

Studying low-mass stars in the VO... and other things! (yet another change of title)

Amelia Bayo (transiting from MPIA to Valparaiso)

Disclaimer: Blames are more likely on me... good ideas, if any, most likely coming from Enrique Solano or Carlos Rodrigo

Outline

From a hybrid-user perspective (very biased, and not pretending AT ALL to be complete):

- What kind of science cases have benefited HUGELY from the VO initiative?
- Where is ample room for improvement?
- Could I make some suggestions?

- Data related:
 - CDS wonders vs pain of getting, for example, ApJS IOP tables

VizieR Server Server: http://vizier.u-strasbg.fr/ Row Selection Cone Selection Object Name: RA: degrees \$ (2000)		rowser for 33 recno ID	LA+A_560_A76_clusters Name 1 8H 131	Cat	CLON
VizieR Server Server: http://vizier.u-strasbg.fr/ Row Selection Cone Selection Object Name: RA: degrees \$ (2000)		recno ID	Name 1 BH 131	Cat	CLON
Server: http://vizier.u-strasbg.fr/		1 2	1 BH 131	100 B 1 B 10	
Server: http://vizier.u-strasbg.fr/ Row Selection Object Name: RA: degrees (2000)		2	A 100 000 000 000 000 0000	(01),13	300.116
Row Selection Object Name: RA: degrees (2000)			2 [MCM2005b] 32	09	300.131
Cone Selection Object Name: RA: degrees (2000)		3	3 BH 132	01	300.263
Cone Selection Object Name: Resolve RA: degrees ÷ ((2000)		9 5	4 VVV CL013 5 (5582007) 1616	14	300.343
Object Name: Resolve	5	6	5 [FSK2007] 1616 6 [MCM2005h] 33	11	300.507
RA: degrees \$ ((2000)	7	7	7 Ruprecht 105	01	300.885
RA: degrees ‡ ((2000)	8	8	8 G3CC 5	17	300,913
	9	9	9 [D852003] 77	05	300.966
(10	10	10 VVV CL015	14	300.967
Dec: degrees \$ ((2000)	11	11	11 VVV CL016	14	300.984
	12	12	12 [DB52003] 78	0.5	301.118
Radius: degrees \$	13	13	13 VVV CL017	14,17	301.137
0.000	14	14	14 [FSR2007] 1622	11	301.416
All Rows	15	15	15 G3CC 6	17	301.643
Maximum Row Count: 50000 *	16	16	16 NGC 4609	01	301.895
	17	17	17 G3CC 7	17	301.947
Column Selection	10	10	18 Hogg 15	01	302.047
	20	20	19 VVV CL018 20 (INCM2005b) 34	14	302.158
Output Columns: all *	20	20	20 [MCM2005D] 34 21 [ESR2007] 1630	09	302.612
	22	22	22 [DR52003] 79	05	302.64
Catalogue Selection	23	23	23 [DB52003] 80	05	302.806
	24	24	24 Teutsch 109	02	303.652
By Category By Keyward Surveys Missions	25	25	25 G3CC 8	17	303.927
	26	26	26 G3CC 9	17	304.002
Keywords: J/A+A/560/A76	27	27	27 VVV CL019	14	304.805
Sub-Table Details Include Obsolete Tables	28	28	28 [MCM2005b] 35	09	304.845
	29	29	29 VVV CL020	14	304.87
Search Catalogues Cancel S	earch 30	30	30 G3CC 10	17	304.887
A Name Panularity Dessity Description	31	31	31 [DBS2003] 82	05	304.928
I/A+A/560/A76 1032 0 Catalog of stallar chistory in the inner	Galaxy (h 32	32	32 [DBS2003] 131	05,17	305.259
previous and a contract of contract constents in the intel	34	34	34 V/V C1021	14	305.277
	35	35	35 (DR\$2003) 132	05	305,321
	36	36	36 Danks 1	01.17	305.338
	37	37	37 VVV CL022	14	305.362
	38	38	38 [MCM2005b] 36	09	305.383
	39	39	39 Danks 2	01.17	305.392
	40	40	40 VVV CL023	14	305.438

