
Unicode in VOTable

IVOA Interop Meeting

Banff
12 October 2014

Mark Taylor

with input from Walter Landry,

Markus Demleitner,

Norman Gray,

Dave Morris,

Pat Dowler,

et al.

$Id: vot-unicode.tex,v 1.6 2014/10/12 15:32:28 mbt Exp $

Mark Taylor, Unicode in VOTable, IVOA Interop, Banff, 12 October 2014 1/10

Outline

• Unicode

• VOTable

• Problem

• Solutions?

Mark Taylor, Unicode in VOTable, IVOA Interop, Banff, 12 October 2014 2/10

Unicode Primer

(Disclaimer: I’m not an expert)

Unicode:

• Represents characters from many character sets

• Each character is a “code point” — an integer

• Code points have designations like U+0058 (“X”)

• Code points are arranged in 17 planes, each with 65536 code points

. BMP (Basic Multilingual Plane), including all normal letters/characters
(Latin, Arabic, Chinese, Japanese, Korean, ...)

. ... and 16 others for weird characters

. No more will be allocated

• There are 1,112,064 valid code points (= 17× 216 − 2048)

• Most modern languages support Unicode (Python, Java, ...)

• Most old languages do not (FORTRAN 77, C, ...)

• Different “encodings” are defined to serialise a sequence of code points as a byte stream

Mark Taylor, Unicode in VOTable, IVOA Interop, Banff, 12 October 2014 3/10

Unicode Encodings

• UCS-2: exactly 2 bytes for all supported code points

. Fixed-length code points — easy to handle!

. Only BMP code points can be represented

. Obsolete since 1996 (Unicode 2.0)

. Not supported in modern Unicode-friendly environments?

• UCS-4: exactly 4 bytes for all code points

. Fixed-length code points — easy to handle!

. 4 bytes per character — not very efficient

. Not widely used

• UTF-8: 1–4 bytes for all code points

. Variable-length code points

. 7-bit ASCII is identical to UTF-8!

. Non-ASCII code points require more than one byte

. No endianness issues

• UTF-16:

. Variable-length code points!

. Not very efficient for mostly-ASCII text!

. Endianness!

• ... and many, many more

Mark Taylor, Unicode in VOTable, IVOA Interop, Banff, 12 October 2014 4/10

Unicode Encodings

• UCS-2: exactly 2 bytes for all supported code points

. Fixed-length code points — easy to handle!

. Only BMP code points can be represented

. Obsolete since 1996 (Unicode 2.0)

. Not supported in modern Unicode-friendly environments?

• UCS-4: exactly 4 bytes for all code points

. Fixed-length code points — easy to handle!

. 4 bytes per character — not very efficient

. Not widely used

• UTF-8: 1–4 bytes for all code points

. Variable-length code points

. 7-bit ASCII is identical to UTF-8!

. Non-ASCII code points require more than one byte

. No endianness issues

• UTF-16:

. Variable-length code points!

. Not very efficient for mostly-ASCII text!

. Endianness!

• ... and many, many more

⇐ This is the useful one

Mark Taylor, Unicode in VOTable, IVOA Interop, Banff, 12 October 2014 4/10

VOTable Primer

VOTable 1.3 (and earlier):

• “Strings” in VOTable are arrays of characters

• Characters are one of two datatypes:

. char: strict (7-bit) ASCII

. unicodeChar: “UCS-2”

• There are (approximately) 2 data serializations:

. TABLEDATA (XML <TR> and <TD> elements) — for unicode, encoding as document

. BINARY (stream of bytes) — for unicode, must define encoding

• Arrays (hence strings) may be fixed or variable length.

. Fixed: <FIELD datatype="char" arraysize="4"> (length from arraysize)

TABLEDATA: <TD>IVOA</TD>

BINARY: 49 56 4F 41
I V O A

. Variable: <FIELD datatype="char" arraysize="*"/>

TABLEDATA: <TD>IVOA</TD>

BINARY: 00 00 00 04 49 56 4F 41
I V O A

(length from run-length)

. Length (arraysize) is number of characters

Mark Taylor, Unicode in VOTable, IVOA Interop, Banff, 12 October 2014 5/10

VOTable Text

“VOTables support two kinds of characters: ASCII 1-byte characters and
Unicode (UCS-2) 2-byte characters. Unicode is a way to represent characters
that is an alternative to ASCII. It uses two bytes per character instead of one,
it is strongly supported by XML tools, and it can handle a large variety of
international alphabets. Therefore VOTable supports not only ASCII strings
(datatype=”char”), but also Unicode (datatype=”unicodeChar”).”

Mark Taylor, Unicode in VOTable, IVOA Interop, Banff, 12 October 2014 6/10

VOTable in Practice

You’re supposed to put only 7-bit ASCII in char fields

• ... but people sometimes put unicode in there

(document encoding for TABLEDATA, UTF-8 for BINARY)

• ... and software often copes with it

• ... even though it shouldn’t

Mark Taylor, Unicode in VOTable, IVOA Interop, Banff, 12 October 2014 7/10

Problem

VOTable doesn’t have proper Unicode support

... so let’s declare char to be Unicode!

• In legal VOTables, only 7-bit ASCII characters are present in char

• TABLEDATA serialization: looks after itself (using XML unicode machinery)

• BINARY serialization: 7-bit ASCII characters are the same in UTF-8 and ASCII, so for

characters that are legal now, existing en/decoding methods will work as before

© No problem?

With UTF-8, number of characters doesn’t tell you byte count

49 56 4F 41
I V O A

49 56 CE A9 41
I V Ω A

§ Problem.

. In the BINARY serialization, array length no longer tells you how many bytes are in the field

. If you have the number of code points, you have to read the bytes in a BINARY byte stream
to work out how many bytes are present.

. This means you can’t skip parts of stream (do pointer arithmetic)→ inefficient
(char fields are not known length, rows are not fixed length even if all fields are)

Mark Taylor, Unicode in VOTable, IVOA Interop, Banff, 12 October 2014 8/10

Possible Solutions

• No change

• No unicode allowed in char (but people will keep putting it there)

• UCS-2 in unicodeChar (but it’s obsolete, not supported by software, can’t represent wacky

characters, and is not widely used)

• Use UCS-4 for BINARY

• Inefficient (4 bytes per character)

• (also eccentric and endianness to cope with)

• Use UTF-8 for BINARY

• Some difficulties relating to field length

Mark Taylor, Unicode in VOTable, IVOA Interop, Banff, 12 October 2014 9/10

UTF-8 Questions

Use UTF-8 for BINARY encoding

• What datatype?

. datatype="char": matches common current (illegal) usage, it’s the most obvious
type to use for ”normal” text, but some backward compatibility issues

. datatype="utf-8"?: sounds somehow non-standard; if so, do we deprecate/remove
char?

• What about unicodeChar datatype?

. Deprecate? Remove?

• How to handle array length?

P1: Define both arraysize and binary run-length as number of code points
→ can’t do pointer arithmetic on BINARY streams

P2: Define arraysize as number of code points and binary run-length as number of bytes
→ need run-length even for fixed-length char arrays; can do some pointer arithmetic
(to skip a unicode field you need to read the run-length, but not the characters)

P3: Define both arraysize and binary run-length as number of bytes the characters would
take in UTF-8
→ declared arraysize N does not guarantee you can store N code points

Mark Taylor, Unicode in VOTable, IVOA Interop, Banff, 12 October 2014 10/10

