

 International

 Virtual

 Observatory

Alliance

Simple Numerical Access Protocol (SNAP)
for theoretical data

Version 0.1
IVOA Technical Note 2006/09/14

This version:
 Snap0.1-20060914
Latest version:

Previous version(s):

Author(s):
 Claudio Gheller
 Gerard Lemson
 Laurie Shaw
 Hervé Wozniak

Supprimé : e

Abstract

This specification defines a protocol for retrieving data coming from numerical
simulations from a variety of data repositories through a uniform interface. The
interface is meant to be reasonably simple to implement by service providers. A
query defining the interesting physical models is used for searching for candidate
simulations and related data. The service returns a list of the candidate
simulations. The service can be further queried in order to get information on
data associated to interesting simulations. Finally, data can be further selected,
choosing specific quantities and extracting rectangular sub-samples from the
simulated volumes. Data are be returned in VOTable simulation specific format,
with support of external binary file management and data staging.

Status of This Document

This is an IVOA Working Draft for review by IVOA members and other interested
parties. It is a draft document and may be updated, replaced, or obsoleted by
other documents at any time. It is inappropriate to use IVOA Working Drafts as
reference materials or to cite them as other than “work in progress”.

A list of current IVOA Recommendations and other technical documents can be
found at http://www.ivoa.net/Documents/.

Contents

1 Introduction 3
2 Requirements for Compliance 5
3 Simulation Discovery 6
4 Subset Selection 6
5 Snap request 6
5.1 Input 7
5.2 Successful Output 10

6 Data Staging 14
7 Data Delivery 15
7.1 Input 16
7.2 Successful Output 16
7.3 Error Response 16

Appendix A: “Appendix Title” 16
References 16

1 Introduction
This specification defines a prototype standard for retrieving theoretical data from
a variety of astronomical simulation repositories. These data can be the outcome
of different kinds of numerical applications, like dynamical simulations,
semianalytical models, montecarlo simulations etc.
However, the Simple Numerical Access Protocol (hereafter SNAP) is
designed to address numerical simulation outputs organized as follows. Time can
be explicit (e.g. snapshots of an N-body simulation) or implicit (e.g. in case of a
montecarlo realization). For each timestep, the information must be sampled in a
3D space called “volume” hereafter, and position in this volume are called x, y
and z for reference to the configuration space. The sampling can be regular (e.g.
cartesian mesh) or irregular (e.g. particle or adaptive mesh position). Each
mesh/particle position in the 3D space hosts the same physical quantity (i.e.
mass, density, velocity, etc) for each timestep.
Theoretical data can be classified according to the following Levels:

• Level 0: direct outcome of the simulation. Examples are the coordinates
and velocities of files in an N-Body simulation, the density field on the
computational mesh of a Jet simulation etc.

• Level 1: data extracted or derived from the simulation results, having the
same characteristics of the simulation results themselves. For example,
the coordinate of the points that build up a galaxy cluster extracted from a
cosmological simulation using a friend of friends algortihm.[GL- Must they
be similar to the simulation they were derived off, or to a typical SNAP
simulation. Consider for example density fields due to binning of an N-
Body result, or a “source catalogue” derived from a mesh simulation.]

• Level 2: results that have been obtained after an analysis process from
Level 0 and Level 1 data. Examples are projected maps, statistical
functions, Virtual Telescope applications.

SNAP is designed to deal with Level 0 and Level 1 data. SNAP specifies the
following services:

• retrieval of the entire simulation outcome (the particle positions and
velocities within the simulation box, or the physical quantaties at each grid
point) – known as a snapshot – at one or more timesteps.