- Data related:
 - CDS wonders vs pain of getting, for example, ApJS IOP tables

				TOPCAT(33): Table	Browser	
04370+2559 (A, B) 04385+2550 (A, B)	2	4.3 \sim K3-M1 C A \gg B 20, 21 18.9 M0 C A \gg B 22, 2	0 ¥			
CoKu Tau/3 (A, B)	2	2.05 M1 C A>B 1	~	1		
CZ Tau (A, B) 2	0.32	M3 W A\sim B 1	for 33: J A	+A 560 A76 clusters		
DD Tau (A, B) 2	0.56	M3+M3 C A \sim B 1	ID	Name	Cat	GLON
DF Tau (A, B) 2	0.09	M0.5+M3 C A \sim B 1	F. 1	BH 131	(01),13	300.116
DH Tau 2 15	M2+M2	C DH > DI 7, 8	2	[MCM2005b] 32	09	300.131
DK Tau (A, B) 2	2.30	K9+N1 C A > B 1, 7	, 3	8H 132	01	300.263
DQ Tau (A, B) 2	SB	K5 C A (SIM B 12	4	VVV CL013	14	300.343
F04192+2647 (A, B)	2	23.3 \Idots \Idots A > B 23	5	[FSR2007] 1616	11	300.474
FM Tau 2 37 3	6 M2	0,0 110058 110058 A / D 23	6	[MCM2005b] 33	09	300.507
FO Tau (A. B) 2	0.15	M24M2 C A leim B 1	7	Ruprecht 105	01	300.885
FO Tau (A, B) 2	0.76	M3+M3.5 C A \sim B 1. 17	8	G3CC 5	17	300.913
FS Tau (Aa, Ab, B)	3	0.23 (Aa, Ab), 20 (A-B) M1+M4 (Aa, Ab) C Aa > Ab 1, 24		[DBS2003] 77	05	300.966
FV Tau (A, B) 2	0.72	$K5+K6$ C A \sim B, $FV > FV/c$ 1	10	VVV (1015	14	300.984
FX Tau (A, B) 2	0.89	M1+M4 C+W A > B 1, 6	12	(DES2003) 78	14	301.118
FZ Tau 2 16.9	M0+K5	C FZ > FY 7, 8	13	V/V (1017	14.17	301,137
GG Tau (A, B) 4	10.3	\ldots C A \gg B 1	14	[FSR2007] 1622	11	301.416
GG Tau (Aa, Ab) 2	0.25	K7+M0.5 C Aa \gtrsim Ab 1	15	G3CC 6	17	301.643
GG Tau (Ba, Bb) 2	1.48	M5.5+M7.5 C Ba > Bb 1	16	NGC 4609	01	301.895
GH Tau (A, B) 2	0.31	M1.5+M2 C A \sim B 1	17	G3CC 7	17	301.947
GI Tau 2 12.9	K6	C GI \sim GK 5, 6	18	Hogg 15	01	302.047
GK Tau (A, B) 2	2.5		19	VVV CL018	14	302.158
Haro 6-37 (As Ab B)	0.33		20	[MCM2005b] 34	09	302.433
HE Tau (A B) 2	2.34	2.52(R, D), 0.53(Ra, RD) KITAL C $Ra > RD, R > D 1, 11$	21	[FSR2007] 1630	11	302.612
HN Tau (A, B) 2	3.11	K54M4 C A \g B 1	22	[DB52003] 79	05	302.64
HP Tau (A, B) 2	0.017	K2 C A > B 7, 8, 15	23	[DB52003] 80	05	302.806
IS Tau (A, B) 2	0.22	K7+M4.5 C+W A > B 1	24	Teutsch 109	02	303.652
IT Tau (A, B) 2	2.39	K3+M4 C A \gtrsim B 1, 6	25	G3CC 8	17	303.927
RW Aur (A, B, C)	3	1.42 (A-BC), 0.12 (B-C) K1+K5 (A, B) C A > B \gg C 1, 10	26	G3CC 9	17	304.002
T Tau (N, Sa, Sb)	3	0.70 (N-S), 0.1 (Sa-Sb) K0 C N \sim Sa \sim Sb 1, 3	27	VVV CL019	14	304.805
UX Tau (A, B, C)	4	5.86 (A-B), 2.63 (A-C) K5+M2+M5 C+W+W A > B, A \gg C 1	20	[MCM20050] 35	0.9	304.87
UX Tau (Ba, Bb) 2	0.138	M2 W Ba > Bb 11	30	C3CC 10	17	304.887
UY Aur (A, B) 2	0.88	NO+M2.5 C A \gtrsim B 1, 17	31	[DB\$2003] 82	05	304,928
UZ TAU (A, BA, BD)	4	SB (A), 3.54(A-Ba), 0.37 (Ba-BD) M1+M2+M2 C A > B, Ba \sim Bb 1, 13	32	[DRS2003] 131	05.17	305,259
V/10 Tau (A, B) Z	3.17	NU.5TM2 (TW A 1518 B 1 CR (30) 0.12 (30:0) 0.24 (30:0) 22400 (30:0) 840 0 5.0 5.0 5.1	33	[DB52003] 130	05	305.269
V807 Tau (AD, C, D)	3	SO (AD) , V.12 $(AD-C)$, V.24 $(AD-D)$ A2TAU (AD, C) WTC $D > C > AB 1, 4$ 0.20 (AD, B) , 0.4 $(Ba-B)$ V74M3 (AD, C) A B , Ba leim Bb 25 1	34	VVV CL021	14	305.277
V892 Tau (As. Ab. B)	3	0.06 (4.10 B9402 W As by b A or B 16.10	35	[DB52003] 132	0.5	305.321
V955 Tau (A. B) 2	0.33	KSewi C A > B 1	36	Danks 1	01,17	305.338
VY Tau (A, B) 2	0.66	NO W A > B 1	37	VVV CL022	14	305.362
XZ Tau (A, B) 2	0.30	N3+M1.5 C B > A 1	38	[MCM2005b] 36	09	305.383
ZZ Tau IRS 2	35	N4.5 C 22 IRS > 22 2	39	Danks 2	01,17	305.392
22 Tau (A, B) 2	0.04	N3 C A \gtrsim B 9	40	VVV CL023	14	305.438
a a service and the service of the s	sa na na ma		4			

- Data related:
 - CDS wonders vs pain of getting, for example, IOP tables
 - The "sasmirala" atlas

