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‘The goal is to validate the ADQL
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https://github.com/ivoa/lyonetia/tree/master/src/adql/ivoa
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https://mousepeg.sourceforge.net/
https://pypi.org/project/Arpeggio/
https://www.piumarta.com/software/peg/
https://peggyjs.org/index.html
https://canopy.jcoglan.com/

Do you need to deal with
ADQL queries in other
languages or with other

tools?



'Build the PEG.grammar snippet,by slnippet ‘

Aa Typography

1. Take the draft PEG

grammar
2. Fix typography

(e.g. CamelCase,

recipes alignment, ...)
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Fix issues

e |eft recursion in:

o column names

o table names

o schema names

o math expressions
e identifiers != reserved
° ..

3= Put all together

Put all snippets into the
final ADQL grammar.
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v/ Run all tests

Validate all test queries
of lyonetia with this PEG
grammar generated for
Canopy+Java.



https://github.com/ivoa/lyonetia/blob/master/src/peg/adql2.1.peg
https://github.com/ivoa/lyonetia/blob/master/src/peg/adql2.1.peg
https://github.com/ivoa/lyonetia/tree/master/src/adql/ivoa
https://github.com/ivoa/lyonetia/tree/master/src/adql/ivoa

‘Next: getting closer.to ADQL-2.2

Review and fix PEG grammar
Generate Java parser with Canopy
Validate tests queries

Publish grammar + Makefile on GitHub

Support other parser generators