• retrieval of a specific subset of a simulation (e.g. all the particles/grid-
points within a certain region)

The SNAP protocol, is designed primarily as a "data on demand" service, with
dataset created on-the-fly by the service given the position and size of the
desired output dataset as specified by the client. This is not a simple task for
various reasons. First, simulations adopt specific units and coordinate systems,
which depend on the nature of the problem, the characteristics of the algorithms
and their implementation etc. Furthermore, there is nothing like a “position in the
sky” as for astronomical images. Then, different simulation outputs can be
represented by completely different data objects. For example, the output can
consist in a set of particles or grid points in a given volume. Each particle or

mesh point has its physical position and a set of associated scalar and vector
quantities, like velocity, mass density, temperature etc. On the other hand, mesh
based simulations describe their data as discrete fields defined on a regular
mesh. This may be cartesian (as for example, in cosmological simulations) or
cilindrical (as in the case of jets simulations). SNAP has the goal of providing a
uniform description of the selection service trying keep it simple and, at the same
time, to include as many different kind of simulations and data as possible.

In operation, SNAP represents a negotiation between the client and the data
service. The client searches for all the simulations available for a certain set of
physical parameters (for example, the density parameters and the Hubble
parameter for cosmological simulations) and the service returns a list, encoded
as a XML file structured according to a data model defined in this specification
(possibly VOTable), of the simulations that match the request. The client then
examines the result to determine if it is interested in any of the available hits and
possibly iterates with the service to refine the query. As soon as the interesting
set of simulations is determined, the associated available dataset, quantities and,
possibly, post-processed data, with all their basic features (units, size,
dimensionality etc.), are proposed to the client. At this point, the end user can
select some of the dataset, specify the quantities he/she is interested in and
extract a sub-sample specifying a rectangular or spherical. region inside the
computational volume. Data (particles or mesh points) which fall inside the
selected region are extracted and the result is delivered to the user as a VOTable.
Since data size is usually large, specific care must be given to performance
issues, both for in the elaboration and in the download phases. This is even a
more serious issue, noticing that data collections are often distributed and the
client may query multiple services simultaneously.

In summary, we can identify four main stages for the SNAP service.
1. Search for available simulations and data (Simulation Discovery, section 3)

The query is on metadata
The result is an XML document (maybe VOTable) with matching result
metadata.

2. Identification of subset of interest (Subset Selection, Section 4)
The user identifies a subset of the full simulation data which is of interest,
which can used to select easily the region to focus on
This subset is defined both in time and in space.

3. Snap request (Section 5)
Send to the server the selection parameters for the Snap action

4. Data staging and delivery (Section 6 and 7)
Metadata are immediately delivered to the client as a VOTable
Data are delivered (possibly after some time, needed for extraction) via
HTTP, FTP as binary files.
Delivery of VOTable and binary data files can be in two separated stages.

Supprimé : (and possibly

Supprimé :)

2 Requirements for Compliance

The keywords "MUST", "REQUIRED", "SHOULD", and "MAY" as used in this
document are to be interpreted as described in RFC 2119 [34].

An implementation is compliant if it satisfies all the MUST or REQUIRED level
requirements for the protocols it implements. An implementation that satisfies all
the MUST or REQUIRED level and all the SHOULD level requirements for its
protocols is said to be "unconditionally compliant"; one that satisfies all the MUST
level requirements but not all the SHOULD level requirements for its protocols is
said to be "conditionally compliant".

Compliance with this specification requires that a simple numerical access web
service, HTTP and/or SOAP/WSDL, be maintained with the following
characteristics:

1. The service MUST support a Simulation Discovery service as
described in section 3 below.
Available data can be retuned as the result of a query based on a series of
physical and technical parameters which specify the requirement of the
user. These parameters can be general or specific of the discipline or
research field of interest. The research can be further refined or used to
select the dataset of interest and proceed with following steps of the
SNAP procedure.