Asmus et al 2014

00	O TOPCAT(31):	Table Browser		
Ħ	🗮 🖸 🗙			
able I	Browser for 31: TAP 1 sasmin	rala.objects		Description
	name	raj2000	dej2000	
1	3C 390.3	280.5375	79.77139	PKS 2158-380/MCG-6-48-13 is a radio-loud lanticular calaxy at a radiohit of $z = 0.0334$ ($D = 140$ Mpc) with a Sy 2 nucleus fueron-
2	NGC 1275	49.95083	41.51167	cetty catalogue 2010 and was first studied in deal by flosbury very 1982. HST observations revealed three compact but resolved
3	NGC 6251	248.13333	82.53778	sources in the nucleur instead of one central sources (total extend 1 arcsec 0.7 km; PA 90'; house faint 1998
4	3C 305	222.33989	63.27055	zirbel utraviolet 1998), in addition, water maser emission was detected in this object Kondratko discovery 2006L No. Solizer data
5	NGC 5866	226.62292	55.76333	are available for PKS 2158-380, which was imaged with VISIR in the SIC filter in 2006 (van der wolk dust 2010). A compact MIR
6	Mrk 266NF	204.57414	48.27806	nucleus is weakly detected in the image. The low S/N prevents a quantitative analyses of the source morphology but the latter seems
7	Mrk 266SW	204.57213	48.27556	different than that seen in HST, as only one source was detected. Our nuclear photometry is consistent with the value in
8	M51a	202,46958	47.19528	(van der wolk dust 2010).
9	NGC 4258	184.73958	47.30389	[boyce_faint_1996] P. J. Boyce, M. J. Disney, F. Macchetto, A. Boksenberg, J. C. Blades, and C. D. Mackay. Faint object camera
10	Mrk 3	93,90167	71.0375	observations of complex nuclear structure in PKS 2158-380, A&A, 305 pp. 715, January 1996.
11	NGC 3147	154.22375	73.40083	Tosbury_very_1982] K. A. E. Fosbury, A. Boksenberg, M. A. J. Snigers, I. J. Danziger, M. J. Disney, W. M. Goss, M. V. Penston, W. Wanstaker, K. J. Wolfachard, and A. S. Wisson, Very extended invized as in radio galaxies i, a radio galaxie
12	4C +73.08	147.44108	73.23976	PKS 2158-380, MVRAS, 201 pp. 991–1008, December 1982.
13	M81	148.88833	69.06528	[kondratko_discovery_2006] P. T. Kondratko, L. J. Greenhill, J. M. Moran, J. E. J. Lovell, T. B. H. Kuiper, D. L. Jauncey, L. B.
14	UGC 5101	143.965	61.35306	Cameron, J. F. Gómez, C. Garcia-Miró, E. Moll, I. de Gregorio-Monsalvo, and E. Jiménez-Bailón. Discovery of water maser emission
15	NGC 3690E	172.14012	58.56294	in explicit ALSNS with r/u m antennas of NASA's deep space network. ApJ, 638 pp. 100–105, February 2006.
16	NGC 3690W	172.12925	58.56131	February 2010.
17	NGC 3998	179.48375	55.45361	[veron-cetty_catalogue_2010] MP. Véron-Cetty and P. Véron. A catalogue of guasars and active nuclei: 13th edition. A&A , 518 pp.
18	NGC 3982	179.11708	55.12528	10, July 2010.
19	NGC 3718	173.14542	53.06806	[Zrbe] utraviolet 1998] Esther L. Zirbel and Stell A. Baum. Ine utraviolet continuum emission of radio galaxies. L description of sources from the hubble source tolescore architecture. 4 or 5, 114 pp. 127. Exercutery 1998.
20	IRAS 08572+3915	135.10583	39.065	startes non on house space enstance archives, Apro, 114 pp. 177, Pedidary 1860.
21	PKS 2158-380	330.32125	-37.77333	1
22	NGC 7130	327.08125	-34.95111	
23	NGC 7172	330.50792	-31.86972	Images
24	IC 1459	344.29417	-36.46222	
25	NGC 7496	347.44708	-43.42806	
26	NGC 7552	349.045	-42.58472	
27	NGC 7582	349.59792	-42.37056	
28	NGC 7590	349.72833	-42.23917	
29	NGC 7314	338.9425	-26.05056	
30	PKS 2354-35	359.25292	-34.75917	50
31	ESO 602-25	337.85625	-19.03444	
32	MR 2251-178	343.52417	-17.58194	
33	Mrk 915	339.19375	-12.54528	
34	3C 445	335.95625	-2.10361	e
35	Mrk 926	346.18125	-8.68583	
36	NGC 7592W	349.59084	-4.41574	
37	ESO 297-18	24.655	-40.01139	
				URL: http://dc.zah.uni-heidelberg.de/sasmirala/q/prod/qp/PKS%202158-380

- Data related:
 - CDS wonders vs pain of getting, for example, IOP tables
 - The "sasmirala" atlas
- Tool related (development)
 - The final AVO science demo

√ 17657 sources
 with good quality
 MSX photometry
 8-14 micron

✓ 3278 with
 SIMBAD class.
 ✓ 155 known PNe
 or Post-AGB stars
 ✓ Confusion with
 other type of
 sources

2005 AVO demo: the PPNe case

If we harden our selection criteria: $\sqrt{|b|} \ge 2$ degrees $\sqrt{[A]-[C]} \ge 0.7$ $\sqrt{[C]-[D]} \ge 0.7$

Large majority of PNe and Post-AGB stars... and many new candidates!

2005 AVO demo: the PPNe case

2005 AVO demo: the PPNe case

- Data related:
 - CDS wonders vs pain of getting, for example, IOP tables
 - The "sasmirala" atlas
- Tool related (development)
 - The final AVO science demo
 - The birth of VOSA (and its continuous development)

Warning! self-promotion

Cool objects: From SED fitting to age estimation.

A. Bayo¹, D. Barrado y Navascués¹, M. Morales–Calderón¹, E. Solano^{1,2}, C. Rodrigo^{1,2}, R. Gutiérrez^{1,2}, F. Allard³

¹Laboratorio de Astrofísica Espacial y Física Fundamental (LAEFF-INTA), P.O. 50727, E-28080 Madrid, Spain ²Spanish Virtual Observatory, Spain ³Centre de Recherche Astronomique de Lyon (CRAL), Ecole Normale Supérieure de Lyon, 69364, Lyon, France

Abstract

One of the typical tools to estimate physical parameters of almost any kind of astronomical object is to perform a fitting of synthetic spectra or photometry extracted from theoretical models to observational data. This process usually involves working with multiwavelength data, which is one of the cornerstones of the VO philosophy. From this kind of studies, when combining with theoretical isochrones one can even estimate ranges of ages. We present the results from a code designed to perform χ^2 tests following two different methodologies to fit observational data: using grids of models (on their synthetic photometry), and combinations of blackbodies (including modified blackbodies). In particular, we use the models by the Lyon group. Some steps in this process can already be done in a VO environment, and the rest are in the process of development. We must note that this kind of surveys in star forming regions, clusters, etc. produce a huge amount of data, very tedious to analyse using the traditional methodology. Therefore this is an ideal example of the VO capabilities.

