
November 21, 2024N
A
V
O

NA
SA

 A
str

on
om

ica
l V

irtu
al

Ob
se

rva
tor

ies
HE

AS
AR

C
 •

 IR
SA

NE
D

 •
 M

AS
T

1

Tess Jaffe

NASA GSFC

Project Scientist

N
A
V
O

NA
SA

 A
str

on
om

ica
l V

irtu
al

Ob
se

rva
tor

ies
HE

AS
AR

C
 •

 IR
SA

NE
D

 •
 M

AS
T

1

NAVO ideas for offering multiple product
retrieval options using DataLink

Tess Jaffe, Anastasia Laity, et al.
(NAVOnians and other collaborators)

November 21, 2024N
A
V
O

NA
SA

 A
str

on
om

ica
l V

irtu
al

Ob
se

rva
tor

ies
HE

AS
AR

C
 •

 IR
SA

NE
D

 •
 M

AS
T

2

Zero’th order requirements:
● Do not break anything.

○ It’s invisible if you don’t want to pay attention to it, and existing systems don’t need to change.

● Follow best-practices described for ObsTAP and DataLink implementations.

○ ObsTAP access_url columns should be DataLink service calls that allow you to link other products the user
might be interested in to the selected row, or do other magic behind the scenes.

○ Two dimensions of information about a single row in an ObsCore table can be specified in the corresponding
DataLink result table already: the semantics that distinguish the data product from things related to the data
product; the content_type that distinguish products that are the same data product in a different format.

● Don’t add extra columns unless necessary.

○ But it might be necessary.

● Note: there’s a complex history✳ of how to make the same dataset available through different capabilities, or how to
define mirror services. We don’t claim to have understood all of this. And this use case isn’t quite the same.

 ✳ https://www.ivoa.net/documents/caproles/20190315/NOTE-caproles-1.0-20190315.html

https://www.ivoa.net/documents/caproles/20190315/NOTE-caproles-1.0-20190315.html

November 21, 2024N
A
V
O

NA
SA

 A
str

on
om

ica
l V

irtu
al

Ob
se

rva
tor

ies
HE

AS
AR

C
 •

 IR
SA

NE
D

 •
 M

AS
T

3

Requirements from a new workflow:
The basic need is to make this workflow possible:

1. Client queries service and gets back an ObsTAP or SxA or DAP result table of matching products.

2. As recommended, the access_url is filled with a call to a datalink service (with parameters set by the service for
each row).

There are a couple of possibilities for what happens next, but the functional result is:

3. The client can see that there’s a default way to get the data and other options that can be requested or ignored.

4. The user/client chooses one of the offered retrieval locations, either by default or by intent, and sends the
corresponding request.

5. The client gets back the data via the selected option.

Why do we need this? We may be hosting data in different places, and the access may be more efficient via a non-default
option. The server cannot make this decision for the client, because the server cannot know the client’s entire context. So
the client needs to be able to look at the options and to select one.

November 21, 2024N
A
V
O

NA
SA

 A
str

on
om

ica
l V

irtu
al

Ob
se

rva
tor

ies
HE

AS
AR

C
 •

 IR
SA

NE
D

 •
 M

AS
T

4

Client example in Python (mocked)
> import pyvo, astropy
> mysia = pyvo.dal.SIAService('https://example.org/vo/SiaV2?')
> result = mysia.search(query_url, pos=pos, size=0.0)

Look at options
> print(pyvo.get_data_options(result[0]))

“prem”: On premises server [default]
“aws” : AWS S3 object store in us_east_1
“gcp” : Google object store

get on-prem data by default
> default_handle = pyvo.get_data_product(result[0])
> default_handle.download()

Get data from AWS option
> aws_handle = pyvo.get_data_product(result[0],origin=’aws’)
> hdus = astropy.io.fits.open(aws_handle)

...

● The coder then decides what to do with the pointer given, whether to download all of it or select
a subset of the bytes or whatever.

● This is just a simple illustration. Any of this can be coded differently depending on chosen
solution. And PyVO may or may not be the place for it, maybe astroquery.

November 21, 2024N
A
V
O

NA
SA

 A
str

on
om

ica
l V

irtu
al

Ob
se

rva
tor

ies
HE

AS
AR

C
 •

 IR
SA

NE
D

 •
 M

AS
T

5

Client example view in Firefly (mockup)
● User searches and finds

interesting products.

● User selects one or more of
them.

● The client shows the options
for retrieving them.

● The user selects an option or
takes the default.

● The client gets the address of
the product from the selected
origin.

