
Astronomical Data Query Language 

2005-06-20 17:28:00  Page 1 of 20 1  

 

 International 

    Virtual 

    Observatory 

Alliance  

 
IVOA Astronomical Data Query Language  
Version 1.02 
IVOA Working Draft 24 September 2005 
 
This version:  

1.02: http://www.ivoa.net/Documents/WD/ADQL/ADQL-20050924.doc 

Latest version: 
 http://www.ivoa.net/Documents/latest/ADQL.html 
Previous versions: 

none 
 
Working Group: 
 http://www.ivoa.net/twiki/bin/view/IVOA/IvoaVOQL 
Editors: 
 Maria A. Nieto-Santisteban, Masatoshi Ohishi, William O’Mullane, Yuji 
 Shirasaki, and Alexander Szalay 
Authors: 
 IVOA VOQL Working group 
 

 

Abstract 
This document describes the Astronomical Data Query Language (ADQL) and its two 
representations as String (ADQL/s) and XML (ADQL/x). ADQL has been developed 
based on SQL 92. This document describes the subset of the SQL 92 grammar 



Astronomical Data Query Language 

2005-06-20 17:28:00  Page 2 of 20 2  

supported by ADQL. Special extensions to SQL 92 have been defined in order to  
support astronomy specific operations such as Region and XMATCH.  

 

 

Status of this document 

This is an IVOA Working Draft for review by IVOA members and other interested parties. 
It is a draft document and may be updated, replaced, or obsoleted by other documents 
at any time. It is inappropriate to use IVOA Working Drafts as reference materials or to 
cite them as other than “work in progress”.  

 
Acknowledgments 
This working draft has been developed based on discussions at various IVOA meetings 
and continuing emails on the mailing list. The editors express their appreciation for many 
valuable contributions by Naoki Yasuda, Clive Page, Bob Mann, Martin Hill, and many 
others. 

 

Contents  
Abstract ..................................................... 1 
Status of this document...................................... 2 
Acknowledgments.............................................. 2 
1 Introduction............................................. 3 
2 Astronomical Data Query Language (ADQL) ................. 3 

2.1 Restrictions on SQL 92.................................................................................... 4 
2.2 Extensions to SQL 92 ...................................................................................... 5 
2.3 Version information.......................................................................................... 7 
2.4 Regions ........................................................................................................... 7 
3 ADQL example............................................. 8 
4 ADQL XSD ................................................. 9 
5 Changes from previous versions .......................... 9 
6 References ............................................... 9 
Appendix A   ADQL Grammar ................................. 10 

A- 1 Core Query Syntax ......................................................................................... 10 
A- 2 Full Query Syntax ........................................................................................... 10 
A- 3 Keyword, Identifier and delimited identifier...................................................... 13 
A-4 Data types .......................................................................................................... 14 

 

 



Astronomical Data Query Language 

2005-06-20 17:28:00  Page 3 of 20 3  

1 Introduction 
The Astronomical Data Query Language (ADQL) is the language used by the 
International Virtual Observatory Alliance (IVOA) to represent astronomy queries posted 
to VO data services. IVOA has developed several standardized protocols to access 
astronomical data, e.g., SIAP, and SSAP for image and spectral data respectively, and the 
SkyNode Interface protocol to access catalogs. Different VO data services have different 
needs in terms of query complexity. For example, SIAP and SSAP can be satisfied using 
a single table. However, SkyNodes usually include more than one catalog table which 
makes necessary richer language expressivity.  ADQL 1.0 has been designed in a layered 
hierarchy so data services implement the complexity level that meets their needs. In this 
way, clients know what query types the data services will accept. 

 
ADQL 1.0 is based on the Structured Query Language (SQL), specifically on SQL 92. 
The VO has a number of tabular data sets and many of them are stored in Relational 
Databases (RDBs), making SQL a convenient access language. ADQL 1.0 focuses on a 
subset of the SELECT statement, adding a few extensions to define astronomy operations 
like REGIONS and XMATCH. 

 
SkyNode services (or just nodes) accept queries in ADQL. The mechanism of passing a 
query to a node is described in the SkyNode Interface specification Error! Reference 
source not found., developed by the IVOA VOQL WG as well. SkyNodes are defined 
and implemented as XML Web services. It should be noted that the SkyNode Interface is 
also related to IVOA Data Access Layer WG. 

