
VO-DML 1.1 Candidate
Extensions
Paul Harrison (JBO)
IVOA Interop Autumn 2024

Introduction
VO-DML Tooling update introduced in previous Interop talks now quite
mature.

Refined by the needs of ProposalDM, the generated code for which
is used as the serialisation basis for Polaris, a proposal submission
toolkit (In fact the ProposalDM is the internal data model of Polaris).
Has already introduced some extensions to VO-DML that have not
yet been included in the standard document.

This talk
Updates on the VO-DML tooling (since last Interop)
Suggestions for VO-DML 1.1 WD - invitation for comment
Thoughts on the using VO-DML in the P3T process.

2

https://github.com/ivoa/vo-dml/
https://wiki.ivoa.net/twiki/bin/view/IVOA/InterOpNov2021DM
https://github.com/ivoa/ProposalDM
https://github.com/orppst

VO-DML Tooling
Tools to create models and derive “products” from them

Based on VO-URP by Lemson and Bourgès
most of the business logic is in XSLT 3.0 (using functions)

packaged as a gradle plugin
If you don’t like writing models in XML then there is VOSDL
- 10 years old!

language agnostic
much more ‘human-readable’

Products
XML & JSON schema
Various forms of documentation
Java and Python code to instantiate models and be an
ORM for RDBs

3

https://ivoa.github.io/vo-dml/

ProposalDM: 451 lines VODSL ⇒ 2158 lines VO-DML

https://wiki.ivoa.net/twiki/bin/view/IVOA/InterOpMay2014DM

VO-DML Tooling Updates
Updates since a last Interop, v0.5.1 when last reported -
now v0.5.10

Added support for validation against IVOA vocabularies
(Semantic Concept in VO-DML)
Added support (in Java generated code) for serialising
attributes with multiplicity > 1 of primitive types as colon
separated string database column
Improved generated model documentation
Improved contained references support in Java.

4

https://github.com/ivoa/vo-dml/blob/master/tools/ChangeLog.md

Model Site Documentation

individual pages for
each model
element

neighbourhood
diagram

uses mkdocs

5

e.g. ProposalDM

https://squidfunk.github.io/mkdocs-material/
https://ivoa.github.io/ProposalDM/

VO-DML 1.1 WD
Backwards compatible extensions (as required)

already tested in the deployed tools gradle plugin

Managed via GitHub milestones with PR for each feature

Main update for 1.1 on the 20-update-vo-dml-standard-
document branch

Original 1.0 REC was written in Word - the 1.1 WD is in
markdown (via an automated conversion with pandoc)

might even produce yet another publishing option via
pandoc

6

https://github.com/ivoa/vo-dml/milestones
https://github.com/ivoa/vo-dml/tree/20-update-vo-dml-standard-document/doc/std
https://github.com/ivoa/vo-dml/tree/20-update-vo-dml-standard-document/doc/std
https://github.com/ivoa/vo-dml/blob/20-update-vo-dml-standard-document/doc/std/VO-DML.md
https://pandoc.org

VODML-ID syntax made normative
In the VO-DML meta-model XML schema VODML-ID is simply a string, rather
than an ID/IDREF structure, so having arbitrary form would be potentially
problematic as there would be no validation via the schema - although the
standard says that they should be unique.

Data models that were created via the original tooling have the (proposed)
normative form anyway as the UML to VO-DML conversion generated such
elements.

Originally the textual syntax of the VODML-ID for each model element was only
specified in an appendix - moved to main body to become normative

essentially the VODML-ID is derived from the location in the model

Tooling now checks that VODML-ID is correct via a schematron rule, however
tooling never “reads” that element value - it always “calculates” it, so the
element could be removed from VO-DML schema entirely.

7

https://github.com/ivoa/vo-dml/pull/46

VO-DML extension - Natural Keys
Object Relational Mapping uses surrogate keys widely -
however, in the model it is sometimes better to use a
“natural key” i.e. an existing attribute - often the case for the
target of “references”.