★ Note 1: this only makes sense
if the user can use the GUI to
discover data and then take a
list of data addresses
elsewhere.

★ Note 2: the user’s selection
has nothing to do with what
the Firefly visualization
window on the right chooses
to do. The service knows
best which option it wants.

The service makes its
own choice here
behind the scenes.

November 21, 2024N
A
V
O

NA
SA

 A
str

on
om

ica
l V

irtu
al

Ob
se

rva
tor

ies
HE

AS
AR

C
 •

 IR
SA

NE
D

 •
 M

AS
T

6

Client example view in Firefly (mockup)
● User searches and finds

interesting products.

● User selects one or more of
them.

● The client shows the options
for retrieving them.

● The user selects an option or
takes the default.

● The client gets the address of
the product from the selected
origin.

★ Note 1: this only makes sense
if the user can use the GUI to
discover data and then take a
list of data addresses
elsewhere.

★ Note 2: the user’s selection
has nothing to do with what
the Firefly visualization
window on the right chooses
to do. The service knows
best which option it wants.

The service makes its
own choice here
behind the scenes.

How are the options
communicated?

November 21, 2024N
A
V
O

NA
SA

 A
str

on
om

ica
l V

irtu
al

Ob
se

rva
tor

ies
HE

AS
AR

C
 •

 IR
SA

NE
D

 •
 M

AS
T

7

Contents of existing metadata columns?
(DataLink result table)

This allows a client to return multiple rows for the identical dataset. The client makes a choice based on the
metadata in the columns such as:

○ description : meant to be human-readable, not a great option to ask a client to read it.

○ semantics : “#this-aws”? For describing related objects, not meant for how to get objects, so
maybe not?

○ local_semantics : same

○ content_type : the client expects to get the same thing back from all options, so no.

○ content_qualifier : same?

November 21, 2024N
A
V
O

NA
SA

 A
str

on
om

ica
l V

irtu
al

Ob
se

rva
tor

ies
HE

AS
AR

C
 •

 IR
SA

NE
D

 •
 M

AS
T

8

Semantics example would look like this:

 #this-aws
 #this-azure
 #this-google

https://cadc-space.s3.amazon.aws/fictional/key/to/mission/collection/level2/foobar.fits
https://cadc-space.azure.ms.com/fictional/key/to/mission/collection/level2/foobar.fits
https://cadc-space.cloud.google.com/fictional/key/to/mission/collection/level2/foobar.fits

 #thishttps://cadc-space.nrc-cnrc.gc.ca/fictional/key/to/mission/collection/level2/foobar.fits

● The ObsTAP result table has a datalink in the access_url .

● Firefly requests that and gets a DataLink table with four different options for the identical file.
● They are distinguished by their semantics .

Same ID Different URLs
Distinguished by

November 21, 2024N
A
V
O

NA
SA

 A
str

on
om

ica
l V

irtu
al

Ob
se

rva
tor

ies
HE

AS
AR

C
 •

 IR
SA

NE
D

 •
 M

AS
T

9

Other options

Alternative: service descriptors?

 #thishttps://cadc-space.nrc-cnrc.gc.ca/fictional/key/to/mission/collection/level2/foobar.fits

● The ObsTAP result table has a DataLink in the access_url . This is a default option. Not shown is that a client could also
be giving a service descriptor in the ObsTAP result that tells it retrieving any of these products have options.

● The user selects and gets a DataLink result table with only one #this and the access_url appropriate to the option they selected:

Default

One URL
matching
the option
requested

November 21, 2024N
A
V
O

NA
SA

 A
str

on
om

ica
l V

irtu
al

Ob
se

rva
tor

ies
HE

AS
AR

C
 •

 IR
SA

NE
D

 •
 M

AS
T

10

DataLink service descriptor options

DataLink service descriptors
This part of the standard is designed to enable this kind of thing.

○ Example: minimal spec of four options:

 <PARAM name="ORIGIN" datatype="char" arraysize="*" value="prem">
 <VALUES>
 <OPTION name="Archive on premises data repository" value="prem" />
 <OPTION name="Archive AWS Cloud data repository" value="aws" />
 <OPTION name="Archive Azure Cloud data repository" value="azure" />
 <OPTION name="Archive Google Cloud data repository" value="google" />
 </VALUES>
 </PARAM>

November 21, 2024N
A
V
O

NA
SA

 A
str

on
om

ica
l V

irtu
al

Ob
se

rva
tor

ies
HE

AS
AR

C
 •

 IR
SA

NE
D

 •
 M

AS
T

11

1. In the result table from the original ObsTAP or SxA call.
2. In the result table from calling the access_url (for one or more rows), which is a DataLink table.
3. In both.

