

OpenCADC - UWS

● Universal Worker Service: UWS
– control and execution of asynchronous jobs

● cadcUWS library:
– provides Job class and plugin architecture

– provides servlet with UWS async behaviour

– also provides servlet with sync behaviour

– plugin architecture enables customisation

– plugin configuration in web.xml

● java + restlet, log4j

OpenCADC - UWS

● JobManager
– job control and negotiation

– calls persistence

– calls executor

– provided impl: validation and limits

● JobPersistence
– store and retrieve Job state

– provided impl: in-memory map

– working on: persist to database

OpenCADC - UWS

● JobExecutor
– job execution

– calls job runner

– provided impl: ThreadExecutor runs every job in
a new thread

– working on: ThreadPoolExecutor

● JobRunner
– code that actually runs the job

– service must provide implementation

OpenCADC - TAP

● Table Access Protocol: TAP
– asynchronous queries

– synchronous queries

● cadcTAP library:
– QueryRunner implements JobRunner

– plugin architecture enables customisation

– configuration of plugins TBD

● java + spring, jdom, jsqlparser, javacsv

OpenCADC - TAP

● TapSchema
– library of java classes

– DAO class to read from database

– TAP_SCHEMA DDL statements (SQL)

– self-describing content (SQL insert statements)

– used by query parser(s) to validate table and
column usage

– used by TableWriter(s) to add metadata

– working on: TapSchema -> XML for VOSI tables
resource

OpenCADC - TAP

● UploadManager (plugin)
– handles UPLOAD parameter

– provided impl: UnsupportedUploadManager
● throws UnsupportedOperationException if there

are UPLOADs

– working on: BasicUploadManager
● download and parse VOTable, generate DDL,

sanity check/parse table content, insert
● returns table metadata (using TapSchema

classes) so parser can validate table/column
usage and modify table names in query

OpenCADC - TAP

● TapQuery interface
– implemention for each value of LANG

– parse query parameter(s)

– map select-list to TapSchema

– process query to local SQL

– provided impl: SqlQuery (LANG=SQL)

– provided impl: AdqlQuery (LANG=ADQL)

– configuration TBD

OpenCADC - TAP

● SqlQuery implements TapQuery
– configured to handle LANG=SQL

– syntax validation via jsqlparser

– re-usable TapSchema validation

– fully navigates the query
● including subqueries in the FROM, WHERE, and

HAVING clauses

– not all native SQL constructs will get past the
jsqlparser

OpenCADC - TAP

● AdqlQuery implements TapQuery
– configured to handle LANG=ADQL

– syntax and TapSchema validation

– multi-pass query processing using visitor pattern
● convert TOP to LIMIT (for PostgreSQL)
● find all ADQL region constructs
● convert ADQL region constants to pgSphere

constants, TODO: REGION(<stc-s>)
● convert CONTAINS/INTERSECTS=0|1 into

pgSphere operators

– configuration of internals/dialect TBD

OpenCADC - TAP

● TableWriter (plugin)
– TableWriterFactory validates FORMAT

● instantiates a TableWriter
● configuration TBD

– provided: VOTableWriter
● uses TapSchema and select-lists for metadata

and to setup formatter(s) for each column
● write ResultSet or Throwable
● configuration of formatters TBD

– provided: AsciiTableWriter (CSV and TSV)
● write ResultSet

OpenCADC - TAP

● FileStore (plugin)
– File getStorageDir()

– URL put(File f)

– simple implementation:
● could use a work dir under the web server

document root
● would then generate a URL served by web server

– CADC implementation:
● put the file into our internal storage system
● generate URL to our standard data access

service

OpenCADC - TAP

● QueryRunner implements JobRunner
– set job state (phase + result or error)

– use FileStore to manage files/URLs

– validate REQUEST, VERSION, LANG, MAXREC

– find DataSource(s) via JNDI

– read TapSchema

– use UploadManager

– use TapQuery

– use TableWriter

OpenCADC - TAP

● right now: it works but not ready for primetime :)
● cadcUWS and cadcTAP are libraries

– service implementor creates and deploys webapp

● TODO:
– configuration of plugins/components

– refactor ADQL/SQL parser to support re-use,
other back-end DBs, custom extensions

● all code available at:

http://code.google.com/p/opencadc/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