 
To access some current SkyNode implementations, visit, e.g. OpenSkyQuery.net. The 
OpenSkyQuery portal is an example of how astronomers can use ADQL to query a 
federation of astronomical databases which have been published as SkyNodes. 

 

2 Astronomical Data Query Language (ADQL) 
ADQL is based on a subset of SQL which has been extended to support queries which are 
specific to astronomy. The ADQL syntax specification is made of a core and several 
extensions. All SkyNodes MUST conform to the core specification. ADQL has two 
representations:  

• ADQL/s : A string form based on the SELECT statement of the SQL 92 standard 
Error! Reference source not found. that conforms to the ADQL grammar (see 
appendix). Some non standard SQL extensions have been added to support 
astronomy queries. 

• ADQL/x : An XML document conforming to the ADQL schema [3]. The XML 
document is the mechanism used to pass a query to the SkyNode Web service 
Interface.  



Astronomical Data Query Language 

2005-06-20 17:28:00  Page 4 of 20 4  

 
ADQL/s and ADQL/x are translatable to each other without loss of information. 
[Translation Services & Translation Styles sheets] 
  

2.1 Restrictions on SQL 92 
The formal notation for syntax of computing languages is often expressed in the “Backus 
Naur Form” BNF1. Appendix to this document provides the BNF definition of  ADQL/s. 
In essence this is any valid SELECT SQL statement. However ADQL has restrictions 
described below. 
 

2.1.1 Built-in Functions 
In ADQL built-in functions which are defined on the server system may be called. These 
would include, e.g., a function to provide great circle distance, converter such as from 
sexagesimal to decimal, and unit converters. The SkyNode Interface specification also 
defines a method by which all functions available on the server may be discovered. If a 
user knows that certain functions exist in the target system (SkyNode etc.), the user may 
use such functions in ADQL. An example of a function would be (in ADQL/s): 
 

Select HEALPIXID(a.ra, a.dec), a.ra, a.dec from photobjall a 

 

A concise set of common built-in functions that represent the necessary astronomical 
functionality, together with their standard function names, will be defined in later 
versions of the ADQL specification. 
 

2.1.2 INTO clause 
INTO is supported for future interoperability with VOSpace. The VOSpace specification 
is under development within the Grid and Web Services WG of the IVOA.  In SQL we 
may use ‘SELECT INTO’ to create a new table or ‘INSERT INTO’ to add data into an 
existing table. In ADQL this will probably be a VOSpace endpoint wherein the file/table 
will be created or appended to. How that is specified is not part of ADQL. ADQL simply 
supports syntax to allow to specification of a destination, e.g.: 
 

Select g.* into VOS:/JHU/gal from galaxy g where g.redshift > 3.5 

 

                                                
1 http://cui.unige.ch/db-research/Enseignement/analyseinfo/AboutBNF.html#Johnson75 



Astronomical Data Query Language 

2005-06-20 17:28:00  Page 5 of 20 5  

2.1.3 Comments 
Comments will only be supported using the /* */ syntax to delimit comments. Comments 
are only supported before or after the main query – they may not be interspersed with the 
actual query. 

 

2.2 Extensions to SQL 92 
This specification adds requirements on top of SQL92. ADQL SHALL support the 
extension described below. 

These extensions to SQL92 are given with examples in ADQL/s, but of course ADQL/x 
can express any string from ADQL/s. 

 
2.2.1 Aliases 
All table names in ADQL MUST have an alias. Aliasing tables is a part of standard SQL, 
but we are enforcing this in ADQL/s. 

This means queries in ADQL/s must take the form  
 

Select * from table t 

 
This makes substitution of table names much easier as it must be done in only one place 
to change the alias.  

 
2.2.2 Archive Qualification 
ADQL allows for an archive to be specified in front of the table name. The archive’s 
SHORTNAME (registration name) is pre appended to the table name with the ‘:’ 
separator. E.g. TWOMASS:PhotoPrimary refers to the PhotoPrimary table of the 
TWOMASS SkyNode.  

 
2.2.3 Regions 
ADQL adds a keyword REGION to be used in the WHERE clause to specify search 
constraints. The REGION specification is supported as defined by the IVOA Data Model 
WG [3]. See subsection 2.4 for its detailed specification.  The default coordinate system 
and units have been specified to simplify ADQL and the SkyNode implementation.  
 

