Software containers and reproducibility:
what can IVOA learn from it?

Stefano alberto Russo - INAF
IVOA May 2023 Interoperability Meeting

The dependency hell

- How to compile a software?
- How to set up a software?

- How to reproduce a run?

Solutions spectrum

Requirement
specifications

Virtual
environments

Statically
linked
binaries

Containerization

VMs VMs with
hardware
emulation

Software containers

“A container image is a lightweight, standalone, executable package of software
that includes everything needed to run an application: code, runtime, system tools,
system libraries and settings.”

Open Container Initiative standards:
- Images (incremental FS bundles)
- Registries and manifests

- Runtimes (hi and low level)

Containerisation landscape

e A T P e T T S R S R T T I I"‘"""""""""“"""""""""""""""""""""'""“"""“""""'""""""""‘“I
E Orchestrators e HENE Engines i
: :] l :
| o ; ! LXD, RKT, |
! ocker : ! Singularity Podman Docker Containerd, i
i e Kubernetes Compose / . ! CRI-O ** i
! Fargate S , ! i
! warm i i i

Containerd CRI-O Docker LXD RunC
CRI interface* CRI interface* (as shim runtime, . : Kata Containerd***
(with CRI plugin) deprecated) (as shim runtime) (default)

. Direct execution
Kata gVisor RunC or internal
< 3 s (runsc) default :
RunC Kata Singularity gVisor () AR
(default) (as CRI runtime) (runsc)

o

Running container

The definitive(-ish) solution for reproducibility

- All dependencies always carried with the container
- Multi-OS and multi-architecture support

- Engines and runtimes for every need
- Rootful
- Root-less
- With Kernel virtualisation

- With HW virtualisation and emulation

which are basically VMs, but with all the
containerisation ecosystem benefits

But wait.. where is all the complexity gone?

Hidden complexity

- Multiple architectures and OSes — multiple images per tag!

- Docker desktop (Mac/Win) does HW emulation if working with non-native architectures

- and crashes with instruction set-optimized executables, i.e. Chrome

- Rootful, rootless, virtualisation etc. bring unexpected incompatibilities

- limitations, UIDs/GIDs, file permissions, PIDs, networking...
- Container registries with private containers still hard to support
- Drop-in replacements (i.e. Podman, Kata) are such until they are not
- Creating truly re-buildable Dockerfiles requires good craftsmanship

- Kernel-level optimisation basically do not fit with the “build once, run everywhere”

Takeaways

Software containers are in general very good for reproducibility

Lot of complexity was hidden but is re-arising

Apple Silicon didn’t help

Some early days, naive choices are basically design flaws

will be hard to eradicate

An informed, educated usage can solve the majority of the issues

Thank you!