8

 <xsd:complexType name="NaturalKey">
 <xsd:annotation>
 <xsd:documentation>
 This constraint is used to indicate that an attribute is a natural key for its owning ObjectType, meaning that the
 attribute value should be globally unique. This may be applied multiple times to indicate that only a composition
 of several attributes make the globally unique key.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexContent>
 <xsd:extension base="Constraint">
 <xsd:sequence>
 <xsd:element name="Position" type="xsd:positiveInteger">
 <xsd:annotation>
 <xsd:documentation>In the case where multiple attribute values make up the natural key, this
 value indicates the ordinal number of this particular key in the compound key.</xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

VO-DML Metamodel XML Schema
updates

Aforementioned natural key extension

make <name> and <documentationURL> optional (and deprecated) in
the <import> as they merely repeat information that is in the imported
document

replace grouping of Attributes, Composition and References with
xsd:choice so the the definitions can be in a “natural order”

the suggestions above have already happened on the main branch -
non-breaking - following the XML schema versioning endorsed note.

Should VO-DML 1.1 metamodel have its own namespace? or an
attribute to mark that it is the 1.1 version.

9

https://github.com/ivoa/vo-dml/issues/44
http://www.apple.com/uk

Serialisation
Appendix B in the 1.0 document describes how the model might be serialised

Current tooling attempts to produce a standard serialisation for XML and JSON
based on the UML above so that a single model instance serialisation will
contain both the content and references

references that are not otherwise “contained” (see later) are emitted in the
references section

tooling creates both XML and JSON schema which can be used to validate
model instances.

Proposal is to rewrite Appendix B to make clear that new serialisation is intended for
interoperability, and thus “standard”.

Note that this form of serialisation is more suitable for writing REST web service
interfaces for the models than MIVOT - however, MIVOT has other use cases and is
thus complementary and not a “competitor”.

10

Model

ReferencesContent

Serialization 2 - Example Model

https://ivoa.github.io/vo-dml/Serialization/

note that tooling includes automated round-trip serialisation unit tests against
generated schema.

11

Refa

+val : ivoa:string

Refb

+name : ivoa:string
+val : ivoa:string

BaseC

+bname : ivoa:string

Dcont

+dval : ivoa:string

Econt

+evalue : ivoa:string

SomeContent

+zval : ivoa:string
con1..*

ref1
1

ref2

1

https://ivoa.github.io/vo-dml/Serialization/

XML vs JSON

Serialization 3 - Comparison

12

XML vs JSON

Serialization 3 - Comparison

12

XML vs JSON

Serialization 3 - Comparison

12

Generated Key

“natural” Key

references to above

XML vs JSON

Serialization 3 - Comparison

12

Generated Key

“natural” Key

typing

references to above

XML vs JSON

Serialization 3 - Comparison

12

Generated Key

“natural” Key

typing

references to above

needs conventions for JSON

Reference Lifecycle/Containment
Original tooling/std
assumed that
references
“freestanding” - i.e.
lifecycles independent
of any particular
model instance

In latest tooling
references can be
“contained” i.e.
referenced element
can exist as a
composition within
some parent.

13

ReferredTo

+test1 : ivoa:integer

ReferredLifeCycle

+test3 : ivoa:string

Contained

+test2 : ivoa:string
ATestATest2

ATest3

contained

1..*

refandcontained

1..*

ref1
1

atest 1

refagg
1

refcont 1

contained
1..*

refBad

1

freestanding reference

Contained reference

Reference Lifecycle/Containment 2

tooling will
generate Java
code that will
deal properly with
contained
references

schematron rules
warn of
“dangerous”
contained
reference use

14

failed-assert /Q{http://www.ivoa.net/xml/VODML/v1}model[1]/Q{}
objectType[6]/Q{}reference[1]

Reference lifecycleTest:ReferredLifeCycle used in
ATest3.refBad is already use in unrelated composition ATest
which has lifecycle implications (i.e. the reference could
disappear unless code is aware of relationship)

