
Introduction PEG Caveats Future

Proposal for a machine-verifiable version of
the ADQL grammar

A case for PEG

Jon Juaristi Campilllo1,2 Markus Demleitner1,2

1Astronomisches Rechen-Institut, Zentrum für Astronomie, Universität
Heidelberg

2German Astrophysical Virtual Observatory

2019 IVOA Interop meeting, 16 May, Observatoire de Paris
Machine-verifiable ADQL grammar: PEG Juaristi Campillo, Demleitner (ARI/GAVO) IVOA Interop 2019, Paris



Introduction PEG Caveats Future

Contents

1 Introduction

2 PEG
Outline
Implementation

3 Caveats
Small preface
General considerations
Specific issues

4 Future

Machine-verifiable ADQL grammar: PEG Juaristi Campillo, Demleitner (ARI/GAVO) IVOA Interop 2019, Paris



Introduction PEG Caveats Future

Context

ADQL grammar is defined using Backus-Naur Form (BNF)...
...which is not machine-verifiable.
Ideas about writing a machine-verifiable version have been
around.
We suggest Parsing Expression Grammar (PEG) as an
alternative.

Machine-verifiable ADQL grammar: PEG Juaristi Campillo, Demleitner (ARI/GAVO) IVOA Interop 2019, Paris



Introduction PEG Caveats Future

Outline

What is PEG?

Parsing Expression Grammar
Proposed by Brian Ford
(MIT) in 20041

“Recognition-based formal
foundation for describing
machine-oriented syntax”
Straightforward syntax:
slightly differing from BNF.
Both lexing and parsing.

Figure: PEG defined in PEG
1https://bford.info/pub/lang/peg

Machine-verifiable ADQL grammar: PEG Juaristi Campillo, Demleitner (ARI/GAVO) IVOA Interop 2019, Paris

https://bford.info/pub/lang/peg


Introduction PEG Caveats Future

Outline

Characteristics

There are a couple of features which stand out compared to BNF:
Choice operator (|) is not present.
Replaced by ordered choice (/) instead.
No longest match option: ordered choice means it goes for
the first match every time.
Has both negative (!) and positive (&) lookahead operators

Machine-verifiable ADQL grammar: PEG Juaristi Campillo, Demleitner (ARI/GAVO) IVOA Interop 2019, Paris



Introduction PEG Caveats Future

Implementation

Our development

We have written a PEG definition of the ADQL grammar
(following the 2.1 draft).
Based on first suggestion done by Grégory Mantelet (CDS) in
April 2017.2

Tested using the Arpeggio tool created by Igor Dejanovic.3

Available at the lyonetia project originally maintained by Dave
Morris (ROE) under the src/peg folder:

https://github.com/ivoa/lyonetia/tree/master/src/peg

2http://mail.ivoa.net/pipermail/dal/2017-April/007667.html
3http://github.com/textX/Arpeggio

Machine-verifiable ADQL grammar: PEG Juaristi Campillo, Demleitner (ARI/GAVO) IVOA Interop 2019, Paris

https://github.com/ivoa/lyonetia/tree/master/src/peg
http://mail.ivoa.net/pipermail/dal/2017-April/007667.html
http://github.com/textX/Arpeggio


Introduction PEG Caveats Future

Small preface

Preface

Before the things to take into account are shown, some small
notes:

We have had some issues translating the BNF definition into
PEG.
The most important ones that should be discused will be
noted here.
This will serve as a guide for future developments
Ways to fix these quirks should be addressed as soon as
possible.

Machine-verifiable ADQL grammar: PEG Juaristi Campillo, Demleitner (ARI/GAVO) IVOA Interop 2019, Paris



Introduction PEG Caveats Future

General considerations

General considerations

Tried to keep close to the BNF, but many things work differently.
Some rules have been rewritten due to PEG’s nature.
Biggest (and most obvious) change: terminals are not rules
anymore.
Not alphabetically ordered.
Whitespace management: special rules to check single,
multiple, newline, etc.
Some errors found in the BNF have been fixed, e.g., HAVING
depends on GROUP BY.