2. The Snapshot Retrieval (getSnap) web method MUST be supported
as defined in section 7 below.
This method allows clients to retrieve single simulation snapshots and
cutouts

3. Sub-Volume/Sub-Set determination methods MAY SHOULD be

supported as defined in section 4 below
Contrary to real-sky-oriented protocols, there is in most simulations no
natural sub volume that a user might be a priori interested in. The SNAP
service SHOULD provide methods to perform the selection of a simulate
volume. Services which has only download capabilities MAY provide this
fuctionality. Services which support data cutout MUST provide such
function. Examples are: regions of a certain size of higher (or lower) than
normal density, or sub-volumes containing particularly massive objects.
For particle simulations, subsets of the particles can be defined for
example by all particles in a particularly heavy cluster.

4. The Sub-Volume Extraction method MAY be supported as defined in
sections 5 and 6 below

Supprimé :

This method allows clients to retrieve data from a spatially defined sub-
volume of the simulation box. The client determines the rectangular or
spherical region within the simulation, the bounds and scale (i.e. units) of
which are specified in the simulation metadata, and the service returns the
simulation data contained within this region. The service MAY use a
staging method (section 6) to return the particle file, as extracting a sub-
sample of particles or grid points from a larger simulation box is likely to
be a time-consuming process and would thus require some kind of
caching.

5. The SNAP service MUST be registered by providing the information

defined in section 8 below.
Registration allows clients to use a central registry service to locate
compliant simulation access services and select an optimal subset of
services to query, based on the characteristics of each service and the
simulation data collections it serves.

6. A job status request MAY be supported.
This method allows users to inquire about the status of a staged request.
It MAY allow a user to cancel a request.

3 Simulation Discovery
To be done according to the data model.

4 Subset Selection
To be done

5 Snap request
The main target of the SNAP service is the access to the raw data from a
simulation, selected by a general Simulation Query, described in section 4. The
SNAP service in general provides the following functionalities:

1. Extraction of a subset of data properly selected
2. Storage of the associated metadata in a VOTable (see…)
3. Delivery of the result to the user via http, ftp etc. (see…)

In principle, the extraction phase 1 could be performed using any set of N
parameters that characterize the simulation. However, for simplicity, in a first
stage of development, we will focus on geometric selections, allowing the user to
select a either rectangular or spherical sub region of the whole computational
volume, without having to download the whole dataset. Nevertheless, retrieving
the complete dataset is still possible. This can be seen as a degenerate Cutout
request, with a region of interest which covers the entire computational volume.

However, notice that this action is not just a simple download, since action 2 is
still performed.
In order to select the region of interest, only geometric parameters are
necessary. E.g., for a rectangular region, the user has to specify the center of the
box and the length of each of its sides. For a spherical selection, center and
radius of the sphere are required. This information can be either in physical
units or in fractions of the box. The latter is simpler to handle, but it is not
always possible. In this case, in fact, the knowledge of length units is not required.
Unit conversions are deferred to the server, where units are fully specified.
Anyway, in order to make the selection more effective and intuitive for the user,
length can be presented and set in physical units (it is converted in fractions by
the client application). [GL – Should we allow the server to define the units that a
request is using (implicitly) ? If not, we have to find a standard for representing
units inside of the model and explicitly in the protocol. Only then can a server do
unit transformations.]
The selection can be performed on one or more snapshots (each snapshot is a
output at a different time) at a time. One or more variables of a given snapshot
can be selected in the same Cutout operation. [GL – Need to add this to the spec
below.]

The input query must consist in a position in the simulation box denoting the
centre of the cubic (or spherical) sub-volume, and the side-length (or radius) of
the cube (sphere). For regions that intersect the boundary of the simulation box,
the service has the option of applying periodic boundary conditions (if applicable).
The resulting file will be made available through an access URL, possibly using
the Snapshot staging method, notifying the client when the sub-volume extraction
has been completed and the resulting particle file is available for retrieval. This
appears to be a necessary feature due to the rapidly increasing size of data files
associated to the larger and large available computing power. Consequently, the
processing time to extract requested volumes could be high, larger than a typical
working session. Furthermore it is important to stress that, differently from what
generally happens when retrieving observational images and data, simulation
data cannot be retrieved via http with some kind of encoding for the binaries (e.g.
base64) since this is extremely expensive, both for CPU and for size if large
datasets are being handled. Therefore, matadata and data must be splitted in
two different files, delivered in separate stages. Metadata are returned
immediately as VOTables with references to external raw binary files. These files
can be downloaded, as soon as they are available, using HTTP with no encoding,
FTP, or even GridFTP. The data files in general are pure binaries. However,
special formats (FITS, HDF5…) may be supported. [GL – We need to specify the
mapping from the VOTable metadata to the HDF5 metadata elements. Is that
trivial ? FITS has a standard mapping from VOTable .]

