ADQL - PEG grammar

Progress status

IVOA Interoperability Meeting
16 Nov. 2024 - Malta

Grégory Mantelet

e

SELECT CAST(grammar AS peg) FROM adgl

, ’ N M e
“Remember! .. r=g-ify ADQL

:

ADQL stonds for Astronomical Data Query T e ot 10 H
main_i ain <
Language. otypé AS “object 3
. . . para, padec 3
This language is defined by the IVOA. It is a fork of ',ﬁ?:("éggw: :Dm B o =
> : : ; ' RA, DEC),]
SQL-92 in which astronomical functions and (CTReLE(18S90, 5. 1)) = 1
operators have been added SRS BT !
Poste r P 9 1 9 Figure 1: ADQL query nring a cone search query on SimbadsTAPserdcs| S
a G : 8
5 IVOA's ADQL Recommendation g
https://www.ivoa.net/documents/ADQL/ 2
B3%E
" ot jadnitni
ADASS XXXIIl in Tucson] interesting | A =
QY How is this language described? Backus Normal Form SeLECT
& - Created by John Backus | Sacpamti el
[(and Peter Naur in 1960 <select_list>
A -> Context Free Grammar
(CFG) aaroiniy
N b 2023 ADQL, as many languages, is described by a = !;ﬁ?'ié?fé’"‘s of BNF: | sestiisiaies; |
Ovel n re grammar. Since Version 2.0, the IVOA provides the B e R Al
ADQL grammar using the BNF notation.
X i e i 0 Why changing?
However, this notation has some limitations. We'd

like to try using o PEG one instead - ADQL’s BNF is not a machine readable variant of BNF
y 9 . - no parser is able to read/validate it

G. Mantelet, M. Demleitner, J. Con you helo? ik sesraeseskonsamn)

as a
. - . - Ability to deal with of natural
Juaristi Campillo
for a machine-oriented language
Of course. Draft ADQL-2.1 PEG
. : : bt hub, 1
PEG stands for Parsing Expression Grammar. It is By e
I introduced by Bryan Ford in 2004.
) - : O Features -
; EligiE “Parsing Expression Grammars: A { __ set_quantifier)?
i & Recognition-Based Syntactic Foundation” / Prioritized choice: -l
Bryan Ford, 2004, doi:10.1145/964001.964011 no more choice between - table_expression
h -//bford.infc /lana/t g two possible rules: the 1% lﬂ“i:;;*g;::zi"" Cio
—— . . / matching one in grammar (. where_clause)?
As opposed to BNF, it is a notation entirely dedicated order always applies. (= grou-by-clausa)?
[= g . z R e _ order_by_clause)?
to machine-oriented languages. It is not designed to o C°t""b'"°|d'9k°"'53't'°" (2 offset_clause)?
be able to deal with ambiguous expressions of natural SNE RER TG0 oM SR Figure 3:
£ v Regular expression style Excerpt of the draft PEG for
languages like CFG and BNF do. with *, +,2, ...
0 Parsers Generators 0 A problem... Next steps
Bryan Ford’s Packrat package (httpsy/bford infolpackrat/) The syntax accepted by PEG parsers often differs from one Choose a PEG syntax
lists a lot of parsers in multiple pr i i ion to another. o Update the PEG to ADQL 2.1-REC
languages. Some are outdated though. Examples: (and squash remaining bugs)
- Rule separator: <~ in Ford PEG, <- ; or =in Wiie aivelidatoribased onBES

Here are the parsers we started to look at: Test all validation queries collected in

LipegdioysinMollse GitHub ivoallyonetia

- Comments: # in Arpeggio and Ford PEG, // or

v Mouse (Java) ST Molise Write converters from this grammar
v Arp7ggioc(f’ython) - Noﬁ:ﬁa(chim syn&ax‘ r' [*a-zA-Z] in Arpeggio, foisomeitarget parsors
v peglleg (! = = % X 5
v PEG]s (Javascript) ;E::::g i:'np:;/lrggPEG‘ [a-zA-Z] in Mouse,
7@ Canopyi(UavarlavasciiptiBylton and Ruby) - Identifier syntax: camelCase in Mouse, snake_case Next developments in
A o =
o ey - GitHub ivoal/lyonetia g’%
p A solution: write the ADQL PEG grammar following the - PEG grammar + validator &
¢ Ford PEG notation and then write converters to target - GitHub ivoa-std/adql -

o e — languages. - standard +final grammar

https://adass2023.lpl.arizona.edu/events/poster-p919

‘The goal is to validate the ADQL

L

QuerySpecification <- WithClause? _
QueryExpression _ EOF

QueryExpression <- SelectQuery
(_ set_operator
_ set_query_expression)%

~

/

grammar

v
%

<
(’ All tests queries from the lyonetia repository
S

4

¢$¥?€T7 i

https://github.com/ivoa/lyonetia/tree/master/src/adql/ivoa

..

éod« »

'We need ¢onversions for eX|st|ng PEG flavors

/
-

Arpeggio

/
-

peg/leg

/
-

Peggy

/
-

Canopy

-

| A

'0' Makefile

https://mousepeg.sourceforge.net/
https://pypi.org/project/Arpeggio/
https://www.piumarta.com/software/peg/
https://peggyjs.org/index.html
https://canopy.jcoglan.com/

Do you need to deal with
ADQL queries in other
languages or with other

tools?

'Build the PEG.grammar snippet,by slnippet ‘

Aa Typography

1. Take the draft PEG

grammar
2. Fix typography

(e.g. CamelCase,

recipes alignment, ...)

épd« >

Fix issues

e |eft recursion in:

o column names

o table names

o schema names

o math expressions
e identifiers != reserved
° ..

3= Put all together

Put all snippets into the
final ADQL grammar.

Tk W

v/ Run all tests

Validate all test queries
of lyonetia with this PEG
grammar generated for
Canopy+Java.

https://github.com/ivoa/lyonetia/blob/master/src/peg/adql2.1.peg
https://github.com/ivoa/lyonetia/blob/master/src/peg/adql2.1.peg
https://github.com/ivoa/lyonetia/tree/master/src/adql/ivoa
https://github.com/ivoa/lyonetia/tree/master/src/adql/ivoa

‘Next: getting closer.to ADQL-2.2

Review and fix PEG grammar
Generate Java parser with Canopy
Validate tests queries

Publish grammar + Makefile on GitHub

Support other parser generators

