

The ER-flow project and Astronomical Workflows ***

Current status and future perspectives

On behalf of the Astro Community in ER-flow and of the AstroCG in OGF

C. Vuerli, G. Taffoni, G. Castelli, F. Pasian, U. Becciani, A. Costa, E. Sciacca INAF – Istituto Nazionale di Astrofisica

Outline

- The ER-flow project
 - Project overview
- The Astro Community in ER-flow
 - Applications porting (WP5)
 - Data sharing / interoperability (WP4)
 - Training & dissemination (WP2)
 - Established collaborations
- Future perspectives
 - Key Concepts
 - The STARnet federation
 - Empowering the synergy between IVOA and projects, alliances, federations related to DCIs and Clouds
 - Astronomical projects currently in place and the new opportunities in Horizon 2020

The ER-flow project objectives

Community building

- 1: To build a European community of workflow developers and users

Workflow interoperability & dissemination

- 2: To migrate workflow based scientific applications of the supported research communities to the European Grid Infrastructure through the SHIWA Simulation Platform
- 3: To disseminate the workflow interoperability solution of the SHIWA project among the selected research communities and identify further research communities that need the simulation platform to run their experiments.

Interoperability of the scientific data in the workflow domain

- 4: To define requirements of the supported research communities on interoperability of the scientific data in the workflow domain identifying existing and missing protocols and standards needed to support this interoperability.
- 5: To write a study on the interoperability of the scientific data in the workflow domain.

The ER-flow project

- Web site: http://www.erflow.eu
- Start: September 1st, 2012
- End: August 31st, 2014
- Scientific Communities
 - Earth Science
 - Computational Chemistry
 - Heliophysics
 - Astrophysics

The ER-flow project

- Helps to build a collaborative European Research community
 - Training and dissemination play a key role
- Fosters the reuse of applications within and beyond scientific collaborations
- Technologies:
 - SHIWA repository: a database of workflows and related metadata
 - SHIWA web portal integrated in the workflows repository and with various workflow engines
 - SHIWA desktop: access via the user's computer
 - Various workflow engines already integrated with the SSP

Why Astro in ER-flow

- Modern astro experiments and projects require tight collaborations and imply complex computing models
 - Huge amount of data
 - to process \rightarrow DCIs
 - to archive and share → Data repositories, data preservation
 - Worldwide applications sharing, reuse and customization
 - Application repositories
 - Smart tools to access them
 - Data interoperability in an application sharing scenario

Astro Community in ER-flow

1st Year

- INAF Istituto Nazionale di Astrofisica (IT)
 - Leads the astro participation to ER-flow
 - Three INAF Institutes involved
 - Osservatorio Astronomico di Trieste
 - Osservatorio Astrofisico di Catania
 - Osservatorio Astronomico di Teramo
- University of Portsmouth (UK)
- Slovak Academy of Sciences (SK)

Astro Community in ER-flow

2nd Year: Participation extended to:

• IAA Granada (ES)

Contacts established with:

- CDS / Observatories of Strasbourg (FR)
- Observatory od Meudon Paris (FR)
- IFCA Santander (ES)

Participation in ER-flow WPs

- Astro participation meant to provide man power in:
 - WP2 (training and dissemination)
 - WP4 (data sharing and interoperability)
 - WP5 (application porting)
- Collaboration with WP3 to fix some technical problems impacting the successful porting of astro applications on SSP
 - Less effort in WP5
 - Priority to workflows generated through different WF systems

WP5: First Year

- Six astro applications ported on the SSP during the first year
- Workows coded in WS-PGRADE/gUSE (Web Services Parallel Grid Runtime and Developer Environment/Grid User Support Environment) architecture on SSP; some of them are meta-workows (i.e. composition of smaller workows, that could eventually be the building blocks for the creation of new meta-workows).
- Resources belonging to 4 Grid Virtual Organizations:
 - astro.vo.eu-egee.org (European astronomical catch-all VO)
 - inaf (Italian national VO for astronomy)
 - planck (VO dedicated to the ESA Planck satellite mission)
 - VOCE (Virtual Organisation for Central Europe)
- Use of gLite as Grid middlewere.