2.2.4 Mathematical Funtions 
JDBC [5] mathematical functions shall be allowed in ADQL as follows:  

 



Astronomical Data Query Language 

2005-06-20 17:28:00  Page 6 of 20 6  

Trigonometric functions:  
acos(x), asin(x), atan(x), atan2(x, y) where x and y are numeric, and 

cos(x), cot(x), sin(x), tan(x) where x is expressed in radians 
Math functions:   

abs(x), ceiling(x), degrees(x), exp(x), floor(x), log(x), log10(x), mod(x, y),  
pi(), power(x, y), radians(x), sqrt(x), rand(), round(x, n), truncate(x, n) 
where x and y are numeric and n is an integer. 

 

2.2.5 XMATCH 
ADQL includes a family of XMATCH keywords which mean cross-match between two or 
more astronomical catalogues. The semantic meaning of XMATCH is defined more 
precisely in the SkyNode Interface specification. This document only specifies the 
syntax. The XMATCH keyword appears in the WHERE clause and looks like a function. At 
the moment there is only one XMATCH function accepted. As new functions are accepted 
they will be included in this specification.The XMATCH has three parameters; first two 
parameters are table names to be cross-matched,   the third parameter is the sigma value 
for the chi-square match.  

Here is an example in ADQL/s: 
SELECT o.objId, o.ra, o.r, o.type, t.objId 

  FROM SDSS:PhotoPrimary o,  

       TWOMASS:PhotoPrimary t 

  WHERE XMATCH(o,t,3.5) 

        AND Region('Circle J2000 181.3 -0.76 6.5') 

        AND o.type=3 

 

2.2.6 XPATH for Columns 
To support XQuery as well as SQL, and since some of our data formats are described as 
XSD, it will be possible to express selections and selection criteria as a simple XPath. 
Square brackets ([,]) and standard operators such as parent are NOT supported. An 
example of a valid query of this form would be  

 
Select /Resource/Contact/Name from Resource where /Resource/Type 
like ‘catalog’ 

 

2.2.7 Returning subset of records – TOP 
ADQL supports the TOP syntax to return only the first N records from a query, e.g., 

 



Astronomical Data Query Language 

2005-06-20 17:28:00  Page 7 of 20 7  

Select top 10 g.* from galaxy g 

 

The semantics of this may vary on different database management systems. In ADQL the 
assumption is that TOP returns the first N records satisfying the criteria specified in the 
query. 

 
2.2.8 Units 
ADQL allows units for all constant values specified in the query. These are optional. 
ADQL does not specify what the units mean, and it simply allows for them syntactically 
specified, e.g: 
 

Select g.* from galaxy g where g.gmag > 100 Jansky  

 

2.2.9 Table Names with special chars 
ADQL supports the use of ‘[ ]‘ to enclose literal names which may otherwise cause parse 
errors. For example if a table name starts with a number the parser could not deal with 
this but the following is valid: 

 
Select a.* from [2df] a   

 

This is also true for table names with spaces in or tables whose names are reserved 
words. Many database systems also support this syntax. 
 

2.3 Version information 
ADQL/x documents SHALL contain a version identifier for the version of ADQL. This 
will start as 1.0.  The version number is a dot separated string of numbers. The version 
number is included in the document solely so the receiving node may decide if it wishes 
to deal with the document or to return an exception. This is assumed to only come into 
use at some later stage when there may be a major version change causing some possible 
incompatibility between versions. We should strive for backward compatibility i.e. only 
adding new features not deprecating the old. 
 

2.4 Regions 
• ADQL/s SHALL support the Region keyword. This will be followed by a 

single quoted string specifying a region in a simple manner similar to the current 
SDSS coverage specification in [6]. This would look something like: 

 Region(‘CIRCLE J2000 19.5 –36.7 0.02’) 



Astronomical Data Query Language 

2005-06-20 17:28:00  Page 8 of 20 8  

This is a one way operation. If an ADQL/s string is converted to ADQL/x this Region 
string will be converted to XML. If the resulting ADQL/x is converted back to ADQL/s 
the Region should remain as inlined XML using the RegionXML keyword.  
There may be a comment section added to the region.xsd. In this comment section the 
original string should be kept. The comment section will be used for display purposes in 
certain areas, and should contain a summary description (in English) of the region. 
Other constructs mentioned in [6]  are RECT, POLY, and CHULL are also supported. 
 