ReferredTo

+test1 : ivoa:integer

ReferredLifeCycle

+test3 : ivoa:string

Contained

+test2 : ivoa:string
ATestATest2

ATest3

contained

1..*

refandcontained

1..*

ref1
1

atest 1

refagg
1

refcont 1

contained
1..*

refBad

1in
containment
hierarchy

OK bad - not automatically handled

https://github.com/ivoa/vo-dml/blob/master/tools/gradletooling/sample/src/test/java/org/ivoa/dm/lifecycle/LifeCycleDetailedTest.java
https://github.com/ivoa/vo-dml/blob/master/tools/gradletooling/sample/src/test/java/org/ivoa/dm/lifecycle/LifeCycleDetailedTest.java

Reference Lifecycle/Containment 3
Schematron
complains with
“unique
composition
rule”

however, this is
just a warning

Wording in
Standard
probably OK

15

ReferredTo

+test1 : ivoa:integer

ReferredLifeCycle

+test3 : ivoa:string

Contained

+test2 : ivoa:string
ATestATest2

ATest3

contained

1..*

refandcontained

1..*

ref1
1

atest 1

refagg
1

refcont 1

contained
1..*

refBad

1

failed-assert /Q{http://www.ivoa.net/xml/VODML/v1}
model[1]/Q{}objectType[6]/Q{}composition[1]/Q{}
datatype[1]/Q{}vodml-ref[1]

objecttype lifecycleTest:Contained is used more than
once, as target of composition relation. In this case for
containing objectType lifecycleTest:ATest3

 ** (this message will repeat itself 2 times!,
once for each different container) **

ok if lifecycle managed -
relatively easy

IVOA Base Model Additions
This is being done on the base_update branch

Following on from the serialisation and reference containment discussions
it is useful to be able to mark in a model where the intention is to point to
an external entity (which cannot be done with references as they are
internal)

primitive intIdentifier -> integer "an integer identifier that can be used as a key for lookup of an entity that is
outside this datamodel"
primitive stringIdentifier -> string "a string identifier that can be used as a key for lookup of an entity that is
outside this datamodel"
primitive ivorn -> anyURI "an identifier that can be used as a key to look up in an IVOA registry - see https://
www.ivoa.net/documents/IVOAIdentifiers/"

also add?
a Period (cf DateTime) - reasonably obvious
Shape - still needs clarification

Base model, so perhaps have to be conservative….

16

https://github.com/ivoa/vo-dml/blob/base_update/models/ivoa/model/IVOA-v1.0.vodsl

VO-DML 1.2 and beyond

Lots of potential ideas/improvements, but have left them out
of 1.1 in the hope of speeding up approval of this document.

specifying UCDs
could then automatically create TAP schema/services

concept of Choice/OneOf
some specific simple constraints

e.g greaterThan

17

https://github.com/ivoa/vo-dml/milestones

VO-DML 1.2 and beyond

Lots of potential ideas/improvements, but have left them out
of 1.1 in the hope of speeding up approval of this document.

specifying UCDs
could then automatically create TAP schema/services

concept of Choice/OneOf
some specific simple constraints

e.g greaterThan

17

should bump to 1.1 - only functional
reason why ruben felis need exist

https://github.com/ivoa/vo-dml/milestones
https://felis.lsst.io/user-guide/index.html

Distribution/Publishing models
It would be nice to be able to publish the generated code libraries

difficulty with using Maven Central, PyPI etc. is authentication in
CI
Could use GitHub Packages

there do seem to be some quirks/limited functionality
No Python….

Could run a Sonatype Nexus repository server on IVOA web site
could put credentials into GitHub secret for CI publishing

Also publish the “site-style” documentation
more than just a single file.

18

https://www.sonatype.com/products/sonatype-nexus-oss-download

Importance of VO-DML
Provides rigour in the DM design

Created around 10 years ago as a response to approximately 10 years of trying
to create interoperable data models without a machine-readable expression of
the data model.
Allows real re-use (not just “my diagram looks like your diagram”)

Machine readable single source of truth
Makes factoring out common parts possible

Provides a framework for validating instances.
serializations in different format need conventions to be interoperable.

Can be used to generate the “schema” part of OpenAPI in a uniform way
The exact form of the generated serialization code is fixed cf. if you use a 3rd
party OpenAPI generator.
help deal with the vagaries of the $ref rules modularity

19

