
Oct 9, 2019 1 of 14

VO implementation at Observatorio
Astrof́ısico de Javalambre

Tamara Civera & Javier Hernández
CEFCA



Oct 9, 2019 2 of 14

CEFCA and the OAJ

The Observatorio Astrofısico de Javalambre (OAJ, Teruel, Spain)

CEFCA is an institution of the Government of Aragón for research
in Astrophysics and Cosmology, whose activities focus on the
technological development and operation of the Observatorio
Astrof́ısico de Javalambre (OAJ, Teruel, Spain) and on its scientific
exploitation.



Oct 9, 2019 3 of 14

Telescopes and instrumentation at OAJ

Two main telescopes with large fields of view (FoV) and image
quality all over their entire FoVs:

I The 80cm Javalambre Auxiliary Survey Telescope, JAST/T80,
with a FoV of 2 deg.

I The 2.5m Javalambre Survey Telescope, JST/T250, a
large-etendue telescope with a FoV of 3 deg diameter.

The scientific instruments for the telescopes are:

I For the JAST/T80 a wide-field camera equipped with a
9.2k-by-9.2k high efficiency CCD.

I JPCam is a wide field 14 CCD-mosaic camera that for the
JST/T250.



Oct 9, 2019 4 of 14

J-PLUS and J-PAS Surveys

JPCam filter system

I Javalambre-Photometric Local Universe Survey, J-PLUS, is a
photometric sky survey of 8500 deg2, using a set of 12 broad,
intermediate and narrow band filters. Designed to carry out
the photometric calibration of J-PAS.

I Javalambre Physics of the Accelerating Universe Astrophysical
Survey, J-PAS, is an unprecedented photometric sky survey of
8500 deg2 in 59 colors, using 54 narrow plus 5 broad bands.



Oct 9, 2019 5 of 14

Data Publication

Web Portal: Sky Navigator, Image Search, Cone Search, Object
Visualization, Object List Search, MOC Download.

archive.cefca.es



Oct 9, 2019 6 of 14

Choosing VO Services

I Simple Image Access: image
search and download (full
and cutouts).

I Simple Cone Search:
catalogue object search.

I TAP: search images,
catalogue objects, derived
data (photo-redshifts,
stellarity, ...). Describe data.

I SAMP: push data from our
web portal.



Oct 9, 2019 7 of 14

Implementation: The Data Layer

I We wanted a open source SQL database (ADQL friendly).

I J-PLUS and J-PAS Catalogue final data is expected to occupy
several terabytes.

I With flux and error measures for about 16 apertures in 59
filters, just for photometry, we have 1888 columns of data in
the object table.

I PostgreSQL has known support of big databases, support for
custom functions, and array types (which simplify storing all
filter flux data in one column).

I Spatial index in the database is very important, we opted to
use Healpix.



Oct 9, 2019 8 of 14

Implementation: The Web Layer

I The Python programming language was in use in the house
for the reduction pipelines, so we evaluated it for creating web
applications.

I The Python WSGI specification, with a lot of implementations
(Apache mod wsgi, Unicorn, uWSGI, ...), supports web
applications.

I A lot of frameworks (Pyramid, Flask, Django, ...) simplify
development, easily map a Python function to a web URL,
and access to web parameters.

I Large amount of libraries for astronomy, database access, and
Healpix are available.



Oct 9, 2019 9 of 14

And some results ...

SAMP with Aladin. TAP web interface. TAP Topcat.



Oct 9, 2019 10 of 14

A few lessons learned

I TAP more difficult that we thought. The idea to pass directly
queries to the database was not feasible, needed a SQL dialect
translation. But good for security, limiting result size or add
our extensions (enumerations to assign names to filter
positions ’jplus::rSDSS’).

I Also in TAP we found that implementing the geometric
functions is very complex due to the rich functionality defined,
so at the moment only partial support for that functions exists.

I IVOA centres on public data so access control is not
standardised. We finally achieved to support authentication
for some tools like Topcat using Basic HTTP authentication.



Oct 9, 2019 11 of 14

A few lessons learned (II)

I Performance is always something that at some point you have
to improve.

I We initially implemented in Python the needed database
functions for ADQL but later we moved to a C
implementation because it is ten times faster.

I TAP queries can take some minutes to execute, so executing
concurrently them is mandatory. Python threads have some
blocking issues, fortunately Python multiprocessing package
has a similar API.



Oct 9, 2019 12 of 14

Thank you!

Thank you!