As implied above it is possible to inline a region specification as in ADQL/s using the 
RegionXML keyword, e.g., (not a valid region specification) 
 

RegionXML (‘<circle><coordsys>ICRS</coordsys><ra>19.5</ra><dec>-
36.7</dec><radius>0.02</readius></circle>’) 

 
It is also possible to refer to a region specification as a URL in ADQL/s using the 
RegionURL keyword, e.g. 
 

RegionURL (‘http://aserver.edu/aregion.xml’) 

 

3 ADQL example 
An ADQL/s might be as follows: 

 
SELECT a.objid, a.ra, a.dec  

FROM SDSSDR2:Photoprimary a 

WHERE Region('CIRCLE J2000 181.3 -0.76 6.5') 

 

This would be represented in ADQL/x as follows: 
 

<?xml version="1.0" encoding="utf-8"?> 

<Select xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns="http://www.ivoa.net/xml/ADQL/v1.0"> 

  <SelectionList> 

    <Item xsi:type="columnReferenceType" Table="a" Name="objid" /> 

    <Item xsi:type="columnReferenceType" Table="a" Name="ra" /> 

<Item xsi:type="columnReferenceType" Table="a" Name="dec" /> 

  </SelectionList> 

  <From> 



Astronomical Data Query Language 

2005-06-20 17:28:00  Page 9 of 20 9  

    <Table xsi:type="archiveTableType" Archive="SDSSDR2" 
Name="Photoprimary" Alias="a" /> 

  </From> 

  <Where> 

    <Condition xsi:type="regionSearchType"> 

      <Region xmlns:q1="http://www.ivoa.net/xml/STC/STCregion/v1.10" 
xsi:type="q1:circleType" unit="deg"> 

        <q1:Center>181.3 -0.76</q1:Center> 

        <q1:Radius>6.5</q1:Radius> 

      </Region> 

    </Condition> 

  </Where> 

</Select> 

 

4 ADQL XSD 
The XML schema for ADQL is found at http://www.ivoa.net/xml/ADQL/ADQL-
v1.0.xsd. 
 

5 Changes from previous versions 
 None. This is the first release. 

 

6 References 
[1] IVOA SkyNode Interface  

http://www.ivoa.net/Documents/latest/SNI.html 

[2] ISO/IEC 9075:1992(E) Information technology – Database languages - SQL 
[3] ADQL XML schema.  

http://www.ivoa.net/xml/ADQL/ADQL-v1.0.xsd 
[4] Space-Time Coordinates for the Virtual Observatory Version  1.10 

http://www.ivoa.net/xml/STC/STCregion/v1.10 
[5] Java Database Connectivity Specification 3.0; download from 

http://java.sun.com/products/jdbc/index.jsp 
[6] SQLServer2000 HTM Interface specification; Alex Szalay, George Fekete, Jim 

Gray; July 2003 ; http://skyservice.pha.jhu.edu/develop/vo/adql/htmdll_2_0.doc 
 



Astronomical Data Query Language 

2005-06-20 17:28:00  Page 10 of 20 10  

 

Appendix A   ADQL Grammar 
A- 1 Core Query Syntax 
A-1-1 Construct 

SELECT selection_list 
FROM table_name  [AS] alias 
[ WHERE condition ] 

A-1-1-1 Select list 
selection_list := { * | [table_alias.]* | 
{[table_alias.]column_name  [[AS] alias]}[,...] } 

 

• * represents all the columns. 

• * may be qualified by a table alias name. 

• A column name may be qualified by a table alias name. Table name is not used 
for qualifying the column, as alias to the table is mandatory. 

• Algebraic expression is not supported in this CORE spec. 
A-1-1-2 FROM Clause 

• Only one table may be specified in the from clause. 
• An alias name must be given to the table. 

A-1-1-3 WHERE Clause 

• Boolean value expression that conforms to CORE syntax is specified. 
• If boolean value expression that is not supported is specified, it should be 

evaluated as true rather than throwing an exception. 

• Only one region search condition may be specified at most. 
A-2-2 Specification number 
QL-SL-C01 [Core] All the SkyNodes must support the Core construct. 