Machine-verifiable ADQL grammar: PEG Juaristi Campillo, Demleitner (ARI/GAVO) IVOA Interop 2019, Paris



Introduction PEG Caveats Future

Specific issues

Longest match

Not available
Ordered choice, due to it own nature, looks for the first
matching pattern.
Existing rules needed to be adapted accordingly and
modularised (i.e., more rules!).
Ambiguous parameters can be affected by this (we have had
problems with value_expression).

Machine-verifiable ADQL grammar: PEG Juaristi Campillo, Demleitner (ARI/GAVO) IVOA Interop 2019, Paris



Introduction PEG Caveats Future

Specific issues

Tokenisation

Generally works fine: terms are divided accordingly.
Issues when defining identifiers which contain reserved
keywords.
Currently solved but worth a look.

Example of a faulty string we had: USER_TABLE
The parser matches the SQL reserved keyword USER.
It will fail, when the whole string is actually correct.

Machine-verifiable ADQL grammar: PEG Juaristi Campillo, Demleitner (ARI/GAVO) IVOA Interop 2019, Paris



Introduction PEG Caveats Future

Specific issues

Left recursion

PEG is left-recursive and the parsing works left-to-right
top-down.
Well-formed PEG shouldn’t have left recursion.
Must be taken into account when writing new rules or fixing
the existing ones.

Example: rule A <- A 'a' / 'b'
Will infinitely recurse until the parser complains (maximum
recursion depth exceeded).
In order to fix it, it should be rewritten as A <- 'b' 'a'*

Machine-verifiable ADQL grammar: PEG Juaristi Campillo, Demleitner (ARI/GAVO) IVOA Interop 2019, Paris



Introduction PEG Caveats Future

Specific issues

Testing

Tests inherited from the original lyonetia BNF solution have
been used (and in some cases, fixed).
A series of tests solely dedicated to whitespaces, one of the
tricky parts of PEG, have also been added.
New tests which delve into cases battling other PEG quirks.
Not all properties of the grammar are covered: more tests
are needed.

Machine-verifiable ADQL grammar: PEG Juaristi Campillo, Demleitner (ARI/GAVO) IVOA Interop 2019, Paris



Introduction PEG Caveats Future

Specific issues

Arpeggio

The tool we found where we could run our tests.
No particular reason for choosing it. Advantage: written in
Python, which we are familiar with.
It uses a custom PEG syntax: currently using a patched
converter.
Suggestions for using another tool (or creating one) for
validation purposes are more than welcome.

Machine-verifiable ADQL grammar: PEG Juaristi Campillo, Demleitner (ARI/GAVO) IVOA Interop 2019, Paris



Introduction PEG Caveats Future

What’s next?

Disclaimer: the development shown here is not settled
and it will take a bit of time until it becomes stable.
The adequate people should discuss its feasibility in the (near)
future
Our suggestion, should the usage of this definition become
part of the standard, would be doing it starting from ADQL
2.2.
Dave Morris will give more details on that in his talk.

Machine-verifiable ADQL grammar: PEG Juaristi Campillo, Demleitner (ARI/GAVO) IVOA Interop 2019, Paris



The end

Thanks for your attention

Questions, suggestions, any other feedback...
Any help is welcome!
Feel free to clone the repository, report issues and create your
pull requests.
You can drop us an email: contact me at
juaristi@uni-heidelberg.de or Markus Demleitner at
msdemlei@ari.uni-heidelberg.de.

Machine-verifiable ADQL grammar: PEG Juaristi Campillo, Demleitner (ARI/GAVO) IVOA Interop 2019, Paris

juaristi@uni-heidelberg.de
msdemlei@ari.uni-heidelberg.de

	Introduction
	PEG
	Outline
	Implementation

	Caveats
	Small preface
	General considerations
	Specific issues

	Future
	Appendix
	The end