5.1 Input
In order to start a SNAP request, the following parameters must be specified and
passed to the server.

1. Region of interest
An input Sub-Volume query must consist of an x,y,z position in the box, plus the
side lengths (or radius) of the rectangular (spherical) region surrounding this
point. These quantities can be specified either as fraction of the box or in their
specific units.
The service MUST support the following two parameters:
POS
The position of the center of the region of interest, expressed as a set of three
coordinates in fractions of the corresponding box side. A comma should delimit
the three values; embedded whitespace is not permitted. Example:
"POS=0.3,0.25,0.9". A NULL value represents the center of the whole box
(0.5,0.5,0.5).
SIZE
The size of the sides (or the radius) of the region given either in fractions of the
corresponding box side or in physical units. The region may be specified using
either one or three values. If only one value is given it applies to all coordinate
axes (alternatively it is the radius of the sphere). [GL: In that case, how do we
decide whether it’s a sphere or cube we want ? I guess we can add an extra
parameter, like: SHAPE=BOX or SPHERE?]
The format of the SIZE parameter is the same as that for POS. Example
“SIZE=0.2,0.5,0.3”. A special case is SIZE=NULL, which represents the whole
box.

SHAPE
The SHAPE parameter can be either BOX or SPHERE in order to specify the
shape of the selected region [GL – This can be made redundant if we follow
Herve’s propsal that a single value for SIZE would imply a radius of a sphere, 3
values would indicate a box (a cube would also need 3 values]

In addition, the service MAY support the following query constraint which is used
on the server side specifying the type of boundary conditions must be adopted
for the region of interest:

BOUNDARY
Also this parameter can have one or three values, one for each coordinate
direction. If only one value is given it applies to all coordinate axes. Possible
values are:

• TRUNC – if the interesting region exceeds the computational box, it is
resized at the box boundary

• PERIODIC - if the interesting region exceeds the computational box, data
are selected from the opposite side of the box

Metadata of the service indicates whether periodic is supported.

2. Fields of interest
The user can specify the physical quantities he is interested in, which can be a
subset of the available ones.

FIELDS
The service MAY support an optional parameter with the name FIELDS, the
value of which is a comma separated list of field names corresponding to the
data elements the simulation can return. If the parameter is not provided the
default behavior is to return all fields.

3. File Format
The service MUST support a parameter with the name FORMAT to indicate the
desired format or formats of the data referenced by the output table. The value is
a comma-delimited list where each element can be any recognized MIME-type.
These will be of the major type "data”. [GL – What would it mean to have multiple
formats specified ? That the user wants one of these ? All of them ? I’d vote for
allowing only one, with a default of binary VOTABLE if not specified.]
Possible formats are:

data/raw_tabular
data/raw_sequential
data/votable
data/hdf5
data/fits

This formats must be further specified…

4. Table Verbosity.
The service MAY support an optional parameter with the name VERB (denoting
"verbose") whose value is a nonnegative integer. This parameter indicates the
desired level of information to be returned in the output table, particularly the
number of columns to be returned to describe each image. The following
guidelines are recommended for determining which columns should be output at
different verbosity levels:

• 0 - The output table should contain only the minimum columns required by
section 5.2.

• 1 - In addition to level 0, the output table should contain columns sufficient
for uniquely describing the image.

• 2 - In addition to level 1, the output table should contain, if possible,
columns that contain values for all parameters supported as query
constraints.

