ADQL - PEG grammar

Progress status

IVOA Interoperability Meeting
16 Nov. 2024 - Malta

Grégory Mantelet

‘ Remembgr!

[}

e S

== Hm.ﬂ

-ify ADQL

ErTr——

What is ADQL?

Poster P919

ADQL stonds for Astronomical Data Query
Language.

This language is defined by the IVOA. It is a fork of
SQL-92 in which astronomical functions and
operators have been added.

2

& IVOA's ADQL Recommendation

hitps:/hwwwvoa netidocuments/ADOL!

Y Grégory Mantele coS)

Markus Demeitner (GAVO),
P o Campito (a0l

& '@ O g

Flure :AD0L ey g e sy n St TAP e

ADASS XXXIII in Tucson
Novembre 2023

G. Mantelet, M. Demleitner, J.
Juaristi Campillo

Interesting
How is this language described?

ownsson [Sovooi i

> Backus Naur Form or

and Peter Naur 1960

ADQL, os mony longuages, is described by o
grammar. Since Version 2, the IVOA provides the
ADQGL grammar using the BNF notation.

However, this notation has some limitations. We'd
like to try using o PEG one instead|

Con you help?

FG)
> ulipe variants of BNF:

EBNF ABNF, P
Excaptomeahr o DL
Why changing?

= ADL's BNF is not a machine readsble variantof BNF.

fon (6.9 s a space nesded?)

23 = number wih typo, or SELECT 23

- Abilty o sl with smblguities of naturallanguages.
~ makes the grammar unnecessarly more complicated
fora maching oiened nguage

Y
W

ElRAE

4]

Of course.
PEG stands for Parsing Expression Grammar. It is
introduced by Bryan Ford in 2004.
“Parsing Expression Grammars: A
Recognition-Based Syntactic Foundlion”

Ford, 2004, doi:10. 1145964001 964011

Draft ADQL-2.1 PEG

L

7 Priritzed chaice:
e choice betwsen
2

Features

As opposed to BNF, it is a notation entirely dedicated
to machine-oriented languages. It is not designed to
be able to deal with ambiguaus expressions of natural
languages like CFG and BNF do.

)

Parsers Gensrators A problem.

matching ane in gramar

+ Reguar expression siyle
e, 1.,

Next steps

s a ot of parsers in muliple programming
ianguages. Soma are outdated tough.

implemantaton {0 anoter.

Examples: e
Vil 2 vaiato s
ot 3t parsars w sar o ok Rl sagarlr, < in Ford PES, < 7 07 =10 | Tt akinion qus colacedin
s voahoneta
4 Moo o) Ganments: 1 i Arpeggio and Ford PEG, /7% | s comvrtersfom hi grammar
7 e phon) TR i A rget prses
7 b ©)
Ve o PEG, -(acace) in Mosse
7 BEC Gmvasere P g
7 Canopy i, v, ython and Ruby) et Nt developments in

inAmega

A solution: i ihe ADGL PEG grammar folowing ihe

Ford PEG notstn and than wrie
languages.

fomone || -
Updae the PEG o ADQL2.1-REC.
eh remaning buge)

Mouse, snake.

- Gitub voatyoneta
S g+ vt BB
oot | G

Comerers o stdiadal
~ standars < inal grammar 3

https://adass2023.lpl.arizona.edu/events/poster-p919

The goal is to validate th _ADQL grammar

In v2.0 and v2.1, the ADQL grammar is defined
using a BNF.

This BNF is actually not machine readable and
cannot be used to validate the grammar.

The idea is to use instead a PEG grammair,
which is a kind of grammar well adapted to
describe programmatic languages like SQL and
so AQL,.

Then, by running the PEG grammar against all
test queries of the lyonetia repository, we can
validate our language independently from
existing ADQL parsers/implementations (e.g.
DACHS, CADC’s ADQL parser,

https://github.com/ivoa/lyonetia/tree/master/src/adql/ivoa
https://github.com/ivoa/lyonetia/tree/master/src/adql/ivoa
https://github.com/ivoa/lyonetia/tree/master/src/adql/ivoa

e VOLLT/ADQL-Lib).

Arpeggio

pedl/leg

Peggy

Canopy

éDd «

'We need conversions.fog.ei(isting PEG flavors

Mouse

Arpeggio

peg/leg

Peggy

Canopy

L3 Makefile

There are many existing parser generators based on PEG.

Here are the one that we have already explored:

Mouse (Java ; quite outdated now)
Arpeggio (Python)
pea/leg (C)
Peggy (Javascript)
Canopy (Java, Python, C and Ruby)

Unfortunately, each tool uses its own variant of the PEG

syntax.

These variations are actually quite minor. That's why we

propose to write a script (currently a Makefile using the sed
command) to convert our ADQL grammar expressed with the
original Ford’s PEG syntax into a PEG grammar following the

syntax of the target tool.

To start the developments, | choose to focus first on Canopy

for the Java language.

https://mousepeg.sourceforge.net/
https://pypi.org/project/Arpeggio/
https://www.piumarta.com/software/peg/
https://peggyjs.org/index.html
https://canopy.jcoglan.com/
https://mousepeg.sourceforge.net/
https://pypi.org/project/Arpeggio/
https://www.piumarta.com/software/peg/
https://peggyjs.org/index.html
https://canopy.jcoglan.com/
https://bford.info/pub/lang/peg.pdf

Why Canopy? Because if we succeed to make the
conversion right, we will already be able to generate a
parser for 4 different programmatic languages.

Why Java? Because it is the language | know the best
and that | can start to see how to adapt my Java parser
(VOLLT/ADQL-Lib) with the ADQL’'s PEG grammar.

Do you need to deal with
ADQL queries in other
languages or with other
tools?

éD)

Do you need another language/parser generator to be
tested too?
o Ifyes, don’t hesitate to tell me so that we can
integrate it to the test cases.

Build the PEG.grammar_,s_nippet,by shippet

Aa Typography Fix issues 3= Put all together V Run all tests

1. Take the draft PEG e left recursion in: Put all snippets into the Validate all test queries
grammar o column names final ADQL grammar. of lyonetia with this PEG
2. Fix typography o table names grammar generated for
(e.g. CamelCase, o schemanames Canopy+Java.
recipes alignment, ...) o math expressions

o identifiers != reserved

Use the draft PEG grammar on lyonetia from
Jon Juaristi Campilio

Fix the format/typography to match the original
Ford format

Check and adapt snippets each at a time to
solve specific issues (e.g. left recursion for
identifiers and expressions, identifier not equal
to a reserved keyword)

Put all of them together

Run test queries with the final grammar

https://github.com/ivoa/lyonetia/blob/master/src/peg/adql2.1.peg
https://github.com/ivoa/lyonetia/blob/master/src/peg/adql2.1.peg
https://github.com/ivoa/lyonetia/tree/master/src/adql/ivoa
https://github.com/ivoa/lyonetia/tree/master/src/adql/ivoa

aRswN

“Next: getting closer.to AD

1. Review and fix PEG grammar

2. Generate Java parser with Canopy

3. Validate tests queries

4. Publish grammar + Makefile on GitHub

5. Support other parser generators

Finish reviewing and fixing (when necessary)
the PEG grammar

Generate parser with Canopy+Java

Validate all existing tests queries

Share this grammar and the Makefile on GitHub
Update the makefile to support all the other
parser generators

