INTERNATIONAL VIRTUAL OBSERVATORY ALLIANCE

IVOA Data Access Layer

Table Access Protocol Analysis

Doug Tody (NRAO/NVO)

IVOA Interop, Cambridge UK, 2007

TAP Design Study

History
- Based upon work done by ESAC/VOQL-TEG and DAL WG in spring 2007

- Also NVO tiger team, SkyNode experience, data center experience

TAP Design Goals
- Provide capability for ADQL queries to support advanced analysis

Define minimal implementation
- for small data provider, common queries
- replace legacy cone search with more general facility

Both data access and metadata access supported natively by service
Provide for scalability, in particular multi-position queries

Support Grid capabilities, i.e, async, staging, authentication

TAP should be consistent with other DAL interfaces where possible
Provide registry integration for automated service discovery

IVOA Interop, Cambridge UK, 2007

TAP Interface Summary

Form of interface

- HTTP GET/POST based (other protocols possible, e.g. SOAP, CEA)
- Multiple output formats (VOTable, CSV/TSV, XML, VOSpace, etc.)

- Operations

- “AdglQuery ADQL-based queries, full functionality
- SimpleQuery Simple data queries, metadata queries
- GetCapabilities Return metadata describing the service
- GetAvailability Monitor runtime service function and health

IVOA Interop, Cambridge UK, 2007

AdqglQuery Operation

Scope and Form of Interface

- General capability for ADQL-based queries
- Both GET and POST versions are required

- GET is synchronous, indempotent, simple, RESTful
- POST required for async, staging, large queries

- Semantics, e.g., parameters, identical for both versions
- ADQL query is URL-encoded so use in GET is not a problem

Parameters

QUERY The query string (ADQL; URL-encoded)
FORMAT Output data format (VOTable, CSV, XML, etc.)
<staging> Only used in POST version; for VOSpace
<async> Only used in POST version; for driving UWS
MAXREC Maximum records in the output table

RUNID Pass-through; used for logging
(others TBD)

IVOA Interop, Cambridge UK, 2007

AdqglQuery Operation

Field Names, UTYPE and UCD

- Suggest this be done at level of field rather than by operation
- Literal field names directly access database table

- A UTYPE reference resolves into a literal table field name
- e.g., “ssa:Target.Name” resolves to table field “TargetName”
- UTYPE (in this context) is a special case of UTYPE ("ucd:")

Field name resolution

Both literal and UTYPE/UCD field names resolve to table field
All queries evaluated equivalently after field name resolution
Data models, at the level of TAP, involve only mappings

UFI can automate this, or it can be done client side

IVOA Interop, Cambridge UK, 2007

AdqglQuery Operation

Multi-Position Queries

- AKA multi-cone search; but doesn't have to be limited to position

- Common use-case involves user source list with thousands of positions
- Required for scalability to reduce operation overhead

How It Works
- Uses ADQL, REGION, POST form of operation

- VOTable used to upload source table (ID, POS, SIZE, etc.)

- other fields are passed through to output
- output is tagged by source ID
- can be generalized to any input parameter, not just position

- POST (e.g., multipart/form-data) used to upload params, VOTable
- Parameters are common to both GET and POST forms

Data Scoping
- Query, Local (DBMS), and VOSpace (Net) tables are equivalent
- POST is a Query space table

IVOA Interop, Cambridge UK, 2007

SimpleQuery Operation

Scope and Form of Interface
Provides capability for simple non-ADQL queries

Used for both data queries and metadata queries (like
ADQL/SQL)

Only a synchronous GET version is required

Only a single table is queried at a time

Motivation
- Simple to implement, easy to use
>90% of actual catalog queries are simple filters of a single table
We need something like this anyway for simple metadata queries
- but why limit it to only metadata?
Small data providers publish a few simple catalogs
Simpler to implement, likely to be more robust implementation

IVOA Interop, Cambridge UK, 2007 7

SimpleQuery Operation

Parameters
SELECT Table fields to be returned (default all)
FROM The table (or view) to be accessed
WHERE A filter to be applied to the table (default none)
POS,SIZE Find data only in this spatial region
FORMAT Output data format
MAXREC Maximum records out

RUNID Pass-through for logging
(other params TBD)

Provides

- Simplified SQL-lite query (90/10 rule)
- Both data and metadata queries

- Simple cone search capability

IVOA Interop, Cambridge UK, 2007

SimpleQuery Operation

- Metadata Queries

- Information Schema concept
- great concept; definition/implementation imperfect
- but it is a standard, widely (but not completely) implemented

- Concept
- represent database/table metadata as data tables (views)
- allows use of standard data table interface to query metadata
- easily extensible without changing service interface
- views can be used for things such as registry view

- Examples
- FROM=SCHEMA.tables
- FROM=SCHEMA.columns&WHERE=tableName,foo
- FROM=SCHEMA.columns&WHERE=tableName,foo&FORMAT=xml

IVOA Interop, Cambridge UK, 2007

Simple Cone Search

Approach
- Integrate into SimpleQuery to allow additional constraints
- would probably be too ambitious in a separate SCS standard
Re-use common DAL position syntax (POS, SIZE)
- extensible in terms of region type and spatial frame
UTYPE/UCD field syntax allows data models to be used
Table to be queried is specified with FROM
ADQL,REGION provides an advanced alternative with common semantics

Examples
- REQUEST=SimpleQuery&FROM=fo00&P0OS=180.0,12.5&SIZE=0.2
- REQUEST=SimpleQuery&FROM=f00&P0OS=180.0,12.5&SIZE=0.2&WHERE=flux,5/

IVOA Interop, Cambridge UK, 2007

Minimal TAP Service

Requirements
- Implements SimpleQuery operation
- possibly getCapabilities and getAvailability as well?
Provides basic data query capability
Provides basic metadata query capability (tables, columns)
No ADQL support required (but may use SQL back end)
No UTYPE support required

IVOA Interop, Cambridge UK, 2007

