

TDIG / Apps Session Ada Nebot 15 May 2019, Paris Interop

Chairs & Vice-chairs

TDIG: Ada Nebot & Dave Morris

Apps: Tom Donaldson & Raffaele D'Abrusco

Introduction to the session

- Time Series related topics
 - Data Model status
 - Description of time metadata in VOTable
 - Implementation and usage
 - Connecting space coverage to time coverage
- VOEvents related topics
 - Registry: how to discover VOEvents services and streams?

Time Series Data Model

- What to expect from a Time Series Data model?
- What are the dependancies and why?
- What is the status of those dependancies?
- Are there shortcuts?

What (I think) a Time Series DM could eventually do

- The IDEA in mind: An ideal time viewer able to connect:
- sources,
- images,
- spectra,
- measurements,
- a model describing the data and the relations could help doing so

What (I think) a Time Series DM could eventually do

- The IDEA in mind:
- In complex datasets identify what's varying with time and what is not
- Display measurements as a function of time
- Simultaneously visualise the catalogue positions in the sky
- Navigate through any image /spectra available through VO (multi-lambda / messenger)
- Show the photometric information around any source of interest
 - As a function of time (light-curve viewer) —> variability-classification
 - As a function of wavelength (photometric-viewer) —> SED-classification

CubeDM

• describes the sparse nature of a time cube (e.g. data points, light-curves, spectra, images, ...)

CharacterizationDM

• describes the parameter space of observed data to facilitate discovery (e.g. bounds in wavelength, sky location, ...)

PhotDM

photometric system

MeasureDM

Defining the nature of any measurement

CoordinatesDM

describing coordinate system

See Victoria 2018 presentation if you want to know more details on the model

ing Draft

CubeDM

- describes the sparse nature of a time cube (e.g. data points, light-curves, spectra, images, ...)
- www.ivoa.net/documents/CubeDM/20180516/index.html

Recommendation .

<u>CharacterizationDM</u>

- describes the parameter space of observed data to facilitate discovery (e.g. bounds in wavelength, sky location, ...)
- www.ivoa.net/documents/latest/CharacterisationDM.html

PhotDM

- photometric system
- ivoa.net/documents/PHOTDM/20131005/index.html

<u>MeasureDM</u>

- Defining the nature of any measurement
- https://volute.g-vo.org/svn/trunk/projects/dm/STC/Meas/doc/WD-Meas-1.0.pdf

Coordinates DM

- describing coordinate system
- ivoa.net/documents/Coords/20190320/index.html

Recomment Working Draft

- But... my data are light curves!
 - Do I have to use all these data models as they currently are?
- Are there shortcuts?
 - Yes! You don't need to import all the elements of a data model to describe your data.
 - Import the TimeSeriesDM elements you are interested in:
 - Photometry,
 - Positions
 - Time
 - Describing only the elements of interest for your case this reduces a lot! And this is how I understand data models (if you don't have spectra you don't need to describe them...)
 - But if you would like to have it all, then well, it should be possible to describe the most complex case too.

But I want it now!

- Patience...
- Participate in the revision of the documents to avoid the result wont meet your expectations.
- And meanwhile take a close look at:

TIMESYS

- Metadata on <u>VOTable1.4</u> to describe time
- Services implementations: VizieR beta, DacHS
- Client implementation: Aladin proto, STILT, STILTS, TOPCAT
- Validator: votlint

STMOC

- Coverage of space and time of catalogues and image collections
- See the Note under the IVOA Documents!
 - OK, what next?
 - Stay tuned!