

Time-domain astronomy at scale: lessons from a broker

Anais Möller on behalf of the Fink team ARC DECRA Fellow at Swinburne

Rubin data products

Rubin Observatory (2025+)

20TB of images / night

Raw Data

Sequential 30s image, 20TB/night

Prompt Data Product

Difference Image Analysis
Alerts: up to 10 million per night

Prompt Products DataBase

Images, Object and Source catalogs from DIA Orbit catalog for ~6 million Solar System bodies

Annual Data Release

Accessible via the LSST Science Platform & LSST Data Access Centers.

Final 10yr Data Release

Images: 5.5 million x 3.2 Gpx Catalog: 15PB, 37 billion objects

Rubin brokers

Rubin will send the full alert stream to seven brokers

 ALERCE, AMPEL, ANTARES, Babamul, <u>Fink</u>, Lasair, Pitt-Google

Serve a large scientific community by ingesting, classifying, filtering, and redistributing alerts.

Classification is a community-driven effort.

Prototyping on ZTF (300k alerts/night), and testing deployment of the Rubin Alert Distribution system.

Fink: cloud-based broker

60+ members:

- engineers and scientists
- >10 countries
- Engineer lead Julien Peloton

15+ scientific topics covered

Current: ZTF stream

Upcoming: Rubin

2022 Fink Hackathon

Connections to GCN and other astro streams

2nd Fink Collaboration Meeting

Fink: cloud-based broker

Services deployed on large OpenStack clouds (UPSaclay 15k vCPUs & CC-IN2P3)

- Computing (Spark), database (HBase),
 streaming (Kafka), storage (Ceph & HDFS)
- Orchestration: Mesos & kubernetes
- Autoscaling based on the load

Operating 24/7 since 2019, serving 100 unique users per day (scientists & follow-up facilities).

Current rate @ 300k alerts/night (tested up to 50M/night). Science database of 8TB (250M events).

Fink

Fink: computing challenge

Fink: computing challenge

Domain experts are the crucial agent for scientific discoveries

- Huge legacy of codes...
- ... but they rarely meet computing requirements

Stronger interplay between the computing model & user software

- Software engineering role is increasing
 - Tailored service to integrate codes developed by the community
 - Infrastructure should be created to adapt to specific user needs

Challenge: open & big data

- How to expose a 3PB database to the world efficiently?
 - Multi-indexing is not trivial
 - Random access is cheap, but exotic processing requires computing resources
 - Exposing is not enough
- Non relational and graph oriented databases are explored
 - Multidatabase (<u>Hrivnac, CHEP 2023</u>), inspired from ATLAS

Challenge: users

13

Challenge: users

Kafka, Spark are great but they are obscure to users!

How scientists can work with Kafka in practice?

- Bring interfaces to existing tools (e.g. TOM Toolkit, SkyPortal, ...)
- Fink data service: Kafka to stream data.
 Processing on the fly (to not download huge amount of useless data → Apache Spark)

Challenge: interoperability

- Are current standards suitable at PB scale?
- How to support science platforms with analysis close to data?
- How to support new data-types driven by growth in size and complexity of data sets?

Conclusion

Challenge for alerts is dominated by the computing (networks are fast)

survey → brokers → scientific community (defines the science roadmap)

Fink: processing is centralised, science is decentralised

- Cloud computing, allows to scale out resources
- Brokers provide data, computing, storage & web services for the community
- Open source backbone of the structure

Various challenges remain:

- user-driven & evolving analysis, open & big data, interoperability for multi-messenger & multi-wavelength analyses...
- How can broker and IVOA roadmaps can be synergetic?