
CSP pannel follow up
ObsCore extension

For radio data

F.Bonnarel

on behalf of the Radioastronomy Interest
Group

 Follow-up of pannel discussion

● Are you aware of the ObsCore extension for radio data ? Is that
useful for discovery of the data you expose ?

● Access and processing of huge datasets, in which direction to
go ?

● Code to the data (platforms, jupyter notebooks, etc..)
● SODA to extract/reshape regions of interest ?
● HiPS cube for multi resolution access?
● Any kind of combination ?

 Short summary of what the extension

is all about

● ObsCore allows to discover datasets by constraining datasets
standardised metadata

● Instrumental Provenance (facility, instrument)
● Identification
● Product type (image, cube, spectrum, etc...)
● Curation
● Charactérisation of physical axes (spatial, spectral, time,

polarisation)
● Data access mode (url, format, datalink, cutout, etc..)

● Is that sufficient for all kind of datasets ?
● Not always

Spatial axis addition
Uv coverage characterisation

● s_fov_min and s_fov_max (each end of the spectral window)

● s_resolution_min and s_resolution_max (each end of the spectral window)

● s_maximum_angular_scale (because large scales are filtered in interferometry)

● uv_distance_min , uv_distance_max (for scale filtering and resolution)

● uv_distribution_exc (distribution excentricity – data regularity)

● uv_distribution_fill : (distribution filling factor -data sampling)

Spectral axis additions
Product types additions

● Addition of f_resolution (as a counterpart to em_res_power)

● f_min and f_max beside em_min and em_max

● Addition of « spatial_profile » dataproduct_type

● velocity/position profiles

● Sky scan modes as additional parameters

tracking modes

*
● We had a version last year adding specific attributes for

interferometry
● Some of them really describing uv coverage, or

instrumental arrays aspects
● Some others (f_min, f_max, s_fov_min, s_fov_max) where

generic radio proposals
● We still discuss uv_dist_min, uv_dist_max
● We still discuss if f_min/f_max have to be part of the

extension or results of a udf.

● Proposed Instrumental parameters

• Antenna typical diameter (for all)

•And for interferometry
● Number of antennae
● Minimal distance between antennae
● Maximal distance between antennae

● CDS prototype demo (implemented in Dachs) :
frequency between 1 and 2 Ghz (upper left – 3 results)

freq. between 1 and 2 Ghz and spectral resolution better than 100 Mhz (lower right – 2 results)

SELECT obs_publisher_did,
target_name, s_ra, s_dec, s_fov,
s_resolution, em_min, em_max,
s_fov_min, s_fov_max, s_resolution_min,
s_resolution_max, f_resolution, f_min,
f_max, instrument_ant_max_dist,
instrument_ant_diameter
 FROM rucio.obscore
where f_min > 1e9 and f_max < 2e9

SELECT obs_publisher_did, target_name, s_ra,
s_dec, s_fov, s_resolution, em_min, em_max,
s_fov_min, s_fov_max, s_resolution_min,
s_resolution_max, f_resolution, f_min, f_max,
instrument_ant_max_dist, instrument_ant_diameter
 FROM rucio.obscore
where f_min > 1e9 and f_max < 2e9
and f_resolution < 1e8

● CDS prototype demo (implemented in Dachs) :
s_resolution better than 0.6 arcsec (upper left – no result)

 s_resolution _min better than 0.6 arcsec(lower right – 1 result)

SELECT obs_publisher_did,
target_name, s_ra, s_dec, s_fov,
s_resolution, em_min, em_max,
s_fov_min, s_fov_max, s_resolution_min,
s_resolution_max, f_resolution, f_min,
f_max, instrument_ant_max_dist,
instrument_ant_diameter
 FROM rucio.obscore
where s_resolution < 0.6

SELECT obs_publisher_did, target_name, s_ra,
s_dec, s_fov, s_resolution, em_min, em_max,
s_fov_min, s_fov_max, s_resolution_min,
s_resolution_max, f_resolution, f_min, f_max,
instrument_ant_max_dist, instrument_ant_diameter
 FROM rucio.obscore
where s_resolution_min < 0.6