A-2-3 XML representations 
• Coming later… 

A- 2 Full Query Syntax 
A-1-1 Construct 
SELECT[ ALL | DISTINCT ] [ INTO table_name ]  

[ TOP number ] [ OFFSET number ] 
selection_list 
FROM from_item [, ...]  
[ WHERE condition ] 
[ GROUP BY expression [, ...] ] 
[ HAVING condition [, ...] ] 



Astronomical Data Query Language 

2005-06-20 17:28:00  Page 11 of 20 11  

[ ORDER BY expression  
[ ASC | DESC | USING operator ] [, ...] ] 

A-1-1-1 Select list 

selection_list ::= * | {[table_alias].* | 
UCD [table_alias.]ucd | UTYPE [table_alias.]utype | 
[table_alias.]value_expression [[AS] select_alias]}[, ...] 

 

• UCD is a keyword which is followed by a ucd name or matching pattern. This 
syntax will be used for selecting columns based on the ucds.  

• UTYPE is a keyword which is followed by a utype name or matching pattern. 
This syntax will be used for selecting columns based on the utypes.  

• value_expression is one of the followings: 
o a column_name 

o a function 
o a constant value 

o a numerical formula of them 
A-1-1-2 FROM Clause 

from_item ::= aliased_table_name [, aliased_table_name ]…  
[join_type from_item  
{ON comparison_pred | USING (column_name [,…])}] 

[ NATURAL join_type from_item [AS] alias]  
[ ( sub_query ) [AS] alias ] 

 
aliased_table_name ::=  
{[resource_id.] table_name | #upload} 
 [AS] alias 

• resource_id is a service identifier which is expressed as: 
resource_id ::= authority_name:resource_path 

e.g.   ivo://archive.stsci.edu/hdfn/SKYNODE 

    archive.stsci.edu:[hdfn/SKYNODE] 
• The exteranl votable is specified by the “#upload” keyword.  

• The join_type  is one of the followings: 
− CROSS JOIN : which is identical to write two tables separated by a comma. 
− INNER JOIN : “INNTER” may be omitted. Explanation of this join. 
− LEFT OUTER JOIN: “OUTER” may be omitted. .Explanation of this join 
− RIGHT OUTER JOIN: “OUTER” may be omitted.  Explanation of this join 
− FULL OUTER JOIN: “OUTER” may be omitted. .Explanation of this join 

• The join condition that can be specified is one of the followings: 



Astronomical Data Query Language 

2005-06-20 17:28:00  Page 12 of 20 12  

− NATURAL : join is performed by comparing rows of identical name in the two 
joined tables. Only one of the columns appears in the output list if it is not 
explicitly specified. 

− ON : specifies the join condition, which is a comparison between a pair of 
rows from the two tables. Both of the columns appear in the output list, if it is 
not explicitly specified. 

− USING : JOIN USING (a,b,c) is equivalent to JOIN ON 
(t1.a=t2.a AND t1.b=t2.b AND t1.c=t2.c) with the exception 
that only one of the identical column is included in the output list, if it is not 
explicitly specified. 

• Subquery  is a select statement. 
 

A-1-1-3 WHERE Clause 

• Boolean value expression supported on the node. 
• If boolean value expression that is not supported is specified, it is recommended 

to evaluate it true rather than to throw an exception. 
A-1-1-4 INTO, TOP, OFFSET, ALL, DISTINCT 

• INTO: specifies the location of VOSpace where the query result is stored. 
• TOP:  returns only the first n rows from the offset position 

• OFFSET: skip the first n rows 
• The recurrence of the query result is not guaranteed by TOP and OFFSET 

selection. It is recommended to use them with the ORDER BY clause, which is 
the only way to guarantee the recurrence of the query result under the condition 
that contents of the table are not changed. 

• ALL or DISTINCT: ALL selects all the rows. It is default. DISTINCT rejects 
duplicated rows from the query result. 

A-1-1-4 GROUP BY, HAVING, ORDER BY 

• GROUP BY : is … 
• HAVING : is… 

• ORDER BY : is… 
A-1-2 Specification number 
QL-SL-E01 [Ext] A SkyNode may support UCD selection syntax 

QL-SL-E02 [Ext] A SkyNode may support UTYPE selection syntax 

QL-SL-E03 [Ext] A SkyNode may support value expression in the selection list.  

