& GAVO

ARl ITA LSW VIRTUAL OBSERVATORY

Proposal for a machine-verifiable version of

the ADQL grammar
A case for PEG

Jon Juaristi Campilllo!'? Markus Demleitner!-?

L Astronomisches Rechen-Institut, Zentrum fiir Astronomie, Universitat
Heidelberg

2German Astrophysical Virtual Observatory

2019 IVOA Interop meeting, 16 May, Observatoire de Paris

Machine-verifiable ADQL grammar: PEG RITES TN I DRI EH S T PN YA er:\V/o)] IVOA Interop 2019, Paris

Contents

© Introduction

© PEG

@ Outline
@ Implementation

© Caveats
@ Small preface
@ General considerations
@ Specific issues

Q Future

Machine-verifiable ADQL grammar: PEG RITESTNeET T | DRI EH S T PN N YA er:\V/o)] IVOA Interop 2019, Paris

Introduction
°

Context

e ADQL grammar is defined using Backus-Naur Form (BNF)...

@ ...which is not machine-verifiable.

@ ldeas about writing a machine-verifiable version have been
around.

e We suggest Parsing Expression Grammar (PEG) as an
alternative.

Machine-verifiable ADQL grammar: PEG RITES TN I DRI EH S T PN YA er:\V/o)] IVOA Interop 2019, Paris

Outline

What is PEG?

Parsing Expression Grammar

Proposed by Brian Ford
(MIT) in 20041

“Recognition-based formal
foundation for describing
machine-oriented syntax”
Straightforward syntax:
slightly differing from BNF. .

Both lexing and parsing.

Figure: PEG defined in PEG

'https://bford.info/pub/lang/peg
Machine-verifiable ADQL grammar: PEG RIESTNeET T I M I EH S TR PN N YA er:\V/o)] IVOA Interop 2019, Paris

https://bford.info/pub/lang/peg

Outline

Characteristics

There are a couple of features which stand out compared to BNF:
@ Choice operator (|) is not present.
@ Replaced by ordered choice (/) instead.

@ No longest match option: ordered choice means it goes for
the first match every time.

@ Has both negative (!) and positive (&) lookahead operators

Machine-verifiable ADQL grammar: PEG RITES TN I DRI EH S T PN YA er:\V/o)] IVOA Interop 2019, Paris

Implementation

Our development

@ We have written a PEG definition of the ADQL grammar
(following the 2.1 draft).

@ Based on first suggestion done by Grégory Mantelet (CDS) in
April 2017.2

o Tested using the Arpeggio tool created by Igor Dejanovic.?

Available at the 1yonetia project originally maintained by Dave
Morris (ROE) under the src/peg folder:
https://github.com/ivoa/lyonetia/tree/master/src/peg

http://mail.ivoa.net/pipermail/dal/2017-April/007667.html
*http://github. com/textX/Arpeggio
Machine-verifiable ADQL grammar: PEG RITESTNeET T I DRI EH S TR AN N YA e\ Vo)] IVOA Interop 2019, Paris

https://github.com/ivoa/lyonetia/tree/master/src/peg
http://mail.ivoa.net/pipermail/dal/2017-April/007667.html
http://github.com/textX/Arpeggio

Caveats
°

Small preface

Preface

Before the things to take into account are shown, some small

notes:
@ We have had some issues translating the BNF definition into
PEG.
@ The most important ones that should be discused will be
noted here.

@ This will serve as a guide for future developments

@ Ways to fix these quirks should be addressed as soon as
possible.

Machine-verifiable ADQL grammar: PEG RITES TN I DRI EH S T PN YA er:\V/o)] IVOA Interop 2019, Paris

Caveats
°

General considerations

General considerations

Tried to keep close to the BNF, but many things work differently.
@ Some rules have been rewritten due to PEG's nature.

@ Biggest (and most obvious) change: terminals are not rules
anymore.

Not alphabetically ordered.

Whitespace management: special rules to check single,
multiple, newline, etc.

