IVOA building blocks for a Time series Data Model
M.Louys, F. Bonnarel ,
L. Michel, A. Nebot

GOAL

- Here is a sketch for representing metadata involved in the discovery and analysis of time domain information.
- Time series is considered in a large sense as a collection of data samples, taken along a sequence of time stamps.
- $F=f(t)$, with F being
- a simple value for a measure,
- a structured value for a measure , and its error, precision , etc.
- Multiple values (e.g. multi wavelength)
- A dataset itself , e.g. the data product resulting of a full observation.

Reuse of Cube DM \& STC

- Time series is a SparseCube cf TimeDomain Model Note (J. Nadvornik)
- Is a PointDataProduct
- For TS, the principal DataAxis is the TimeAxis
- Observations depends on time samples
- Can be represented as simple items : CoordMeasure as in CubeDM
- Can also be a more compact DataProduct by itself
- Series of images / spectra varying with time

Legend
is associated to
\qquad
derives from
is composed Of

Color code for classes

TimeSeries_DM Characterisation_DM Class Cube_DM Class

STC_DM Class

Discovery
 \rightarrow Characterisation DM

\square How to handle multiplicity

- Simple light curve 1 Time Axis , 1 Flux axis
- Multiwavelength light curve
- Multiple DataAxis as Flux axis $=f(\lambda)$
- Heterogeneous TS
- Lightcurve with associated images (or spectrum?)
- TS of datasets
- Cube TS , e.g. MUSE series of hyperspectral cubes

\square Modeling Status

- Coded in the Modelio UML modeler
- Import of Cube DM and STC DM
- To do
- Explore more science cases
- Re-use CharDM and EPN-Core DM for completing the TimeAxis description
- Resolve multiplicity representation
- Generation of the VO-DML xml description for this model
- Generation of the html documentation via VO-DML tools