• 3 - The output table should return as much information about the images
as possible. A table metadata query automatically implies the highest level
of verbosity.

Services that do not support this parameter MUST permit it to be present without
error.

[GL: I was never very happy with this term. It is very fuzzy. In the old protocols
(cone search, SIAP it exists. SSA does not have it, and I think we should be
more compatible with that spec. SSA has many more possible query parameters
though. Here we can add support for indicating what attributes should be
returned/available. For example, position, but not velocity, temperature … This is
much more flexible in simulations than for spectra, where the main issue is in
what units to return the fluxes/intensities. In that sense it is closer to cone
searches, except that that protocol has no model whatsoever behind it.]

5. Service-Defined Parameters.
The service MAY support additional service-specific parameters. The names,
meanings, and allowed values are defined by the service. The names need not
be upper-case; however, they should not match any of the reserved parameter
names defined above. Values must be simple and describable through the output
of the metadata query as described below.

5.2 Successful Output
The output returned by a SNAP Query [GL: query for discovery, or staging
request of a cutout ?] is a VOTable, an XML table format, returned with a MIME-
type of text/xml. The table lists all the data files available to the client that match
the query constraints. The following requirements are placed on the contents of
the table when the query successfully returns a list of files:

1. The VOTable MUST contain a RESOURCE element, identified with the
tag type="results", containing a single TABLE element which contains the
results of the query. The VOTable is permitted to contain additional
RESOURCE elements, but the usage of any such elements is not defined
here. If multiple resources are present it is recommended that the query
results be returned in the first resource element.

2. The RESOURCE element SHOULD contain an INFO with
name="QUERY_STATUS". Its value attribute should set to "OK" if the
query executed successfully, regardless of whether any matching images
were found. All other possible values for the value attribute are described
in section 5.3 below.

3. [GL – I think this belongs in “Succesful ouput” section of 3. I think I am
supposed to write something about that there.] Each table row represents
a different field [GL: Snapshot ? Simulation ?] available to the client. [GL:
this makes me think this more properly belongs in the Simulation
Discovery section. Each entry in the result of a simulation query would
refer to a simulation/snapshot, the columns will contain metadata
attributes, described by the FIELD elements. When retrieving a
snapshot/cutout the columns will contain the data, possibly as arrays,
FIELD contains the name of the variable (“temperature”, “X”). It would
seem to me that a SNAP result, when serialised as binary VOTable will
have the metadata describing a particular simulation/snapshot/cutout as a
set of PARAM elements.]

Supprimé : s

4. Each TABLE in the output VOTable MUST contain FIELDs where the
UCDs that follow have been set. These attributes are required to be able
to return metadata separately from the data itself.

5. FIELDS refer to the variables stored in the external binary file. The
variables can be organized both as tables (all quantities related to a
particle or a grid point stored one after the other – sort of struct) and as
complete sequences (all the values of a single field stored as a sequence,
followed by the next field). In the former case, the order of the FIELDS in
the table represents the order of columns in the table. In the latter, it
represents the order in which fields are stored one after the other. If mixed
data (mesh and particles in the same file) are requested only the second
solution is possible.[GL – Could we insist that in such cases the service
produces these differenmt types of datasets in different TABLEs, possibly
in the same VOTABLE. I’d be in favour of that. Different objects in different
datasets, but maybe someone can indicate whether such mixed datasets
are common ?] The adopted ordering is specified in the TABLE field by
the keyword order. Possible values are “tabular” and “sequential”[GL –
Does this require an update of the VOTable schema ? order is not a
VOTable keyword. We may use another element for that, though do we
really need it ? VOTable already allows the different usages and I suppose
it is implicit from the array attributes in the FIELDs how this is used ?]

6. Variables must be scalars, i.e. vectors (or more general multidimensional
quantities) are not supported. This means that each FIELD represents a
scalar value. E.g. temperature of each point, x coordinate of a particle.