TOPCAT(4): Table Browser TOPCAT(4): Table Browser Subsets Help Image: Control in the state of the	TOPCAT(4): Table Browser Image: Control of the control o
e Subsets Help ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	
Name 11 el1 12 el2 13 el3 14 el4 1 1 10,703 10,255 0,004 10,214 0,009 10,266 0,0.01 2 100002 9,935 0,003 10,042 0,003 9,93 0,009 9,888 0,008	Name I1 el1 I2 el2 I3 el3 I4 el4 1 L0r0001 10,228 0,003 10,255 0,004 10,214 0,009 10,206 0,01 2 L0r0002 9.935 0.003 10,042 0.003 9.93 0.009 9.88 0.008
1 LOH001 10,228 0,003 10,255 0,004 10,214 0,009 10,206 0,01 * 2 LOH002 9,935 0,003 10,042 0,003 9,93 0,009 9,88 0,008	1 L0n001 10,228 0,003 10,255 0,004 10,214 0,009 10,206 0,01 2 L0n002 9,935 0,003 10,042 0,003 9,93 0,009 9,88 0,008
z LUNUUZ 9,935 0,003 10,042 0,003 9,93 0,009 9,88 0,008	2 TO DO 2 T A AKS T D DOK T D DAZ T D DOK 1 A AK 1 D DOK 1 A AK 1 D DOK
1 1 DEDOT 1 10 M 1 0 001 1 10 007 1 0 007 10 001 10 001 10 171 0 01	2 10/002 10 252 0 002 10 212 0 004 10 220 0 01 10 171 0 01
	4 L0n004 10,287 0,003 10,249 0,004 10,185 0,009 10,127 0,009

Building the multiwavelength SEDs (B) SPECVIEW

V March 2007

LACFF

Warning! self-promotion

CAT(4): Table Bro

<u>F</u> ile <u>S</u>	ubsets <u>H</u>	elp								
		N C								
Table	Browser fo	or 4: miembro	os.list							
	Name	1	el1	12	el2	13	el3	14	el4	
1	LOri001	10,228	0,003	10,255	0,004	10,214	0,009	10,206	0,01	-
2	LOri002	9,935	0,003	10,042	0,003	9,93	0,009	9,88	0,008	
3	LOri003	10,262	0,003	10,318	0,004	10,239	0,01	10,171	0,01	-
4	LOri004	10,287	0,003	10,249	0,004	10,185	0,009	10,127	0,009	
5	LOri005	10,204	0,003	10,321	0,004	10,218	0,009	10,158	0,009	
6	LOri006	10,454	0,003	10,454	0,004	10,399	0,011	10,319	0,01	
7	LOri007	10,668	0,004	10,636	0,004	10,615	0,012	10,482	0,013	
8	LOri008	10,498	0,003	10,495	0,004	10,44	0,011	10,256	0,012	
9	LOri009	10,834	0,004	10,873	0,005	10,788	0,012	10,743	0,014	
10	LOri010	10,916	0,004	10,953	0,005	10,733	0,012	10,839	0,016	
11	LOri011	10,378	0,003	10,521	0,004	10,444	0,011	10,326	0,011	
12	LOri012	10,619	0,003	10,758	0,005	10,627	0,012	10,543	0,012	
13	LOri013	10,511	0,003	10,48	0,004	10,467	0,011	10,344	0,012	
14	LOri014	10,902	0,004	10,904	0,005	10,839	0,014	10,797	0,014	
15	LOri015	10,808	0,004	10,886	0,005	10,824	0,013	10,882	0,015	
16	LOri016	10,833	0,004	10,817	0,006	10,378	0,011	10,7	0,014	
17	LOri017	11,165	0,005	11,206	0,006	11,173	0,017	11,072	0,019	
18	LOri018	10,804	0,004	10,798	0,005	10,722	0,012	10,636	0,014	
19	LOri019	10,88	0,004	10,866	0,005	10,767	0,013	10,788	0,018	
20	LOri020	10,676	0,003	10,609	0,004	10,573	0,012	10,485	0,012	
21	LOri021	11,129	0,004	11,107	0,005	11,081	0,016	11,065	0,019	
22	LOri022	11,01	0,004	10,985	0,005	10,895	0,014	10,683	0,014	
23	LOri023	11,09	0,004	11,114	0,005	11,071	0,015	10,928	0,018	
4	1.000.004	44.040	L 0.004	44.040	0.00F	40.070	0.04F	40.077	A 640	

Photometric data in four bands.

arch.isp?submitGetData=Retrieve+Marked+Data

s=0 -0 object1.zip

http://sdc.laeff.inta.es/vose

&filas_ssap=all&filas_str

Building the multiwavelength SEDs File Display Copiot Preferences Help Kanis Taris NAVELENCTH ≠|FLUX ▼ 20.464716 0.047418613 Print (O) S F U SPECVIEW 00 00 0 ns Graphics Hel File Analysis Edit Op X 8 10 8-* 4 -2 66 2 Osplaving bayo/LOri/LOri023.sedperl 💌 Y fimits (K): 110. -□ :V-ha 0.03802754 Filog Filog evelopath in air: IV :loc + + - 10 • + -SPD SPLAT 0.03 20.025 VOSpe 15 20 KE A # 0 0 OSpec Spectra Viewer • • • • • VOSPEC in 50 5 weitungen einichten opparie

Warning! self-promotion

And VOSA came to life!