WP5: Second Year

- During Y2 the A&A community collaborated in the consolidation of the infrastructure:
 - A common SSO designed, i.e. same credentials to access different SGWs
 - Ditributed filesystem under evaluation: data shared between SGWs
 - Enhancement of the SGWs functionalities

WP5: Second Year

- New usage scenario motivated by:
 - The great amount of legacy software produced by the community
 - The tools and services developed within the VObs to access and share data
 - The large amount of astro workflows which use Tarevrna and Astro-Taverna able to manipulate data using the VObs services and tools
 - Workflows as the result of a cooperation between astronomers and computer scientists.
 - Some of them are building blocks for more complex operations

WP5: Second Year

• Goals:

- Astro Taverna WFs stored in the SHIWA repository
- Astro Taverna WFs tested in the SSP
- Production of more complex workflows (meta-workflows) starting from simple (building blocks) WFs

• Steps:

- WFs executed in their native WF management system
- WFs uploaded in the SHIWA repository (executables, metadata, docs, samples and test data)
- External links refer these workflows
- New users can import WFs in their local execution environment.
 - The STARnet federation offers a set of community portals used to test and run WFs

WP4: Data interoperability

- Tasks
 - T4.1: Virtual Data Object specification
 - T4.2: Data sets transfer
 - T4.3: Data generation and error recovery
 - T4.4: Data semantics and WF specification
- Completed Deliverables & Milestones
 - D4.1 (Virtual Data Objects specification) at M8
 - MS4.1 (Data objects transfer service) at M12
 - D4.2 (Study of VDOs generation and error recovery) at M18
- Coming soon
 - D4.3 (Study of domain semantic data and workflow description, M22) (work in progress)
 - MS4.2: Interoperability recommendations (M24)

WP2: Training / dissemination

- INAF

 NATIONAL INSTRUKE

 NATIONAL INSTRUKE
- <u>1st Year</u>: Dissemination events organized in the context of the applications gathering campaign
 - Presentation of the SHIWA technology and of the SSP to a wide audience
 - Restricted meetings with potential application providers
 - Porting activity planning

Date	Description
25-29 Nov 2012	University of Portsmouth (UK) – LaSMoG application
11-13 Dec 2012	SAS Bratislava – COMCAPT and MESTREAM applications
7-9 Jan 2013	INAF Teramo – FRANEC/BaSTI application
11-15 Feb 2013	INAF Catania – Workshop for workflow developers and end users
17-23 Feb 2013	University of Portsmouth (UK) – New applications for the 2 nd year
18-19 Mar 2013	CDS Strasbourg – VObs – ER-flow collaboration; applications for the 2 nd year
20-21 Mar 2013	OBSPM Paris – applications for the 2 nd year
11-17 May 2013	IVOA interoperability Heidelberg – Presentation of the project to IVOA members
16-17 Jul 2013	IAA Granada – Workflows and applications for the 2 nd year

WP2: Training / dissemination

2nd Year

- VO&Friends training event (Catania, 17 19 December 2013)
 - Project presentation
 - Hands-on session (deploy and test of WF)
- STARnet meeting
 - Project presentation
- IVOA interoperability meeting Spring 2014
 - Project presentation

WP2: Training / dissemination

Publications:

- A&A overview on application porting (JGC)
- Special issue on PASP
- ADASS 2014
- ER-flow Communities paper
 - In preparation

Established collaborations

- European level partners:
 - STARnet (http://www.oact.inaf.it/STARnet/)
 - IVOA : International Virtual Observatory Alliance (http://www.ivoa.net/)
- National level partners (in Italy):
 - VObs.it : Italian Virtual Observatory (http://vobs.astro.it/)
 - IA2 : National Astronomical Archive Center (http://ia2.oats.inaf.it/)

