UTYPES and UFIs

Jonathan McDowell



Data Model fields

* A data model consists of a bunch of information
(attributes) and a structure organizing them (classes)

* |f we ignore the structure, we get a long checklist of all
the information data providers need or might need to
describe their data

* Each piece of information and each grouping (class) is
called a data model field, and is given a name which
we call a utype:

- Example: Spectrum.Target.Name



UTYPE syntax

Basic syntax is tokens separated by periods as
token.token.token

Leftmost is the highest level containing class, rightmost is
the actual item in question

Implies a “has-a” hierarchy: Spectrum.Target has a field
whose 'simple utype' is Name and whose 'fully qualified
utype' is Spectrum.Target.Name

Case-insensitive, but recommend CamelCase style



Utypes

* A utype is unique within the MODEL,; it defines
a class or attribute.

* But, the same utype can appear multiple times
in a single INSTANCE document.

* When you find a piece of data in the document,
the utype tells you what it its — what role it plays
In the structure. For example: “axis units”.
There can be several axes, each with axis
units.



UFIs

* VOQL team identifies a need to locate
iInformation within a document — there must be
a unique address for each piece of information

* | call such a unique address a UFI (Unique
Field Identifier).

* UFls cannot be utypes since utypes are not
unique. But, we can build UFIs from utypes and
ucds and attribute values.



Can UFls be simple strings?

* A Micol suggested every document be describable by
simple strings: a different predefined UFI| for each piece of
info.

* This limits severely the complexity of documents that you
can create — works ok for a document with very fixed
structure (but then, why not use FITS?). If document has
variable structure (linked lists, arbitrary number of axes,
arrays of data structures whose size is not predefined)
then this approach just does not work.



Querying Utypes

* Francois Bonnarel has argued for a query
language form in which (similar to XPATH?)
one could distinguish multiple instances of the
same utype within a document by specifying the
values of attributes of the relevant element or
containing elements, e.q.

- utype=token1.token2[attribute1=vall].token3.token4