њу

	Spanish Virl	tual Observatory	• Theoretico	il models										Funded by	60				
svo						vo	SA								INO ACIA NACIONI				
	Sessions	Upload files	Coordina	ates \	VO Phot	Mo	del Fit	н	R Diag.	Save Result	i Help	Log	out						
				Uj It Please	pload your must corre a, include a	own data spond to description	a file (n the req on for y	max size= uired data our file, it	500Kb) format is required	4									
				File 1 Desc File 1 Uple	to upload: cription: type: xed	(F Fluxes	Смер	nitudes	Browse										
						Upload	led fil	es											
			Date 10/06 11:45:00	Filename fichero_inp	ut_fnal_al_e	nors_correct	ed.asci	Descrip Allerrors	A revised Si	ction tow Retrieve Deb	te į								
						LO	ri001												
		Eller OFUE	F	Position: (8	3.446583,9.	9273611)	Distan	ce: 400. p	c A ₂ : 0.36	209598									
		λ _{med} : 0582 Flux: 1.447193 ΔF: 5.788771	8228 e-14 1.345174e- e-17 5.380698e-	12518 -14 1.04808 -17 9.22301	16504 9e-14 7.563 0e-17 6.655	21 127e-15 3 728e-17 2	1539 0610054 5712444	35634 -15 5.502 -17 6.603	451 778e-16 2.1 333e-19 3.4	110 57593 28458e-16 8.649 05533e-19 3.113	79594 35e-17 2.54398 89e-19 1.01759	7e-17 5e-19							
						LO	ri002												
		* *	Spanish	Virtual Ot	bservator	y The	oretic	al mode	ls										P.4
	1	SVO																	
											VOS	SA							2
				Ses	sions	Upload	l files	Coo	rdinates	VO Phot	Mode	il Fit H	IR Diag.	Save	Results	Help	Log	gout	
		Dalessio Coelho NextGen	*								VO phot	ometry							
		cond00 dusty00	•	Object				2MA	SS All-Sk	y Point So <u>urc</u>	Catalog		1	Tycho-2 Ca	talogue	Stro	mgren uvby	-beta Catalog	ue
		Kurucz Services	Label	RA	DEC	Save	Δ	RA	DEC	н	J	Ks	Save	Δ RA	DEC B	V Save)EC u v I	ьу
		Files TSAP	LOHOO1	83:26:47	9:55:38	N	0.31	83:26:48	9:55:38	10.595±0.022	11.297±0.022	10.426±0.021							
		Photometry fit Isochrones	LO4003	83:58:51	9:58:31	N N	0.35	83:58:51	9:56:30	10.32940.023	11.416±0.023	10.524±0.023							
Bavo et al. (2008)		LOn004	83:56:53	9:45:50	1	0.49	83:56:53	9:45:49	10.780±0.023	11.359±0.022	10.548±0.021							
			LO4006	83:28:24	9:43:08	V	0.14	83:28:24	9:43:08	10.549±0.022	11.378±0.022	10.354±0.023							

-	Spanish vir	tual observatory	Incorettee	at models										Funded by	010		m	mon
SVO)					v	OSA								NDA NDA NVICION		ЦЯ	:41
	Sessions	Upload files	Coordin	atos 🛛	VO Phot	Me	odel Fit	i Hi	R Diag.	Save Result	s Help	Log	out				1	
				U It Please	pload your t must corre e, include a	r own da espond to descript	ta file (the rec ion for y	max size= quired data your file, it	500Kb) format is required	1								
				File 1 Des File 1 Upk	to upload: cription: type: sad	(F Fluxe	s C Ma	gnitudes	Browse									
						Uploa	nded fi	les										
			Date 10/06/11:45:00	Filename fichero_ing	o out_final_al_e	enco_encn	cted.asci	Descrip All errors r	Annevised Sa	ction ow Retrieve Dek	ite							
						LC	Dri001											
		Eller CEUT B	007.1	Position: (8	3.446583,9	9273611) Distar	nce: 400. p	c A _v : 0.362	09598	C 13 1840							
		λ _{med} : 6582 Flux: 1.447193e-1 ΔF: 5.788771e-1	8228 4 1.345174e 7 5.380698e	12518 14 1.04808 17 9.22301	16504 9e-14 7.563 0e-17 6.655	1 327e-15 728e-17	21539 3.081005 2.571244	35634 e-15 5.502 e-17 6.603	451 778e-16 2.1 333e-19 3.4	10 57593 28458e-16 8.649 35533e-19 3.113	79594 135e-17 2.54398 189e-19 1.01759	i7e-17 ISe-19						
						LC	Dri002											
		A A	Spanish	Virtual O	bservator	ry Th	eoretia	al model	ls									
		SVO									VO	SA						
				Ses	sions	Uploa	d files	Coo	rdinates	VO Phot.	Mode	el Fit H	IR Diag.	Save	Results	Help	Logou	ut
		Dalessio									VO phot	ometry						
		dusty00		Object				2MA	SS All-Sky	Point Sourc	e Catalog		т	ycho-2 Ca	talogue	Stron	ngren uvby-be (Hauck+ 1	eta Catalogue 1997)
		Services	Label	RA	DEC	Save	Δ	RA	DEC	н	J	Ks	Save	Δ RA	DEC B V	/ Save	∆ RA DEC	uvby
		TSAP P	L0x001	83:26:47	9:55:38	¥	0.31	83:26:48	9:55:38	10.595±0.022	11.297±0.022	10.426±0.021						
		Photometry fit I Isochrones	LOH003	83:58:51	9:58:31	V.	0.35	83:58:51	9:58:30	10.725±0.022	11.418±0.023	10.524±0.023						
Bavo et al	(2008)		LOH004	83:56:53	9:45:50	v	0.49	83:56:53	9:45:49	10.780±0.023	11.359±0.022	10.548±0.021						
Dayo or al.	(2000)		LOx005	83:28:24	9:43:08	v	0.14	83:28:24	9:43:08	10.549±0.022	11.378±0.022	10.354±0.023						

And VOSA came to life!