→ At least some part of the datsaset has a
resolution better than 0.6 arcsec

● CDS prototype demo (implemented in Dachs) :
s_fov larger than 7.5 deg (upper left – two results)

 s_fov_min larger than 7.5 deg(lower right – 1 result)

SELECT obs_publisher_did,
target_name, s_ra, s_dec, s_fov,
s_resolution, em_min, em_max,
s_fov_min, s_fov_max, s_resolution_min,
s_resolution_max, f_resolution, f_min,
f_max, instrument_ant_max_dist,
instrument_ant_diameter
 FROM rucio.obscore
where s_fov > 7.5 deg

SELECT obs_publisher_did, target_name, s_ra,
s_dec, s_fov, s_resolution, em_min, em_max,
s_fov_min, s_fov_max, s_resolution_min,
s_resolution_max, f_resolution, f_min, f_max,
instrument_ant_max_dist, instrument_ant_diameter
 FROM rucio.obscore
where s_fov_min > 7.5

→all channels of the dataset have a field of view
larger than 7.5

 CDS prototype demo (implemented in Dachs) :

16 datasets of ObsCore discovery service of S(ka)RCnetwork

● Implementation JIVE : Joint institute for VLBI ERIC
● Ils ont déjà un service ObsCore pour leurs « visibilités »
● Sont en train d’ajouter l’extension
● Implanté avec Dachs

● Prototypage CDS
● Basé sur le service de découverte du SRC net.
● Implanté avec dachs mais sera porté sur vollt
● Conservé indépendamment de SKA

● → Radio IG running meeting . Vendredi 5/04 à 14h CET

ObsCore for complex data

● Observation made of several datasets

● Distinction obs_id/obs_publisher_did

● Raw per obs_publisher_did, not per observation

● Characterisation at the dataset level

● Example : raw interferometry data with

● Main target and calibrator

● Two different spectral windows

● → 4 datatasets with same obs_id

● Reverse situation : dataset produced from several observations : combined obs_id

Controversy points

● f_min and f_max beside em_min and em_max

● Rationale :

● Something natural for the users directly available for the users

● Something natural for the users for the queries.

● Parameters produced from basic ones in a view

● Cons :

● Don’t duplicate information in the standard

● And either :
● Use « user defined function » in query and display

● ivo_specconv(f, « funit », « wlunit »)
● 1 = ivo_interval_overlaps(em_min, em_max,ivo_specconv(1.5, "GHz",

"m"),ivo_specconv(1, "GHz", "m"))
● Let the clients do the transformation in both directions

Controversy points

● Instrumental details :

● proposed because they give an hint on some data characterization (sensibility,
resolution, data quality)

● Cons :
● They are very specific to each experiment and do not previde generic

information
● Except (maybe) if we have use cases for that

● Science cases were missing anyway

● Partially done (but not for instrumental details)

● Controversy points

● How to expose it in a TAP service
● Two possible ways in TAP:

● 1 basic ObsCore table, + 1 table with ObsCore+ extension. New StandardID for
the latter :

ivo://ivoa.net/std/ObsCore#table-1.0

ivo://ivoa.net/std/ObsCore#radioExt-1.0
● 1 basic ObsCore table + 1 table with extension only.

(ivo://ivoa.net/std/obsradio#table-1.%') User or client have to join the tables
● Solution 1 become complex if we have several extensions which may be combined

or not
● Solution 2 masks that the extension is meaninless wthout the baisc table. Doesn’t

tell us where the baisc table lies.

● Controversy points

● Compromise :
● Set the standarID on a schema containing the Obscore

table and the extension(s) with standarID
ivo://ivoa.net/std/ObsCore

● Have specific standardID on the tables (ObsCore basic,
extensions)

● Possibility to build view providing the joins in the same
schema (but without standardID)

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16

