
IVOA Interop, Cambridge UK, 2007 1

IVOA Data Access Layer
Table Access Protocol Analysis

Doug Tody (NRAO/NVO)

INTERNATIONAL VIRTUAL OBSERVATORY ALLIANCE



IVOA Interop, Cambridge UK, 2007 2

TAP Design Study

• History
– Based upon work done by ESAC/VOQL-TEG and DAL WG in spring 2007
– Also NVO tiger team, SkyNode experience, data center experience

• TAP Design Goals
– Provide capability for ADQL queries to support advanced analysis
– Define minimal implementation

• for small data provider, common queries
• replace legacy cone search with more general facility

– Both data access and metadata access supported natively by service 
– Provide for scalability, in particular multi-position queries
– Support Grid capabilities, i.e, async, staging, authentication
– TAP should be consistent with other DAL interfaces where possible
– Provide registry integration for automated service discovery



IVOA Interop, Cambridge UK, 2007 3

TAP Interface Summary

• Form of interface
– HTTP GET/POST based (other protocols possible, e.g. SOAP, CEA)
– Multiple output formats (VOTable, CSV/TSV, XML, VOSpace, etc.)

• Operations
– AdqlQuery ADQL-based queries, full functionality
– SimpleQuery Simple data queries, metadata queries
– GetCapabilities Return metadata describing the service
– GetAvailability Monitor runtime service function and health



IVOA Interop, Cambridge UK, 2007 4

AdqlQuery Operation

• Scope and Form of Interface
– General capability for ADQL-based queries
– Both GET and POST versions are required

• GET is synchronous, indempotent, simple, RESTful
• POST required for async, staging, large queries

– Semantics, e.g., parameters, identical for both versions
– ADQL query is URL-encoded so use in GET is not a problem

• Parameters
– QUERY The query string (ADQL; URL-encoded)
– FORMAT Output data format (VOTable, CSV, XML, etc.)
– <staging> Only used in POST version; for VOSpace 
– <async> Only used in POST version; for driving UWS 
– MAXREC Maximum records in the output table
– RUNID Pass-through; used for logging

(others TBD)



IVOA Interop, Cambridge UK, 2007 5

AdqlQuery Operation

• Field Names, UTYPE and UCD
– Suggest this be done at level of field rather than by operation
– Literal field names directly access database table
– A UTYPE reference resolves into a literal table field name

• e.g., “ssa:Target.Name” resolves to table field “TargetName”
– UTYPE (in this context) is a special case of UTYPE ("ucd:")

• Field name resolution
– Both literal and UTYPE/UCD field names resolve to table field
– All queries evaluated equivalently after field name resolution
– Data models, at the level of TAP, involve only mappings
– UFI can automate this, or it can be done client side



IVOA Interop, Cambridge UK, 2007 6

AdqlQuery Operation

• Multi-Position Queries
– AKA multi-cone search; but doesn't have to be limited to position
– Common use-case involves user source list with thousands of positions
– Required for scalability to reduce operation overhead

• How It Works
– Uses ADQL, REGION, POST form of operation
– VOTable used to upload source table (ID, POS, SIZE, etc.)

• other fields are passed through to output
• output is tagged by source ID
• can be generalized to any input parameter, not just position

– POST (e.g., multipart/form-data) used to upload params, VOTable
– Parameters are common to both GET and POST forms

• Data Scoping
– Query, Local (DBMS), and VOSpace (Net) tables are equivalent
– POST is a Query space table



IVOA Interop, Cambridge UK, 2007 7

SimpleQuery Operation

• Scope and Form of Interface
– Provides capability for simple non-ADQL queries
– Used for both data queries and metadata queries (like 

ADQL/SQL)
– Only a synchronous GET version is required
– Only a single table is queried at a time

• Motivation
– Simple to implement, easy to use
– >90% of actual catalog queries are simple filters of a single table
– We need something like this anyway for simple metadata queries

• but why limit it to only metadata?
– Small data providers publish a few simple catalogs
– Simpler to implement, likely to be more robust implementation



IVOA Interop, Cambridge UK, 2007 8

SimpleQuery Operation

• Parameters
– SELECT Table fields to be returned (default all)
– FROM The table (or view) to be accessed
– WHERE A filter to be applied to the table (default none)
– POS,SIZE Find data only in this spatial region
– FORMAT Output data format
– MAXREC Maximum records out
– RUNID Pass-through for logging

(other params TBD)

• Provides
– Simplified SQL-lite query (90/10 rule)
– Both data and metadata queries
– Simple cone search capability



IVOA Interop, Cambridge UK, 2007 9

SimpleQuery Operation

• Metadata Queries
– Information Schema concept

• great concept; definition/implementation imperfect
• but it is a standard, widely (but not completely) implemented

– Concept
• represent database/table metadata as data tables (views)
• allows use of standard data table interface to query metadata
• easily extensible without changing service interface
• views can be used for things such as registry view

– Examples
• FROM=SCHEMA.tables
• FROM=SCHEMA.columns&WHERE=tableName,foo
• FROM=SCHEMA.columns&WHERE=tableName,foo&FORMAT=xml



IVOA Interop, Cambridge UK, 2007 10

Simple Cone Search

• Approach
– Integrate into SimpleQuery to allow additional constraints

• would probably be too ambitious in a separate SCS standard
– Re-use common DAL position syntax (POS, SIZE)

• extensible in terms of region type and spatial frame
– UTYPE/UCD field syntax allows data models to be used
– Table to be queried is specified with FROM
– ADQL,REGION provides an advanced alternative with common semantics

• Examples
– REQUEST=SimpleQuery&FROM=foo&POS=180.0,12.5&SIZE=0.2
– REQUEST=SimpleQuery&FROM=foo&POS=180.0,12.5&SIZE=0.2&WHERE=flux,5/



IVOA Interop, Cambridge UK, 2007 11

Minimal TAP Service

• Requirements
– Implements SimpleQuery operation

• possibly getCapabilities and getAvailability as well?
– Provides basic data query capability
– Provides basic metadata query capability (tables, columns)
– No ADQL support required (but may use SQL back end)
– No UTYPE support required