IT'S ALIVE

And there was room for improvement

- "Limited to" / "conceived for" stars and brown dwarfs, what about older sources? and more massive? and science-fiction uhmm extragalactic studies?
- Reflected in the available collections of models: Kurucz, NextGen, COND, DUSTY and not many more
- Brute force fitting but no study of the relevance of the individual parameters to the fit
- No A_V estimation
- Not design to work with a single object (input format)
- Variety of catalogs offered but you can always do better and also look for more than photometry
- No Isochrone interpolation, make it even more VO!
- Anything else in the wish-list?

•		Files	Objects VO Pho	D Analyzer	Chi-2 Fit Bayes	Analysis HR	Diag. Save R	esults Lo	9	Help	Logout			
		Stars and brown	dwarfs (Change)		File: C69	only confirmed	I spec (info) (Ch	ange)						
	•		Upload your ov	vn data file (max s	size=500Kb)	Create a	single object	t data file						
			It must comply v (A small utility is an original file in input format)	vith the required da available to help y ascii (csv) or votat	ita format ou to convert ble to VOSA	Just write of one ob create a s format. RA and D	the coordina ject that you ingle object o EC are compu	tes (in decim want to stud data file with Ilsory.	al degrees y and we v the adequ	s) will late				•
			File to upload:	Browse No file selec	cted.			(dea)						
			Description:			RA:		(deg)						•
	•		File type:	 Fluxes (erg/cm2/s// Fluxes (Jy) 	A)	Obi.Nam	e:	(deg)						
				Magnitudes		Descript	ion:					N		
			Upload			Create							a. ()	
					You	r files								l
		Folder	Filename			De	scrip	Last Used	Obj.type	N.Obj.				
		Default folder	C69_spec_cont	firmed_members_as_ir	n_07_03_2013.input	tVOSA CE	9 only nfirmed spec	2013-08-26 22:02:42	star	171	Selected			
			if you cha	nge something remem	ber to click the sa	ve button						100		
			File prop	perties				Act	ions					
			Filenar	me: C69_spec_co	onfirmed_members	s_as_in_07_03	2013.inputVOS	SA s	ave Show O	bjects				
			Upload	ied: 2013-03-07 1	0:13:45			V	OSA Input C	Delete				
			Last used:	2013-08-26 2	2:02:42									
			Obj. Ty	ype: star										
			N.	171										

SVO	Lines			•	http://s	<u>SVC</u>	02.cal	o.inta-	<u>csic.es</u>	<u>s/theo</u>	ry/vosa
	None of	VO SED Anal	yzer •	And and a second				A BARRE			
	Files Objects Stars and brown dwarfs	VO Phot.	SED Chi-2 Fit	Bayes Analysis HR	Diag. Save Results		log	Help	Logout		
			Coordinates	Distances Extin	iction						
			Obj	iect coordinates							* :
	T	nis option allows you t	o query Sesame VO s	ervice to search for ob	ject coordinates using	the o	object name				
		ke a look to the same	spanding Hale Castler	and Cradite Dags for	more information						
	14	ske a look to the corre	sponding Help Section	and Credits Page for	more information.						
			Sear	rch for Obj. Coordinates							
			Mar	k all: User							
			Unn	mark all: User						•• ••	
		Fi	nal	Us	er Data		Se	same			
	Object	RA (deg)	DEC (deg)	RA (deg)	DEC (deg)		RA (deg)	DEC (deg)			
	C69-IRAC-001	84.2339859	9.5229902	84.2339859	9.5229902	۷	??	??			
	C69-IRAC-002	84.230545	9.7799978	84.230545	9.7799978	۷	??	??		100 AN	
	C69-IRAC-003	83.962204	9.6491137	83.962204	9.6491137	۷	??	??			
	C69-IRAC-004	83.8685303	10.0409756	83.8685303	10.0409756	۷	??	??			
	C69-IRAC-005	83.8555679	9.9132547	83.8555679	9.9132547	0	??	??			
	C69-IRAC-006	83.7191086	9.9305677	83.7191086	9.9305677	۲	??	??			
	C69-IRAC-007	83.516304	9.8700848	83.516304	9.8700848	۷	??	??		100.000	
	C69-Sub-004	83.79483333333334	9.935138888888888	83.794833333333334	9.9351388888888888	۷	??	??		3.17 6	
	C69-Sub-005	83.78791666666666	9.91002777777776	83.78791666666666	9.91002777777776	۷	??	??		•	
	C69-X-E-104	83.98154	9.869463	83.98154	9.869463		??	??			
	C69XE-009	83.829475	9.9151335	83.829475	9.9151335	۷	??	??		88	
	C69XE-040	84.209405	9.9066	84.209405	9.9066	۷	??	??			
	C69XE-064	83.842427	9.8995644	83.842427	9.8995644	۷	??	??			
	CENVE 072	94 444492	0 7571574	04 114492	0 7674674	1	22	22			

~200 regular users, cited in ~ 50 papers

2PMASS has uniformity scanned the entire sky in three near-initiared bands to detect and characterize point sources brighter than about 1 It consists of a set mJy in each band, with signal-to-noise ratio (SNR) greater than 1. DENIS survey and 12 arcmin More Info. Filters: 2MASS/2MASS.J 2MASS/2MASS.H ZMASS/2MASS.Ks Search radius: 5 arcsec Show magnitude limits **IRAS Catalog of Point Sources, Version 2.0** This is a catalog of some 250,000 well-confirmed infrared point sources observed by the Infrared Astronomical Satellite, i.e., sources with angular extents less than approximately 0.5, 0.5, 1.0, and 2.0 arcmin in the in-scan direction at 12, 25, 60, and 1. More Info. Filters: VIRAS/IRAS.12mu VIRAS/IRAS.25mu Search radius: 5 arcsec Show magnitude limits AKARI/IRC mid-IR all-sky Survey (ISAS/JAXA, 2010) The AKARI/IRC Point Source Catalogue Version 1.0 provides positions and fluxes for 870,973 sources observed with the InfraRed Camera (IRC). More Info. Filters: AKARI/IRC.S9W AKARI/IRC.L18W Info. Search radius: 5 arcsec Show magnitude limits