@ Some errors found in the BNF have been fixed, e.g., HAVING
depends on GROUP BY.

Machine-verifiable ADQL grammar: PEG RITES TN I DRI EH S T PN YA er:\V/o)] IVOA Interop 2019, Paris

Caveats
©0000

Specific issues

Longest match

@ Not available

@ Ordered choice, due to it own nature, looks for the first
matching pattern.

@ Existing rules needed to be adapted accordingly and
modularised (i.e., more rules!).

@ Ambiguous parameters can be affected by this (we have had
problems with value_expression).

Machine-verifiable ADQL grammar: PEG RITES TN I DRI EH S T PN YA er:\V/o)] IVOA Interop 2019, Paris

Caveats
0®000

Specific issues

Tokenisation

@ Generally works fine: terms are divided accordingly.

@ Issues when defining identifiers which contain reserved
keywords.

@ Currently solved but worth a look.
Example of a faulty string we had: USER_TABLE
@ The parser matches the SQL reserved keyword USER.

o It will fail, when the whole string is actually correct.

Machine-verifiable ADQL grammar: PEG RITES TN I DRI EH S T PN YA er:\V/o)] IVOA Interop 2019, Paris

Caveats
0000

Specific issues

Left recursion

@ PEG is left-recursive and the parsing works left-to-right
top-down.

@ Well-formed PEG shouldn’t have left recursion.

@ Must be taken into account when writing new rules or fixing
the existing ones.

Example: rule A <= A 'a' / 'b'

e Will infinitely recurse until the parser complains (maximum
recursion depth exceeded).

@ In order to fix it, it should be rewritten as A <- 'b' 'a'x

Machine-verifiable ADQL grammar: PEG RITES TN I DRI EH S T PN YA er:\V/o)] IVOA Interop 2019, Paris

Caveats
0000

Specific issues

Testing

@ Tests inherited from the original 1yonetia BNF solution have
been used (and in some cases, fixed).

@ A series of tests solely dedicated to whitespaces, one of the
tricky parts of PEG, have also been added.

@ New tests which delve into cases battling other PEG quirks.

@ Not all properties of the grammar are covered: more tests
are needed.

Machine-verifiable ADQL grammar: PEG RITES TN I DRI EH S T PN YA er:\V/o)] IVOA Interop 2019, Paris

Caveats
0000e

Specific issues

Arpeggio

The tool we found where we could run our tests.

No particular reason for choosing it. Advantage: written in
Python, which we are familiar with.

@ It uses a custom PEG syntax: currently using a patched
converter.

Suggestions for using another tool (or creating one) for
validation purposes are more than welcome.

Machine-verifiable ADQL grammar: PEG RITES TN I DRI EH S T PN YA er:\V/o)] IVOA Interop 2019, Paris

Future
.

What’s next?

e Disclaimer: the development shown here is not settled
and it will take a bit of time until it becomes stable.

@ The adequate people should discuss its feasibility in the (near)
future

@ Our suggestion, should the usage of this definition become
part of the standard, would be doing it starting from ADQL
2.2.

@ Dave Morris will give more details on that in his talk.

Machine-verifiable ADQL grammar: PEG RITES TN I DRI EH S T PN YA er:\V/o)] IVOA Interop 2019, Paris

The end
°

Thanks for your attention

Questions, suggestions, any other feedback...
@ Any help is welcome!
@ Feel free to clone the repository, report issues and create your
pull requests.

@ You can drop us an email: contact me at
juaristi@uni-heidelberg.de or Markus Demleitner at
msdemlei@ari.uni-heidelberg.de.

IVOA Interop 2019, Paris

Machine-verifiable ADQL grammar: PEG RITES TN I DRI EH S T PN YA er:\V/o)]

juaristi@uni-heidelberg.de
msdemlei@ari.uni-heidelberg.de

	Introduction
	PEG
	Outline
	Implementation

	Caveats
	Small preface
	General considerations
	Specific issues

	Future
	Appendix
	The end