7. Each FIELD must specify the datatype, the arraysize and the unit of the
variable. Furthermore name, ID, and ucd has to be set. The ucds for
simulations are still in progress, therefore we do not enter in more details.

8. Each field must specify the geometry parameter, which at present can
have the values “n-body”, “mesh” and “amr”. [GL – This again would
require an update of the VOTable schema. Instead we could make it a
PARAM or INFO element. Also, in case we do not mix the files per table,
we need only on such declaration per TABLE.]

9. The binary data filename is specified in a DATA section, according to the
rules defined in other documents (e.g. SIAP specification)

Other parameters may be supported according to the services offered by the
data provider.

Examples
1. VOTable for the velocity field of a fluid on a fixed 3D mesh

[GL – We still need a proper way I guess of indicating what the spatial
dimensions are for a representation like this. FITS has its WCS system for
implicitly specifying the spatial coordinates of a multidimensional array. Is
something like this in existence for VOTable ? We need to inquire.]

<RESOURCE name="myVectorField" type="results" >
 <DESCRIPTION>Velocity Field from N-Body run</DESCRIPTION>

Mis en forme : Police :Italique

Mis en forme : Police :Italique

 <INFO name="QUERY_STATUS" value="OK"/>

 <TABLE name="VelocityField" ID="Vel" order="sequential">
 <FIELD name="vx" ID="vx1" ucd="phys.veloc;pos.cartesian.x"
datatype="float"
 arraysize="41x41x41" unit="km/s" geometry="mesh" />
 <FIELD name="vy" ID="vy1" ucd="phys.veloc;pos.cartesian.y"
datatype="float"
 arraysize="41x41x41" unit="km/s" geometry="mesh" />
 <FIELD name="vz" ID="vz1" ucd="phys.veloc;pos.cartesian.z"
datatype="float"
 arraysize="41x41x41" unit="km/s" geometry="mesh" />
 <DATA>
 <BINARY>
 <STREAM href="file:///scratch/myhome/test.bin"/>
 </BINARY>
 </DATA>
 </TABLE>
 </RESOURCE>
</VOTABLE>

2. VOTable for the velocity and position fields of particles from an N-Body
simulation

<RESOURCE name=myParticles type="results">
 <INFO name="QUERY_STATUS" value="OK"/>
 <TABLE name="Particles" ID="NBody" order="tabular">
 <FIELD name="x" ID="x1" ucd="pos.cartesian;pos.cartesian.x"
 datatype="float" arraysize="100000" unit="Mpc"
geometry="particles" />
 <FIELD name="y" ID="y1" ucd="pos.cartesian;pos.cartesian.y"
 datatype="float"arraysize="100000" unit="Mpc"
geometry="particles" />
 <FIELD name="z" ID="z1" ucd="pos.cartesian;pos.cartesian.z"
 datatype="float"arraysize="100000" unit="Mpc"
geometry="particles" />
 <FIELD name="vx" ID="vx1" ucd="phys.veloc;pos.cartesian.x"
 datatype="float"arraysize="100000" unit="km/s"
geometry="particles" />
 <FIELD name="vy" ID="vy1" ucd="phys.veloc;pos.cartesian.y"
 datatype="float"arraysize="100000" unit="km/s"
geometry="particles" />
 <FIELD name="vz" ID="vz1" ucd="phys.veloc;pos.cartesian.z"
 datatype="float" arraysize="100000" unit="km/s" />
 <DATA>
 <BINARY>
 <STREAM href="file:///scratch/myhome/test.bin"/>
 </BINARY>
 </DATA>
 </TABLE>
 </RESOURCE>
</VOTABLE>

3. VOTable for the temperature field of a mesh based quantity and the position of
N-Body particles extracted from the same spatial region.