QL-SL-E04 [Ext] A SkyNode may support CROSS JOIN with one external table using 
the #upload keyword. A SkyNode which implement the xmatch service must support this 
syntax as well as xmatch function. 



Astronomical Data Query Language 

2005-06-20 17:28:00  Page 13 of 20 13  

QL-SL-E05 [Ext] A SkyNode may support  all the JOIN sysntax. In this case all the 
join types and the join condition types must be supported. 

QL-SL-E06 [Ext] A SkyNode may support  a subquery table 

QL-SL-E07 [Ext] A SkyNode may support INTO syntax. 

QL-SL-E08 [Ext] A SkyNode may support TOP syntax. 

QL-SL-E09 [Ext] A SkyNode may support OFFSET syntax. 

QL-SL-E10 [Ext] A SkyNode may support ALL and DISTINCT syntax. 

QL-SL-E11 [Ext] A SkyNode may support GROUP BY syntax.  

QL-SL-E12 [Ext] A SkyNode may support HAVING syntax.  

QL-SL-E13 [Ext] A SkyNode may support ORDER BY syntax. 

A-1-3 XML representations 

A- 3 Keyword, Identifier and delimited identifier 
A-3-1 Keyword 
• ADQL Keywords: 

SELECT, INTO, TOP, OFFSET, AS, FROM, WHERE, GROUP, BY, HAVING, ORDER, ASC, 
DESC, USING, BETWEEN, AND, OR, NOT LIKE, ... (not complete yet) 

• keyword is case insensitive. 

A-3-2 Identifier 
• Identifier, such as a column name or a table name, must begin with a letter {a-z} 

or an underscore {_}. Subsequent characters in an identifier can be letters, 
underscores or digits {0-9}. 

• Identifier that matches the keywords is not allowed. 
• Identifier is case insensitive. 

A-3-3 Delimited identifier 
• Delimited identifier may be used to allow for the use of keywords or special 

characters in naming the column and table. Delimited identifier is enclosed by 
“[“ and ”]”. 

• Delimited identifier is case sensitive. 
• The way of writing ”[” and ”]” within a delimited identifier is to write two 

adjacent brackets. e.g. [O/Fe] --> [[[O/Fe]]]. 
• Use of the delimited identifier is not encouraged and should be avoided. 

A-3-4 Specification number 
QL-KI-E01 [Ext] All the SkyNodes must support keyword, identifier, delimited 
identifier specification. 



Astronomical Data Query Language 

2005-06-20 17:28:00  Page 14 of 20 14  

A-4 Data types 
A-4-1 Numeric type 
A-4-1-1 Integer and Floating-Point types 

bit   * 
unsignedByte 1 byte 
short  2 byte 
int   4 byte 
long   8 byte 
float   4 byte 
double   8 byte 

floatComplex  8 byte 
doubleComplex  16 byte 
 

A-4-1-2 Literal expression 
<digits> 
<digits>.[<digits>][e[+-]<digits>] 
[<digits>].<digits>[e[+-]<digits>] 
<digits>e[+-]<digits> 

where <digits> is one or more decimal digits (0 through 9). 

e.g.  42,  3.5,  4.,  .001,  5e2,  1.925e-3 
 

A-4-1-3 Functions, operators, and predicates for numeric value expression 

• comparison operator: comparison must be made between numeric data types. 
< 
> 
<= 
>= 
= 
<> or != 

• BETWEEN predicate 
a BETWEEN x AND y ( is equivalent to a>=x AND a <=y ) 
a NOT BETWEEN x AND y ( is equivalent to a<x OR a>y ) 

• IN predicate 
A IN (n1, n2, …) 
A NOT IN (n1, n2, …) 

• NULL comparison predicate 
a IS NULL 
a IS NOT NULL 

• mathematical operator 
+  addition 
-  subtraction 
* multiplication 



Astronomical Data Query Language 

2005-06-20 17:28:00  Page 15 of 20 15  

/  division 
%  modulo 
^  exponentiatio 

• mathematic function 
abs(x) 
exp(x) 
ln(x) 
log(x) 
pi() 
sqrt(x) 
acos(x) 
asin(x) 
atan(x) 
atan2(x, y) 
cos(x) 
cot(x) 
sin(x) 
tan(x) 

• general function 
distance(coord1a, coord2a, coord1b, coord2b, ‘frame’) 
 

A-4-1-4 Specification number 

QL-NT-C01 [Core] A SkyNode must support unsignedByte, short, int, long, float and 
double data types, and related operators, predicates and functions that conform Core 
specification. 