C2D Spitzer and Ancillary Data

C2D Fall '07 Full CLOUDS Catalog (CHA_II, LUP, OPH, PER, SER). Spitzer/IRAC.12 Filters: Spitzer/IRAC.I1 Spitzer/IRAC.I3 Spitzer/IRAC.14 Spitzer/MIPS.24mu Spitzer/MIPS.70mu

Search radius: 5 arcsec Show magnitude limits

This catalogue is the latest incremental release of the DENIS project. svo2.cab.inta-csic.es/theorv/vosa Filters: DENIS/DENIS.I Search radius: 5 arcsec Show magnitude limits

MSX6C Infrared Point Source Catalog

Version 2.3 of the Midcourse Space Experiment (MSX) Point Source Catalog (PSC), which supersedes the version (1.2) that was released in 1999 (Cat. V/107), contains over 100,000 more sources than the previous version.. More Info.

Filters: MSX/MSX.A MSX/MSX.C MSX/MSX.D MSX/MSX.E

Search radius: 5 arcsec Show magnitude limits

AKARI/FIS All-Sky Survey Point Source Catalogues (ISAS/JAXA, 2010)

The AKARI/FIS All-Sky Survey Bright Source Catalog Version 1.0 provides positions and fluxes for 427071 point sources in the 4 far-infrared wavelengths centered at 65, 90, 140 and 160µm. More

Filters: AKARI/FIS.N60 AKARI/FIS.WIDE-S AKARI/FIS.WIDE-L AKARI/FIS.N160

Search radius: 5 arcsec Show magnitude limits

GLIMPSE Source Catalog (I + II + 3D)

The Galactic Legacy Infrared Midplane Survey Extraordinaire (GLIMPSE), is a survey of Galactic Plane central parts made with the Infrared Array Camera (IRAC) aboard the Spitzer Space Telescope (SST)., More Info.

Filters: Spitzer/IRAC.I1 Spitzer/IRAC.I2 Spitzer/IRAC.I3 Spitzer/IRAC.I4

Search radius: 5 arcsec Show magnitude limits

~200 regular users, cited in ~ 50 papers

This publication makes use of VOSA, developed under the Spanish Virtual Observatory project supported from the Spanish MICINN through grant AyA2008-02156.

Bayo et al. (2008, 2014a subm.)