<RESOURCE name=myMixedData type="results">
 <INFO name="QUERY_STATUS" value="OK"/>
 <TABLE name="ParticlesAndMesh" ID="NBody" order="sequential">
 <FIELD name="x" ID="x1" ucd="pos.cartesian;pos.cartesian.x"
 datatype="float" arraysize="100000" unit="Mpc"
geometry="particles" />
 <FIELD name="y" ID="y1" ucd="pos.cartesian;pos.cartesian.y"
 datatype="float"arraysize="100000" unit="Mpc"
geometry="particles" />
 <FIELD name="z" ID="z1" ucd="pos.cartesian;pos.cartesian.z"
 datatype="float"arraysize="100000" unit="Mpc"
geometry="particles" />
 <FIELD name="temperature" ID="temp"
ucd="phys.temperature;pos.cartesian.x"
 datatype="float"arraysize="41x41x41" unit="K" geometry="mesh"
/>
 <DATA>
 <BINARY>
 <STREAM href="file:///scratch/myhome/test.bin"/>
 </BINARY>
 </DATA>
 </TABLE>
 </RESOURCE>
</VOTABLE>

An alternative here is:

<VOTABLE>
 <RESOURCE name=myMixedData type="results">
 <INFO name="QUERY_STATUS" value="OK"/>
 <TABLE name="Particles" ID="NBodyParticles" order="sequential">
 <FIELD name="x" ID="x1" ucd="pos.cartesian;pos.cartesian.x"
 datatype="float" arraysize="100000" unit="Mpc"
geometry="particles" />
 <FIELD name="y" ID="y1" ucd="pos.cartesian;pos.cartesian.y"
 datatype="float"arraysize="100000" unit="Mpc"
geometry="particles" />
 <FIELD name="z" ID="z1" ucd="pos.cartesian;pos.cartesian.z"
 datatype="float"arraysize="100000" unit="Mpc"
geometry="particles" />
 <DATA>
 <BINARY>
 <STREAM
href=_mesh"file:///scratch/myhome/test_particles.bin"/>
 </BINARY>
 </DATA>
 </TABLE>
 <TABLE name="Mesh" ID="NBodyMesh" order="sequential">
 <FIELD name="temperature" ID="temp"
ucd="phys.temperature;pos.cartesian.x"
 datatype="float"arraysize="41x41x41" unit="K" geometry="mesh"
/>
 <DATA>
 <BINARY>
 <STREAM href="file:///scratch/myhome/test.bin"/>

 </BINARY>
 </DATA>
 </TABLE>
 </RESOURCE>
</VOTABLE>

[GL – Do we need an example of an “ordinary” tabular VOTable as well ?
Something like
<RESOURCE name=myParticles type="results">
 <INFO name="QUERY_STATUS" value="OK"/>
 <TABLE name="Particles" ID="NBody" >
 <FIELD name="x" ID="x1" ucd="pos.cartesian;pos.cartesian.x"
 datatype="float" unit="Mpc" />
 <FIELD name="y" ID="y1" ucd="pos.cartesian;pos.cartesian.y"
 datatype="float" unit="Mpc" />
 <FIELD name="z" ID="z1" ucd="pos.cartesian;pos.cartesian.z"
 datatype="float" unit="Mpc" />
 <FIELD name="vx" ID="vx1" ucd="phys.veloc;pos.cartesian.x"
 datatype="float" unit="km/s"/>
 <FIELD name="vy" ID="vy1" ucd="phys.veloc;pos.cartesian.y"
 datatype="float" unit="km/s" />
 <FIELD name="vz" ID="vz1" ucd="phys.veloc;pos.cartesian.z"
 datatype="float" unit="km/s" />
 <DATA>
 <BINARY>
 <STREAM href="file:///scratch/myhome/test.bin"/>
 </BINARY>
 </DATA>
 </TABLE>
 </RESOURCE>
</VOTABLE>

]

6 Data Staging
By Data Staging we refer to the processing the server performs to retrieve or
generate the requested simulation volume or subvolume from a similar box and
cache them in online storage for retrieval by a client. Staging is necessary for
large archives which must retrieve simulation data from hierarchical storage, or
for services which can dynamically extract subvolumes, where it may take a
substantial time (e.g., minutes or hours) to retrieve the particles in the relevant
region of the simulation box. Issuing a staging request for a set of simulation
subvolumes (e.g. for a set of small cubes randomly placed in a simulation box)
also permits large servers to optimize subvolume extraction, for example to take
advantage of parallelization for large requests.
The snapshot staging service is optional for the simulation server. If staging is
not implemented, data should be immediately available for retrieval (URL direct
to file). [GL – How do we indicate that this is the case ? Service metadata ?]

