
Is it wise to differentiate NaN and NULL?

In DBMS:
● NULL is defined to specify

unknown (missing) value
● NULL properties:

– count as 0:
– select count(null) ==> 0

● Postgres accepts NaN and Inf
as floating-point values, but...
 (see next slides)

In computers:
● NaN (not a number) , +Inf, -Inf

have well-defined properties:
– 0/0 = NaN
– 1/0 = +Inf, -1/0=-Inf
– Test equality (x==x) is

false when x is NaN
● In computations:

– log(0) = -Inf
– log(-1) = NaN
– etc...

Comparison C vs DBMS: the simplest table

DBMS (Postgres)
select * from t
 v

 0
 1
 -1
 Infinity
 -Infinity
 NaN
 null

From C

/* Vector: */
double v[6] = {
 0,
 1,
 -1,
 1./0., /* +Inf */
-1./0., /* -Inf */
 0./0. /* NaN */
};

Comparison C vs DBMS: equality test

DBMS (Postgres)
select a.v,b.v
from t a, t b
where a.v=b.v ;

 v | v
-----------+-----------
 -Infinity | -Infinity
 -1 | -1
 0 | 0
 1 | 1
 Infinity | Infinity
 NaN | NaN

From C
for(i=0;i<6;i++)
for(j=0,j<6;j++)
if(v[i]==v[j])
printf(v[i],v[j]);

 0 0
 1 1
 -1 -1
 inf inf
-inf -inf

logical comparison not valid in PostgreSQL
(NaN is NOT equal to NaN)

Comparison C vs DBMS: inverse value

DBMS (Postgres)
select 1/v from t
 v

ERROR: division by
zero

From C
for(i=0;i<6; i++)
printf(v,1/v[i]);

 0 inf
 1 1
 -1 -1
 inf 0
-inf -0
 nan nan

Arithmetic computation not valid in PostgreSQL

Conclusion

● Computations using NaNs in DBMS do not behave
as expected

● ... but NULL in DBMS behaves like NaN in
computations and logical comparisons

Therefore use null as the DBMS
equivalent of NaN which represents
the VOTable and FITS NULL numbers

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5