Considerations:

● Pro for #1: a service descriptor can tell the client how to request all of them in a batch request.

● Con for #1: an result might have data in different rows served via different DataLink services, so
attaching a Service Descriptor that only has one base URL is problematic.

○ Possible work-around: DataLink result table has error_message telling the client to try one of
the other options for this row?

● Pro for #2: The client fetch each row as usual. This calls a DataLink service, which returns a table with
a default access_url associated with #this. Other options are offered in the Service Descriptor
that the client can offer or choose to ignore.

● Con for #2: If there is no cloud-options service descriptor in the ObsTAP result, the client/user has to
get a datalink result table for each row, look at the service descriptor there, and then send another
datalink request to get back the URLs they want.

Where is the right place for the service
descriptor?

November 21, 2024N
A
V
O

NA
SA

 A
str

on
om

ica
l V

irtu
al

Ob
se

rva
tor

ies
HE

AS
AR

C
 •

 IR
SA

NE
D

 •
 M

AS
T

12

● Added columns are discouraged unless necessary.

○ Note that an additional columns was defined, link_auth , to communicate to the client whether the link
requires authentication for similar reasons.

● Previous concept (and current prototypes) added this to the SIA result table because not all archives had
implemented DataLink yet. Now we can move it to the DataLink result.

● Reminder: we had proposed one additional column, cloud_access whose contents might be:
{
 "aws":
 {
 "region": "us-east-1",
 "policy": "free",
 "bucket": "nasa-heasarc",
 "key": "chandra/foo/bar.jpg",
 “access_url”: “https://nasa-heasarc.s3.amazonaws.com/chandra/foo/bar.jpg
 }
 "google": {...}
}

● This is just illustrative (in fact it’s not exactly what we did), details TBC.

Back to adding a column?
But this time to the DataLink result table

(TBD which fields would be useful, and the URL could
obfuscate the location if needed for paid data.)

November 21, 2024N
A
V
O

NA
SA

 A
str

on
om

ica
l V

irtu
al

Ob
se

rva
tor

ies
HE

AS
AR

C
 •

 IR
SA

NE
D

 •
 M

AS
T

13

● Register separate services from the start? Why we don’t much like this option:

○ The discovery workflow doesn’t necessarily start with knowing where you want to get the data
from.

○ The above questions remain requiring us to agree on metadata to describe the options. The
questions just go into a Registry design discussion instead.

○ We already have a similar issue in the Registry when you can get the same dataset from TAP or
Cone, or when a service has a mirror. It has added complexity to make the necessary links
between the different services.

■ We’ve already done this painful work, so just use it again?

■ This was painful, let’s not do it again?

● Client sends location information with initial request and server decides what URL to give?

○ Users always want to know the options and make their own decision.

Not mentioned above

November 21, 2024N
A
V
O

NA
SA

 A
str

on
om

ica
l V

irtu
al

Ob
se

rva
tor

ies
HE

AS
AR

C
 •

 IR
SA

NE
D

 •
 M

AS
T

14

● Even without these additional options, is there a recommendation for one or more Service
Descriptors with ObsTAP results tables so the client doesn’t have to call each access_url
separately but can send a batch request?

○ Last time I was told modern servers are fast, it isn’t a problem sending extra datalink
requests. But a bunch of them at the same time?

● If you ask for the AWS datalinks for all of the rows in an ObsTAP result say, and some are on AWS
and some are not, then what? I assume the resulting table would have to make a row for that ID
with an error_message filled in. Do we need a standard … something here?

○ Possibly an argument for adding the data descriptor options to both the original
ObsTAP/SxA result and also the datalink result table, so that a client could then try an
alternative URL for those rows.

○ But the client could also go back to the original result table (e.g. ObsTAP).

● Other?

Additional questions

November 21, 2024N
A
V
O

NA
SA

 A
str

on
om

ica
l V

irtu
al

Ob
se

rva
tor

ies
HE

AS
AR

C
 •

 IR
SA

NE
D

 •
 M

AS
T

15

● We want to give retrieval options.

● This requires a vocabulary somewhere to express the options
available and how to select among them.

● DataLink is very flexible, and there are several ways we could do
this with many combinations of metadata columns and service
descriptors.

● We are implementing something in the next few months, and the
easiest would be to move our extra column to the DataLink result
table.

● ????

Bottom line