When staging of data is necessary, the technique used is to stage data on the
server for later retrieval by the client; the data is only staged for a period of time

and is eventually deleted by the service. This therefore permits the getSnap
method to be identical whether or not staging is used. The service can proceed
to generate the simulation sub-volume regardless of the state or accessibility of
the client.

The service provider can decide how to deal with multiple requests from the
same user or large number of requests at the same time from different users.
Queue, batches, limits are defined by the provider. The provider is only
requested to publish and notify such features to the registry service (details to be
defined [GL – Ask GWS working group ?]).

As soon as staged data are available at the given URL, the user can start the
download procedure. The user can be informed of the availability of the data
following two different approaches:

• The client searches for information on the service. [GL – Requires protocol,
see proposal in section 2]

• The service searches for the client and, if present, sends information to it.
[GL – Requires authentication]

The first approach is simpler. In its most strightforward implementation, it simply
consists in making the client reload the data URL, to see if data are there.
In the second approach, the staging mechanism should provide a messaging
capability. The service broadcasts messages to subscribing clients whenever a
staging (processing) event occurs, such as when the sub-volume extraction has
been completed and is available for retrieval. Service generated messages can
also be used to pass informational or diagnostic messages to clients as
processing proceeds. This type of messaging is asynchronous and one way: the
service broadcasts messages to subscribing clients as things happen, whereas
clients send requests to the service to invoke web methods. For example, to
initiate staging, subscribe to staging-related messages, or abort a staging
operation in progress, the client sends a request to (invokes a web method
provided by) the service.
In the second approach, a unique identification of the client is required, so that in
different session the user is always characterized by a unique id. This is required
in some implementation of the first approach. This requires the introduction of
certificates and related stuff, which could reduce the usability of the service. At
the moment, simpler solution are suggested.

7 Data Delivery
The snapshot retrieval request (getSnap web method) allows a client to retrieve
a single raw simulation file given an access reference or "acref" as returned by a
prior simulation query. The file can contains more than one variable and can be
in the formats defined in Section 5.
All the metainformation about the content and the structure of the data file are
stored in the associated VOTable (see Section 5).
The retrieved data file is in a binary format as described in Section 5.

7.1 Input
The input to the getSnap web method is the simulation acref for the indicated raw
simulation data or extract subvolume. The acref for a particular file is obtained
through a prior call to the Simulation Query web method.

7.2 Successful Output
The output of getSnap MUST be a single data file returned with a MIME-type
identifying the file format. The primary type of the MIME code should be "data/".
Other MIME types are not expected.

7.3 Error Response
If a condition is encountered that prevents the requested image from being
downloaded, the output MUST be a VOTable with a single RESOURCE element
containing an INFO child with name="QUERY_STATUS". The allowed values for
this INFO are the same as those defined for the Image Query; in addition, the
following additional attribute MAY be supported:

DEFERRED
This indicates that the requested image is not yet available for some reason but
that it will be at some time in the future. Clients that receive this type of message
can periodically try (poll) the given acref URL until the image becomes available.

8 Service Registration
To be done…

Appendix A: “Appendix Title”

References

[1] R. Hanisch, Resource Metadata for the Virtual Observatory ,
http://www.ivoa.net/Documents/latest/RM.html
[2] R. Hanisch, M. Dolensky, M. Leoni, Document Standards Management: Guidelines
and Procedure , http://www.ivoa.net/Documents/latest/DocStdProc.html