QL-NT-C02 [Core] A SkyNode must support numeric comparison operator “<”, “>”, 
“<=”, “>=”, “=”, “<>” and “!=”. 

QL-NT-C03 [Core] A SkyNode must support BETWEEN and NOT BETWEEN 
predicate for numeric data types. 

QL-NT-C03 [Core] A SkyNode must support IN and NOT IN predicate for numeric 
data types. 

QL-NT-C04 [Core] A SkyNode must support mathematical operators “+”, “-“, “*” and  
“/”. 

QL-NT-E01 [Ext] A Skynode may support null comparison predicate. 

QL-NT-E02 [Ext] A Skynode may support mathematical operator “%” and “^”. 
QL-NT-E03 [Ext] A SkyNode may support all of the mathematical functions.  

QL-NT-E04 [Ext] A SkyNode may support any functions.  

A-4-1-5 XML representation 

A-4-2 Character type 
A-4-1-1 character types 

char    1 byte 



Astronomical Data Query Language 

2005-06-20 17:28:00  Page 16 of 20 16  

char[n]   n byte  string 
char*    string with variable unlimited length 
unicodeChar  2 byte 

 
A-4-1-2 Literal expression 
'{ non_single_quate_character | doubled_single_quates }…' 
 

A single quote can be specified in a string constant by writing two adjacent single 
quotes, 
 

A-4-1-3 Functions, operators, and predicates for a character array data type 

• comparison operator: comparison must be made on character data types 
< 
> 
<= 
>= 
= 
<> or != 

• string connection operator 
||    connection of string 

• BETWEEN predicate 
• IN predicate 

• LIKE predicate: 
“_” matches to one character, “%” matches to an arbitrary number of characters. 

S like ‘APP_E’ 

S like ‘GRB%’ 

• NULL predicate 
• string function 

substring() 
length() 
lower() 
upper() 

 
A-4-1-4 Specification number 

QL-CT-C01 [Core] A SkyNode must support char type and an array type of character. 

QL-CT-C02 [Core] A SkyNode must support string comparison operators “=”, “<>” 
and “!=”. 

QL-CT-E01 [Ext] A SkyNode may support string comparison operators “<”, “>”, “<=”, 
“>=”. 

QL-CT-E02 [Ext] A SkyNode may support string connection operators “||” 



Astronomical Data Query Language 

2005-06-20 17:28:00  Page 17 of 20 17  

QL-CT-E03 [Ext] A SkyNode may support string BETWEEN predicate. 

QL-CT-E04 [Ext] A SkyNode may support string IN predicate. 

QL-CT-E05 [Ext] A SkyNode may support LIKE predicate. 

QL-CT-E06 [Ext] A SkyNode may support string NULL comparison predicate. 

QL-CT-E07 [Ext] A SkyNode may support string function, substring(), length(), 
lower() and upprt() 

A-4-1-4 XML representation 

A-4-3 Date/Time type 
A-4-1-1 data types 

Low Value  High Value  Resolution 
Timestamp  TBD   TBD   <1s 
date    TBD   TBD   1 day 
time    00:00:00.00  23:59:59.999 <1s 

 datetime interval TBD  TBD  <1s 
A-4-1-2 Literal expression 

[timestamp|date|time|datetime interval] 'expression' 

 
standard expressions: 
'2005-10-24'  ISO 8601 
'20051024'  ISO 8601 
'10:20:08.25'  ISO 8601 
'10:20:08'  ISO 8601 
'10:20'   ISO 8601 
'102008'   ISO 8601 
'2005-10-20 04:30:21+9' 
'1 day 12 hours 59 min 10 sec' 
 

extended expression 
'2005-Oct-24' 
'Oct-24-2005' 
'24-Oct-2005' 
'October 24, 2005' 
'2005.100' year and day of year 
'J2451187' Julian day 

 
A-4-1-3 Functions, operators, and predicates 

• comparison operator: comparison must be made on same data types. 
< 
> 
<= 
>= 
= 
<> or != 



Astronomical Data Query Language 

2005-06-20 17:28:00  Page 18 of 20 18  

• BETWEEN predicate 
• IN predicate 

• NULL predicate 
• mathematical operator 

+  addition       add datetime interval to date, time, or time stamp 
-  subtraction   subtract datetime interval from date, time, or time stamp 
 

A-4-1-4 Specification number 

QL-DT-C01 [Core] A SkyNode must support date/time data types. 