The future

Key Concepts

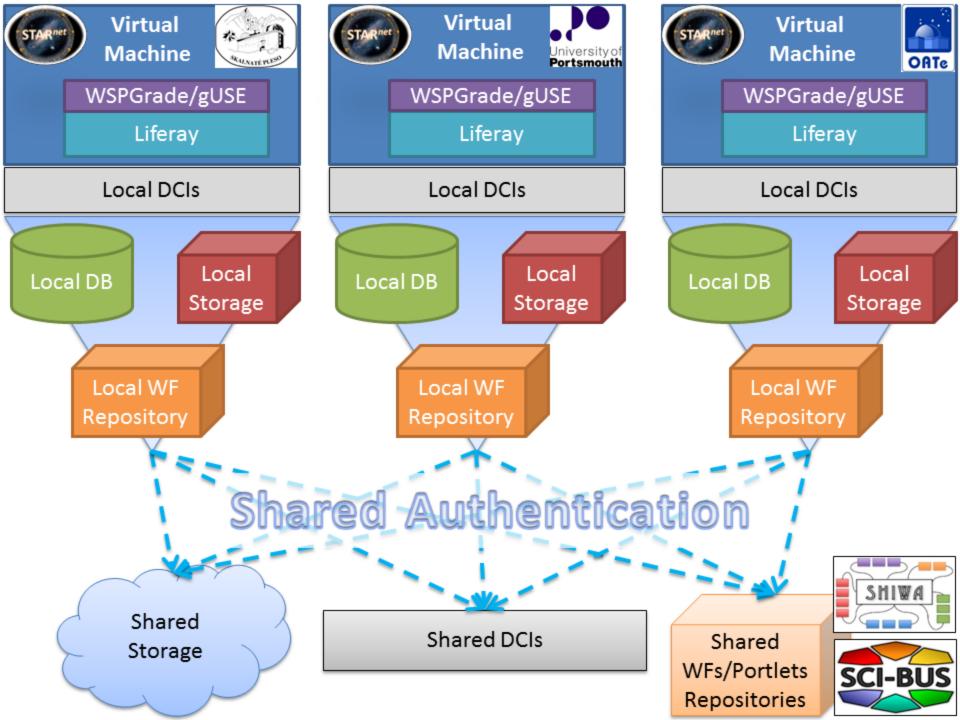
- 1) The strategic importance of workflows in astronomy could increase in the forthcoming years and become a fundamental tool for the scientific production, but this requires powerful distributed infrastructures able to:
 - 1.1) Combine workflows coming from different workflow systems
 - 1.2) Access an adequate amount of resources (hardware, software, data)
 - 1.3) Provide smart tools to end users to access and use such kind of resources (e.g. Science Gateways)
- 2) The data sharing / data interoperability in distributed workflow environments built on top of infrastructures as depicted above could become crucial in the next years

The STARnet federation

- Conceived at INAF Catania (U. Becciani)
- Science Gateway European Federation
- Liferay, gUSE/WS-PGRADE
- Local clusters + DCIs + Clouds
- ER-flow + SCIBUS Spin Off
- MoUs subscribed by federating partners

STAR^{net} Gateway Federation Definition

Technology.


- Liferay/WS-PGRADE, gUse, SHIWA Repository
- Local and distributed DCIs
 Maintenance.
- FrontEnd/BackEnd Virtual Machines
- Master Virtual Machines with Local Customization included (configuration file Enab/Disab. Portlets and services)
- Master maintenance/update → INAF (OACt)

Shared Services

- Single Sign On (SSO)
- Workflows Sharing (SHIWA repository)
- Cloud Data

Local account

• Data will be preserved: each federated SG mounts external DB exported by the physical machine (e.g. /mnt/STARnet)

IVOA, DCIs/Clouds, H2020

- On the IVOA side:
 - The GWS Working Group
- On the DCIs / Clouds side
 - EGI
 - The Astro CG (Community Group) in OGF
 - PRACE
- ...and a number of big Astro Projects
 - Via Lactea
 - SKA and the Radio Community
 - CTA and the HE Astrophysics Community
 - Euclid and the Space Community

IVOA, DCIs/Clouds, H2020

- New opportunities will be open by Horizon 2020
 - Many H2020 project proposals could be conceived in the framework of the big projects previously mentioned
 - But also alliances and federations like IVOA and STARnet could play the role of promoters / stakeholders of project proposals in H2020
 - Some key questions about H2020 should get an answer in the coming months

Some considerations

- INAF SPANORISICA SPANORISICA
- A centralized coordination in the landscape that is going to emerge seems to be really hard
- Nevertheless some kind of lightweight coordination for astronomy is desirable, aiming at:
 - Carrying out technological studies concerning the exposed key concepts 1 [1,1, 1.2, 1.3] an 2
 - Monitoring the emerging technologies
 - Producing feasibility studies, technological reports, technological recommendations, papers, etc...to be distributed worldwide
 - Promoting project proposals in response to the H2020 calls trying to involve the big astro projects as project partners

Some considerations

- INAF
- Lightweight coordination for astronomy jointly led by data players and DCIs / Clouds players
- On the data side
 - IVOA
- On the DCIs / Clouds side
 - The AstroCG @ OGF?
 - The Astro Community @ EGI?
- And what about HPC and PRACE ?
- This liaison role is already recognized to GWS@IVOA on one side and to AstroCG@OGF on the other side but the liaison activity is currently very limited
 - Shall we attempt a relaunch if this activity in the new (and challenging) emerging scenario?

