
ProvTAP evolution after first
community feedback

F.Bonnarel, CDS
on behalf of M.Servillat, M.Louys, M.Nullmeier, M.Sanguillon,
L.Michel

Why a ProvTAP specification ?

● Provenance information can be attached to data in
various ways :
– Embedded in the data « header » itself

– Linked to the data record via DataLink or URL

– Retrievable via ProvSAP via data id.

● In addition to that , ProvTAP allows to discover
« data » by constraining Provenance features.
– It's a « reverse » mechanism.

Why a ProvTAP specification ?

Examples :
– Discovering data produced with the same version of a given software.

– Discovering data produced with some specific value of a software
configuration parameter :
• Known by its name

• Known by its ucd

• ….

– Discovering a « family » of data : datasets produced by ancestor
activities of a given datasets

– Discovering data or activities related to some agent with a given role
(operator, editor, author, etc...)

ProvHiPS ADQL query examples :
Find out parameter descriptions of parameter used to generate a calibrated file

query
Calibration

Activity description
-name

- docURL
-etc...

Calibrated image
description

j8wqf2brq_flt.fits[sci1]
Calibrated image

Parameter
description

ProvHiPS ADQL query examples :
Find out parameter descriptions of parameter used to generate a calibrated file

ProvHiPS ADQL query examples :
Find out parameter descriptions of parameter used to generate a calibrated file

 select top 3 * from entity
 join datasetdescription on e_description = dd_id
 join generationdescription on gd_entitydescription =dd_id
 join activitydescription on ad_id = gd_activitydescription
 join parameterdescription on pd_activitydescription = ad_id
 where e_name = 'j8wqf2brq_flt.fits[sci1]' ;

ProvTAP = where are we ?

● There is an internal draft

on the IVOA DAL pages
● Was not a WD by lack of

discussion
● TAP schema

mapping classes as

tables
● ProvHiPS (provenance of

 HiPS and HiPS tiles) is

an implementation prototype
● Discussion among authors on various

points (see DAL running meeting slides)

ProvTAP = where are we ?
External point of view

● DAL chairs
– 1 to 1 class/table mapping too ambitious. Need for

simplification/ denormalization

● ESFRI projects (within ESCAPE)
– Looking for simplified/partial views

• Tracing the last step ?

• Concept of « ProvCore » : minimal model attributes ?

• Depends from project requirements and uses cases

1 table

per

Class ?

Solutions
-1 Single step = single table (= join)

● The join is a permanent view described in the TAP
schema

● Columns :
entity_name, entity_location, entity_comment, ...

generating_activity_name, generating_activity_starttime, ….

agent_role, agent_name, ….

used_entity_name

● → Redundancy (several lines for a single entity/activity).
● → possible Recursivity

Solutions
-1 Single step = single table (= join)

● View (in postgres)

 create view last_step_provenance as select

e.e_name as entity_name, e.e_location as entity_location, e.e_generated as entity_generated, e.e_invalidated as
entity_invalidated, e.e_comment as entity_comment,

a_name as generating_activity_name,a_starttime as generating_activity_starttime, a_endtime as
generating_activity_endtime, a_comment as generating_activity_comment,

wat_role as agent_role, ag_name as agent_name, ag_type as agent_type ,ag_affiliation as agent_affiliation, ag_email
as agent_email, ag_address as agent_address, ag_phone as agent_phone, ag_comment as agent_comment,

ee.e_name as used_entity_name from entity as e

join wasgeneratedby on wgb_entity = e.e_id
join activity on a_id = wgb_activity
join used on u_activity = a_id
join entity as ee on ee.e_id = u_entity
join wasattributedto on wat_entity = e.e_id
join agent on ag_id = wat_agent ;

Solutions
-1 Single step = single table (= join)

Solutions
-1 Single step = single table (= join)

Solutions
2- denormalization

● Adding « description » classes attributes to the
« execution » classes.
– This is another

permanent view

– A lot of redundancy.

Solutions
2- denormalization

● Full entity :
● entity_name
● entity_location
● entity_comment
● entity_generated
● entity_invalidated
● entitydescription_content
● entitydescription_type
● entitydescription_description
● entitydescription_docurl

Solutions
2- denormalization

● Full activity :
● activity_name
● activity_comment
● activity_starttime
● activity_endtime
● activitydescription_description
● activitydescription_type
● activitydescription_docurl

● And parameter/parameterdescription

Solutions
3 - Simplification of « descriptions » « linkage »

● Suppress UsageDescription and
GenerationDescription ?

● May introduce other difficulties ?

How to go on ?

● Keep full ProvTAP schema and propose views.
● Make these views become simplified TAP

schemata part of the standard.
● Limited or full services possibility

(implementing only views or the whole TAP
schema)

● Upgrade the specification and open prototype

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18

