
NASA astro VO in the Cloud:
 What we think we need and a proposed solution

Tess Jaffe
on behalf of

HEASARC, IRSA, and MAST

A use case for VO in the cloud:

● MAST hosts images both on prem and in an AWS S3 bucket

● MAST’s SIA service currently returns an access URL pointing to the on prem

version.

● User is working on AWS and wants to access the data from S3.

● We should make this easy and transparent.

Current solution for MAST
● Separate MAST service specifically to serve S3 addresses
● Python client astroquery.mast module custom made for MAST

<... snip …>

Prototype VO-compatible solution

● SIA service returns extra information in the VOTable.

● Clients need to read the extra data and fetch from cloud where appropriate.

E.g., in pyvo, provide a utility to fetch the data product from AWS instead of on prem:

import pyvo
query_url = “https://mast.stsci.edu/portal_vo/Mashup/VoQuery.asmx/SiaV1?MISSION=HST&”
results = pyvo.dal.sia.search(query_url, pos=pos, size=0.0)

pyvo.utils.download_file(results[0], ‘aws’)

(See pyvo PR #369)

https://mast.stsci.edu/portal_vo/Mashup/VoQuery.asmx/SiaV1?MISSION=HST&
https://github.com/astropy/pyvo/pull/369

Proposed implementation: service side
1. Return cloud_access column in VOTable

a. JSON content
b. Dictionary of (list of) dictionaries for each cloud access possibility
c. E.g.,

{“aws”: [{ “bucket_name”: “stpubdata”,
 “region”: “us-east-1”,

 “access” : “region”,
 “key” : “hst/foo/bar/to/image/file.fits”},
 { “bucket_name”: “anotherAWSbucket”, … }],

 “google”: {...},
 “azure”: {...}
}

(Try it at our test service.)

https://heasarc.gsfc.nasa.gov/xamin_aws/vo/sia?table=chanmaster&pos=182.63,39.40&resultformat=text/xml&resultmax=2

Proposed implementation: client side
2. Clients can look for cloud_access information in addition to, e.g., access_url.

a. In Python, we suggest a user friendly utility:

pyvo.utils.download_file(record,’aws’)

which under the hood selects between

astropy.utils.data.download_file(record[‘access_url’])

and

boto3.client('s3').download_file(
record[‘cloud_access’][‘aws’][‘bucket’],

 record[‘cloud_access’][‘aws’][‘path’],
outfile)

depending on the cloud_access information and the availability of the object.

b. Likewise for other languages, clients, or user-written code.

Questions for IVOA

● Service issues:
○ Extra columns in any service that gives you a URL to a file?

■ Alternative ideas?
○ JSON content of extra column or other?

■ Is JSON in an XML element going to be a problem?
■ <![CDATA[...json…]]> ?

○ Integrate with DataLink?
● Python-specific issues:

○ where to put the client-side utility?
● What aren’t we thinking about?
● What are others doing or thinking about?

