, <=, <>, …
• BETWEEN, NOT BETWEEN, LIKE (string comparison)

– Standard Function syntax supported
• Allow support for implementation-specific functions
• Core set of functions: abs(), pow(), ?…

• Extended Function Sets
– Group other commonly supported functions into sets

• Trig, aggregators, …
• Service description can indicate support for whole groups

• Table Joins
– Implicit joins (as above) part of core syntax
– Explicit joins (INNER, OUTER?,…): extra-core

• ORDERBY (extra-core)

19 September 2006 IVOA Interoperability Meeting – Moscow 8

Standard Query Language

Regions
• Enable explicit declaration of position types

Position(p.ra, p.dec)
Position(p.obsra, p.obsdec)
Position(p.x, p.y, p.z)
Position() – implementation determines default position*
Position(p.ra-0.05, p.dec-0.05)

*important for optimization
• Region testing functions return boolean

RegionContains(<region-spec>[, <position-spec>})
RegionContains('CIRCLE ICRS 120.0 30.0 1.0', Position(p.ra, p.dec))
RegionContains('CIRCLE ICRS 120.0 30.0 1.0')

– implementation determines default position*

• Advantages
– Eliminate magic: positions explicitly specified
– Allow functions implemented either as

• stored procedures, or
• with simple string substitutions

19 September 2006 IVOA Interoperability Meeting – Moscow 9

User-supplied Tables
• UPLOAD, SELECT INTO not part of standard language

– Protocol handles this separately
• Convention for naming user-supplied tables

– Schema name: “@upload”
SELECT u.objid, u.flux, b.ra, b.dec,
FROM "@upload.primary" u, sdss.photoprimary b
WHERE u.objid=b.objid

AND RegionContains('CIRCLE ICRS 10. 40. 2')

– @ avoids collision with real schema names
– Requires quotes to escape SQL parsing issues
– Upload process assigns table name

19 September 2006 IVOA Interoperability Meeting – Moscow 10

Standard Query Language

XMatch syntax
• XMatch: a table described as a function in the FROM clause

SELECT u.objid, u.r, u.ra, u.dec, m.m_ra, m.m_dec,
FROM "@upload.primary" u, sdss.photoprimary b, xChiSq(b,u) m
WHERE b.r < u.g AND m.m_chisq <10

AND Contains('CIRCLE ICRS 10. 40. 2')

• Application of function produces a query-able table
• An XMatch function definition includes

– Definition of input values
• Should allow user to specify what position values in record to use!

xChiSq(b.ra, b.dec, u.x, u.y, u.z)
xChiSq(b.ra, b.dec, u)
xChiSq(b.ra-0.05, b.dec-0.05, u)

• May provide syntax that allows implementation to decide for optimization
– Definition of schema of generated table
– Formal definition of calculation that produces those table values

• Advantages
– Extendable to any sort of cross-match
– Allows client to control exactly what is returned in result via std. SQL
– Eliminates “magic”

• Disadvantage: departure from standard SQL
– Alternative: a suite of functions usable in SELECT & WHERE; SQL-compliant!

• Note: syntax is part of language—not the specific cross-match functions

19 September 2006 IVOA Interoperability Meeting – Moscow 11

Registering a TAP
• Describing underlying collections

– Simple single Table Set: described as part of TAP service
record

– Table Sets that access multiple surveys
• Register collections separately
• Refer to collections by identifier

• TAP Capabilities:
– Query languages supported

• Native: vendor & version, notion of what’s (not)
allowed

• ADQL: sets of language features supported
– Function sets (including XMatch) supported
– Underlying protocols supported
– Return formats supported
– Dispositions supported (asynchronous mechanisms included)

19 September 2006 IVOA Interoperability Meeting – Moscow 12

A SkyPortal using TAP
• Portal uses capabilities to make best use of tables
• Nominally, SkyNode = Core+Regions+uploads+XMatch

– Some TAP Implemenations may not be available for cross-
match

– A smart portal may work around limitations
– Portal searches for TAP services with capabilities it requires

• ExecutePlan not needed!
– TAP’s Disposition parameter allows portal to tell TAP service

exactly what to do with results.
– Portal can orchestrate other complex query workflows

• Not restricted to current single chain

• Issue: how to calculate query costs
– Part of TAP? Advanced TAP?