QL-DT-C01 [Core] A SkyNode must support date/time standard expression 

QL-DT-C01 [Core] A SkyNode must support date/time comparison operator “<”, “>” 
“<=”, “>=”, “=”, “<>” and “!=”. 

QL-DT-C01 [Core] A SkyNode must support date/time BETWEEN predicate. 

QL-DT-C01 [Core] A SkyNode must support date/time IN predicate. 

QL-DT-E01 [Ext] A SkyNode may support date/time extended expression. 

QL-DT-E02 [Ext] A SkyNode may support date/time NULL predicate. 

QL-DT-E03 [Ext] A SkyNode may support date/time mathematical operatior “+” 
and “-“. 

A-4-1-5 XML representation 

A-4-5 Boolean type 
A-4-1-1 data type 

Boolean    1 byte 

A-4-1-1 Literal expression 

Standard expressions: 
TRUE 
FALSE 

Extended expressions: 
't', 'true', 'y' , 'yes' , '1' 
'f' 'false', 'n', 'no', '0' 

 
A-4-1-2 Functions, operators, and predicates 

• Logical operators 

AND 
OR 
NOT 

• Boolean value functions 



Astronomical Data Query Language 

2005-06-20 17:28:00  Page 19 of 20 19  

Region() 
Xmatch_chi2() 
Xmatch_distance() 

• Boolean value predicates 

Comparison predicate 
BETWEEN predicate 

IN predicate 
LIKE predicate 

NULL predicate 
A-4-1-3 Specification number 

QL-BT-C01 [Core] A SkyNode must support Boolean data type and standard Boolean 
expression. 

QL-BT-C02 [Core] A SkyNode must support logical operators “AND”, “OR” and 
“NOT”. 

QL-BT-E01 [Ext] A SkyNode may support boolean extended expression. 

A-4-1-3 XML representation 

A-4-6 Array type of numeric type 
A-4-1-1 data type 

Int[n] 

Double[n] 

… 

A-4-1-1 Literal expression 

A-4-1-2 Functions, operators, and predicates 

A-4-1-3 Specification number 

A-4-1-4 XML representation 

A-4-7 Space coordinate type 
A-4-1-1 Data type 

point 

circle 

box 

A-4-1-1 Literal expression 

Space ‘Position [frame] coord1 coord2’  

Space ‘Circle [frame] coord1 coord2 radius [unit]’ 

Space ‘Box [frame] coord1 coord2 size1 [unit] size2 
[unit]’ 



Astronomical Data Query Language 

2005-06-20 17:28:00  Page 20 of 20 20  

• Frame is one of {ICRS, FK5, FK4, J2000, B1950, ECLIPTIC, GALACTIC} 
• frame may be omitted if it is compared with a space value expression where 

frame is defined. 
• coord1 and coord2 is spherical coordinate anlges (Ra,dec) or (long, lat) in degree 

or sexagecimal. 
• Standard sexagecimal expreesion is: 

hh:mm[:ss.ms]  {+|-}dd[:mm:ss.ms] 

• Unit is a unit of region size and one of { deg | arcmin | arcsec }. 
A-4-1-2 Functions, operators, and predicates 

• Operators 
Within  e.g. point within region 
Covers  e.g. region1 covers region2 
Overlaps  e.g. region1 overlaps region2 

• Space coordinate value function & function of space coordinate values. 
Point(coord1, coord2 [, frame]) 
Circle(point, radius [unit]) 
Box(center, size1 [unit], size2 [unit]) 
Region(‘space coordinate value expression’) 
Distance(p1, p2) 

A-4-1-3 Specification number 

QL-SC-E01 [Ext] A SkyNode may support Space coordinate data type. 

QL-SC-E01 [Ext] A SkyNode may support Space coordinate operator within, covers, 
and overlaps. 

A-4-1-4 XML representation 