~200 regular users, cited in ~ 50 papers

	VO SED Analy	zer					1				The Real			• •
Files	Objects VO Phot.	SED	Chi-2	Fit Baye	s Analysis	HR Diag.	Sav	ve Resu	alts	Log	Helj	p		Logout
irs and brown	dwarfs (Change)			File: C69	only confirm	ned spec (inf	o) (Chi	ange)						
				Obje	ect data									
C69-IRAC-00 C69-IRAC-00 C69-IRAC-00 C69-IRAC-00	1 2 3 3 4 4 5 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7	9859,9.522 ct:	9902) Dist	ance: 400	pc A _v : 0.								1	Next 3
C69-IRAC-00	5		Fina	I SED		User da	ata				VO da	ta		
CEO IRAC-00	Filter	λmed	Flux	ΔF	Flux	ΔF	NoFit	Uplim	Delete	e Flux	ΔF	NoFit	t Uplin	n Delet
C69-Sub-00/	SLOAN/SDSS.u	3594.93	1.815e-17	1.205e-17						1.815e-17	1.205e-17	0	0	0
C69-Sub-004	SLOAN/SDSS.g	4640.42	1.471e-16	3.252e-18						1.471e-16	3.252e-18	0	0	Θ
C69-X-E-104	SLOAN/SDSS.r	6122.33	2.945e-16	2.441e-18						2.945e-16	2.441e-18	Θ	0	Θ
C69XE-009	CFHT/CFHT.R	6515.87	1.878e-15	0.000e+00	1.878e-15	0.000e+00	0	0	0					
C69XE-040	SLOAN/SDSS.i	7439.49	9.242e-16	3.405e-18						9.242e-16	3.405e-18	0	Θ	0
C69XE-064	CFHT/CFHT.I	8090.45	3.363e-15	0.000e+00	3.363e-15	0.000e+00	0	0	0					
	SLOAN/SDSS.z	8897.06	1.534e-15	7.066e-18						1.534e-15	7.066e-18	0	0	0
C69XE-072	201400/2014000 1	12350.00	4.079e-15	9.769e-17	4.079e-15	9.769e-17	0	0	0					
C69XE-072 DM003	ZMASS/ZMASS.J						-	0	(-)					
C69XE-072 DM003 DM005	2MASS/2MASS.J 2MASS/2MASS.H	16620.00	2.791e-15	5.913e-17	2.791e-15	5.913e-17								
C69XE-072 DM003 DM005 DM006	2MASS/2MASS.J 2MASS/2MASS.H 2MASS/2MASS.Ks	16620.00 21590.00	2.791e-15 1.292e-15	5.913e-17 2.737e-17	2.791e-15 1.292e-15	5.913e-17 2.737e-17	0	0	0					
C69XE-072 DM003 DM005 DM006 DM007	2MASS/2MASS.J 2MASS/2MASS.H 2MASS/2MASS.Ks WISE/WISE.W1	16620.00 21590.00 33526.00	2.791e-15 1.292e-15 3.022e-16	5.913e-17 2.737e-17 6.401e-18	2.791e-15 1.292e-15 	5.913e-17 2.737e-17	0	0	0	 3.022e-16	 6.401e-18	0	0	0
C69XE-072 DM003 DM005 DM006 DM006 DM007 DM008	2mASS/2MASS.J 2MASS/2MASS.H 2MASS/2MASS.Ks WISE/WISE.W1 Spitzer/IRAC.I1	16620.00 21590.00 33526.00 35075.11	2.791e-15 1.292e-15 3.022e-16 3.411e-16	5.913e-17 2.737e-17 6.401e-18 9.424e-19	2.791e-15 1.292e-15 3.411e-16	5.913e-17 2.737e-17 9.424e-19	0	0	0	 3.022e-16 	 6.401e-18 	0	0	0
C69XE-072 DM003 DM005 DM006 DM007 DM008 DM009	2mASS/2MASS.J 2MASS/2MASS.H 2MASS/2MASS.Ks WISE/WISE.W1 Spitzer/IRAC.I1 Spitzer/IRAC.I2	16620.00 21590.00 33526.00 35075.11 44365.78	2.791e-15 1.292e-15 3.022e-16 3.411e-16 1.648e-16	5.913e-17 2.737e-17 6.401e-18 9.424e-19 4.553e-19	2.791e-15 1.292e-15 3.411e-16 1.648e-16	5.913e-17 2.737e-17 9.424e-19 4.553e-19	0	0	0	 3.022e-16 	 6.401e-18 	0	0	0
C69XE-072 DM003 DM005 DM006 DM007 DM008 DM009 DM010	2mASS/2MASS.J 2MASS/2MASS.H 2MASS/2MASS.Ks WISE/WISE.W1 Spitzer/IRAC.I1 Spitzer/IRAC.I2 WISE/WISE.W2	16620.00 21590.00 33526.00 35075.11 44365.78 46028.00	2.791e-15 1.292e-15 3.022e-16 3.411e-16 1.648e-16 1.221e-16	5.913e-17 2.737e-17 6.401e-18 9.424e-19 4.553e-19 2.361e-18	2.791e-15 1.292e-15 3.411e-16 1.648e-16 	5.913e-17 2.737e-17 9.424e-19 4.553e-19	0	0	0	 3.022e-16 1.221e-16	 6.401e-18 2.361e-18	0	0	0
C69XE-072 DM003 DM005 DM006 DM007 DM008 DM009 DM009 DM010 DM013	2mASS/2MASS.J 2MASS/2MASS.H 2MASS/2MASS.Ks WISE/WISE.W1 Spitzer/IRAC.I1 Spitzer/IRAC.I2 WISE/WISE.W2 Spitzer/IRAC.I3	16620.00 21590.00 33526.00 35075.11 44365.78 46028.00 56281.02	2.791e-15 1.292e-15 3.022e-16 3.411e-16 1.648e-16 1.221e-16 8.775e-17	5.913e-17 2.737e-17 6.401e-18 9.424e-19 4.553e-19 2.361e-18 5.657e-19	2.791e-15 1.292e-15 3.411e-16 1.648e-16 8.775e-17	5.913e-17 2.737e-17 9.424e-19 4.553e-19 5.657e-19	0	0	0	 3.022e-16 1.221e-16 	 6.401e-18 2.361e-18 	0	0	0
569XE-072 M003 M005 M006 M007 M008 M009 M010 M013 M014	2mASS/2MASS.J 2MASS/2MASS.H 2MASS/2MASS.Ks WISE/WISE.W1 Spitzer/IRAC.I1 Spitzer/IRAC.I2 WISE/WISE.W2 Spitzer/IRAC.I3 Spitzer/IRAC.I4	16620.00 21590.00 33526.00 35075.11 44365.78 46028.00 56281.02 75891.59	2.791e-15 1.292e-15 3.022e-16 3.411e-16 1.648e-16 1.221e-16 8.775e-17 4.529e-17	5.913e-17 2.737e-17 6.401e-18 9.424e-19 4.553e-19 2.361e-18 5.657e-19 1.669e-19	2.791e-15 1.292e-15 3.411e-16 1.648e-16 8.775e-17 4.529e-17	5.913e-17 2.737e-17 9.424e-19 4.553e-19 5.657e-19 1.669e-19				 3.022e-16 1.221e-16 	 6.401e-18 2.361e-18 	0	0	0
269XE-072 DM003 DM005 DM006 DM007 DM008 DM009 DM010 DM013 DM014 DM015	2mASS/2MASS.J 2MASS/2MASS.H 2MASS/2MASS.Ks WISE/WISE.W1 Spitzer/IRAC.I1 Spitzer/IRAC.I2 WISE/WISE.W2 Spitzer/IRAC.I3 Spitzer/IRAC.I4 WISE/WISE.W3	16620.00 21590.00 33526.00 35075.11 44365.78 46028.00 56281.02 75891.59 115608.00	2.791e-15 1.292e-15 3.022e-16 3.411e-16 1.648e-16 1.221e-16 8.775e-17 4.529e-17 2.959e-17	5.913e-17 2.737e-17 6.401e-18 9.424e-19 4.553e-19 2.361e-18 5.657e-19 1.669e-19 7.086e-19	2.791e-15 1.292e-15 3.411e-16 1.648e-16 8.775e-17 4.529e-17 	5.913e-17 2.737e-17 9.424e-19 4.553e-19 5.657e-19 1.669e-19 				 3.022e-16 1.221e-16 2.959e-17	 6.401e-18 2.361e-18 7.086e-19	0	0	0

~200 regular users, cited in ~ 50 papers

~200 regular users, cited in ~ 50 papers