Accessing VLASS in the VO

Overview

® The VLA SKky Survey is a three epoch, 2.5” resolution survey at 3GHz made with the
VLA covering the whole sky above Dec. -40 degrees.

® There are 34,000 images of each type (Quick Look, Single Epoch continuum and
cubes over three epochs, plus combined epochs).

® Really need a good way to browse and get data/cutouts in bulk!

® The image data products are served from both NRAO and CADC, and catalogs via
CDS.

® NRAO'’s VO services are still being developed, so we use CADC and CDS for scripted
access to the data products

HiPS service
(Will be registered soon!)

"VLASS-QL-Epoch1-20190905" progressive survey

This Web resource contains HiPS(*) components for VLASS-QL-Epoch1-20190905 progressive survey.

Label: VLASS-QL-Epoch1-20190905

Type: HiPS image

Best pixel angular resolution: 805.2mas
Max tile order: 9 (NSIDE=512)

Available encoding tiles: png fits

Tile size: 512x512

FITS tile BITPIX: -32

Processing date: 2019-09-17T11:54Z

HiPS builder: Aladin/HipsGen v10.044
Coordinate frame: equatorial

Sky area: 81.851% of sky => 33766€"2
Associated coverage map: MOC

Original data access template: metadata.xml
Raw property file: properties

Base URL:

http://archive-
new.nrao.edu/vlass/HiPS/VLASS_Epoch1/Quicklook

J2000 #] 07 36 2GRS S SS S0

FoV: 172.14°

This survey can be displayed by Aladin Lite (see above), by Aladin Desktop client (just open the base URL) or any other HiPS
aware clients.

(*) The HiPS technology allows a dedicated client to access an astronomical survey at any location and at any scale. HiPS is
based on HEALPix sky tessellation and it is designed for astronomical scientifical usages (low distorsion, true pixel values....)
HiPS technical documentation is available here

archive-new.nrao.edu/vlass/HiPs

(52000 ¢ |7 SONGESTHET 08 SE08

Scripted query of multiple sources using SODA

The pyVO python package can be used to make image and catalog searches, and also TAP queries
(see https://gitlab.nrao.edu/mlacy/vlass vo)

Focus on extracting cutouts from a list of sources via the CADC’s SODA service.
Steps:
Import the source list as csv

Create tuples of RA, Dec, radius in degrees and make searches for the cutouts:
='CIRCLE="+str(poslist[i][0])+'%20'+str(poslist[i][1])+'%20'+str(poslist[i][2])

Run an SIA2 search on the position and VLASS collection:
sia2_return.append(vo.dal.imagesearch2("https://ws.cadc-ccda.hia-iha.nrc-
cnrc.gc.ca/sia/v2query",pos=poslist[i],collection="VLASS"))

Use datalink to get the link to the primary product -
datalink1=next(row.getdatalink().bysemantics('#this’)),

Fudgy bit — split out the link url from the datalink description (dataset=datalink1['description'].split("
)[1]), sanitize it (urllib.parse.quote(dataset,safe="’) and concatenate it with the base path to the
SODA service (sodaurls.append(pathurl+path+'&'+)

In [6]: #The SODA service path was obtained from https://ws.cadc—ccda.hia-iha.nrc-cnrc.gc.ca/caom2ops
#To identify the primary image data ('#this' in the semantics) we can use the semantics and just get the image data
pathurl='https://ws.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/caom2ops/sync?ID="
sodaurls=[]
vlassimgs=[]
for i in range(nsrc):

cutout='CIRCLE="+str(poslist[i] [0])+'%20"'+str(poslist[i] [1])+'%20"'+str(poslist[i] [2])
nrows=np.shape(sia2_return[i]) [0]
for j in range(nrows):
row=sia2_return[i] [j]
datalink2=next(row.getdatalink().bysemantics('#this"'))
dataset=datalink2['description']l.split(' ')[1]
path=urllib.parse.quote(dataset,safe="")
sodaurls.append(pathurl+path+'&'+cutout)
vlassimgs.append(src[il+'_'+datalink2['description'l.split('/")[1])

nimgs=1len(vlassimgs)
print('Number of images to attempt to download ',nimgs)

Number of images to attempt to download 4

Now we get the images and save them to disk. Note that some URLS return as invalid, probably becuase the cutout is outside of the imaged area (due to
overlaps some images can appear near the edges of more than one image), so we put the image getting and saving in a try/except structure:

In [7]: for i in range(nimgs):
try:
with urllib.request.urlopen(sodaurls[i]l) as g:
hdu2=fits.open(g)
data=hdu2[0].data
hdr=hdu2[0].header
print('Writing image ',vlassimgs[i])
fits.writeto(vlassimgs[i],data,hdr,overwrite=True)
except:
print('Cutout not found, moving on')

print('Done downloading files"')

Writing image test_VLASS2.2.ql.T18t07.J050939+313000.10.2048.v1.I.1iterl.image.pbcor.tt0.subim.fits
Writing image test_VLASS2.2.ql.T18t07.J050915+303000.10.2048.v1.I.iterl.image.pbcor.tt0@.subim.fits
Writing image test_VLASS1.2.ql.T18t07.J050915+303000.10.2048.v1.I.iterl.image.pbcor.tt0.subim.fits
Writing image test_VLASS1.2.ql.T18t07.J050939+313000.10.2048.v1.I.iterl.image.pbcor.tt@.subim.fits
Done downloading files

Results

e Return will include all VLASS epochs available, plus any overlaps within an epoch (might need
to do more filtering).

e Images can be streamed directly into memory, no need to save as FITS files (unless you want
(o)

e CIRADA cutout service (cutouts.cirada.ca) limited to 200 positions and requires download as

FITS files, much clicking...

e Thus, this SODA service makes it feasible to obtain cutouts for >O(103) objects for use in
stacking, studies of larger samples, machine learning training etc.

e Added to VLASS user-contributed software page: https://science.nrao.edu/vilass/user-

contributed-software-and-scripts

https://science.nrao.edu/vlass/user-contributed-software-and-scripts
https://science.nrao.edu/vlass/user-contributed-software-and-scripts

Example science use case - stacking

Full sample
epoch 2 [3716]

epoch 1 [3717] combined [7433]

10 10 10
§ IE 20 § |E 20 § lE 20
2 ! S < g & g
g0 2 A0 Eo 2k, Eo | BT
g 2 3 2 g 2
2 :1 0 g ma uJy beam ! :’:' g 29.6 pJy beam ! :':L
‘ - 0 rms=3.1 yJy beam™ 0

10-E 4 101 BRSNR=06

10 0 -10 10 0 -10

AR.A. (arcsec) AR.A. (arcsec) AR.A. (arcsec)

Future work

Frequency/velocity and polarization cubes

Radio images can be multi-dimensional.

VLASS, for example, will produce cubes of data with Stokes axes (I, Q, U) and will
serve 16 frequency channels (48 planes).

Other radio telescopes will produce much larger cubes, both in Stokes | and full
polarization.

High-level products such as spectral index maps and Faraday synthesis cubes will
also be produced.

ObsCore can probably deal OK with these, but some thought will need to be given to
how to treat them in terms of cutouts etc so the user can easily request what they
need and what makes sense for science.

