
Heidelberg Interop 2013

PDL Status

Carlo Maria Zwölf, Franck Le Petit, Paul Harrison.

PDL overview

• Parameter Description Language (PDL) is intended to be a lingua franca of
parameters:

– Describes params in a sufficient detailed granularity to allow

● To generate automatically ad-hoc software from generic elements (client,
server,...)

● To generate verification layers (does parameter satisfy described constraints?)

● Workflow tools to check if parameters can be “piped” between services

– Physical Properties (Nature, Meaning, unit, precision,...)

– Computing (Numerical Type, UCD, SKOS concept)

● Also has capabilities do describe constraints on parameters

– Physical constraints

– Arbitrary (including mathematical) constraints

● Not a description of parameters “values” (cf. UWS).

PDL needs come from scientific services: exemplum from basic
service for H2 broadening effect

PDL Short history

● PDL concepts and core grammar was presented in GWS@Puna,

● First implementation (PDL-dynamic client and core libraries, by Zwölf and

Harrison) was presented in Apps@Urbana,

● First IVOA Working Draft presented in GWS@Urbana,

● Implementing note of First implementation available from summer 2012.

● Second implementation (PDL-pluging for Taverna, by Garrido and Ruiz) was

presented in GWS@Sao-Paolo

● Third implementation (PDL-Server, by Zwölf) was presented in Apps@Heidelberg

● Fourth implementation (PDL-Graphical description editor, by Savalle) is under

development, see you @Hawai

mailto:Apps@Urbana
mailto:GWS@Urbana
mailto:Apps@Heidelberg

Parameters and constraints are finely described with fine grained granularity:

● Generic software elements are automatically “configured” by a specific PDL description
instance:

– Services containers

– Graphical User Interfaces

– Workflow Plugins

● Checking algorithms and interoperability checker between service are automatically generated
from descriptions

PDL CORE
(the grammar)

Automatic Generation of
Checking algorithms

Dynamic 'intelligent'
graphical client

PDL Server
(exposing every code as a UWS service)

Workflow(s) Plugin(s)

Interoperability Checker

calls

interact

uses

Based on

Based on

Architecture of PDL complete solution

PDL Graphical description editor
Composes
Description

compliant with

Client and Server

Find client and server presentation (with nice screen cast) at URL:

 http://wiki.ivoa.net/twiki/bin/view/IVOA/InterOpMay2013Applications

(Application 2, Carlo Maria Zwölf, PDL service for Paris-Durham MHD Shock Code)

http://wiki.ivoa.net/twiki/bin/view/IVOA/InterOpMay2013Applications

Generic PDL plugin
for

workflow engine X

Specific
PDL plugin for calling

the described service from
the Workflow engine X

Configures Becomes

PDL
Service
Description

PDL and Workflows : the plugin

● In current developments (Garrido & Ruiz from WF4ever) engine X is Taverna

● For a given workflow engine X

● Generic plugin is written once and for all

● All the services will use the Plugin configured by the ad hoc description file

– Maintenance is strongly reduced due to this industrialization.

N1.1 N1.2

N1.4

N1.3

N1.5

N

legend

Workflow node element

PDL plugin for this WF engine

Piece of a WF exposed

as PDL service

We use different colors for presenting
different WF engines

N2.1 N2.2

N.2.3

N3.1

N3.2

● Assume that we want to use

– The entire WF2 as node N1.5 of WF1

– The entire WF3 as node N2.3 of WF2

● Let us see how to perform this with PDL...

WF2

WF1

WF3

PDL workflows with heterogeneous workflows engines
● Unexpected feature when we started PDL, it appeared on the road

● PDL allow easy cross communication for workflows using different engines:

N1.1 N1.2

N1.4

N1.3

N1.5

N

legend

Workflow node element

PDL plugin for this WF engine

Piece of a WF exposed

as PDL service

We use different colors for presenting
different WF engines

N2.1 N2.2

N.2.3

● Assume that we want to use

– The entire WF2 as node N1.5 of WF1

– The entire WF3 as node N2.3 of WF2

● Let us see how to perform this with PDL...

WF2

WF1

PDL
Service
exposing
WF3

N3.1

N3.2

PDL workflows with heterogeneous workflows engines
● Unexpected feature when we started PDL, it appeared on the road

● PDL allow easy cross communication for workflows using different engines:

N1.1 N1.2

N1.4

N1.3

N1.5

N

legend

Workflow node element

PDL plugin for this WF engine

Piece of a WF exposed

as PDL service

We use different colors for presenting
different WF engines

N2.1 N2.2

N.2.3

● Assume that we want to use

– The entire WF2 as node N1.5 of WF1

– The entire WF3 as node N2.3 of WF2

● Let us see how to perform this with PDL...

WF2

WF1

PDL
Service
exposing
WF3

N3.1

N3.2

● WF3 is exposed as a PDL Service

PDL workflows with heterogeneous workflows engines
● Unexpected feature when we started PDL, it appeared on the road

● PDL allow easy cross communication for workflows using different engines:

N1.1 N1.2

N1.4

N1.3

N1.5

N

legend

Workflow node element

PDL plugin for this WF engine

Piece of a WF exposed

as PDL service

We use different colors for presenting
different WF engines

N2.1 N2.2
● Assume that we want to use

– The entire WF2 as node N1.5 of WF1

– The entire WF3 as node N2.3 of WF2

● Let us see how to perform this with PDL...

WF2

WF1

PDL
Service
exposing
WF3

N3.1

N3.2

● WF3 is exposed as a PDL Service

● Node 2.3 calls (using the plugin) the PDL service of WF3

PDL
Plugin

PDL workflows with heterogeneous workflows engines
● Unexpected feature when we started PDL, it appeared on the road

● PDL allow easy cross communication for workflows using different engines:

PDL workflows with heterogeneous workflows engines
● Unexpected feature when we started PDL, it appeared on the road

● PDL allow easy cross communication for workflows using different engines:

N1.1 N1.2

N1.4

N1.3

N1.5

N

legend

Workflow node element

PDL plugin for this WF engine

Piece of a WF exposed

as PDL service

We use different colors for presenting
different WF engines

N2.1 N2.2
● Assume that we want to use

– The entire WF2 as node N1.5 of WF1

– The entire WF3 as node N2.3 of WF2

● Let us see how to perform this with PDL...

WF1

PDL
Service
exposing
WF3

N3.1

N3.2

● WF3 is exposed as a PDL Service

● Node 2.3 calls (using the plugin) the PDL service of WF3

● WF2 is exposed as a PDL Service

PDL
PluginPDL Service

exposing
WF2

N1.1 N1.2

N1.4

N1.3
N

legend

Workflow node element

PDL plugin for this WF engine

Piece of a WF exposed

as PDL service

We use different colors for presenting
different WF engines

N2.1 N2.2
● Assume that we want to use

– The entire WF2 as node N1.5 of WF1

– The entire WF3 as node N2.3 of WF2

● Let us see how to perform this with PDL...

WF1

PDL
Service
exposing
WF3

N3.1

N3.2

● WF3 is exposed as a PDL Service

● Node 2.3 calls (using the plugin) the PDL service of WF3

● WF2 is exposed as a PDL Service

● Node 1.5 calls (using the plugin) the PDL service of WF2

PDL
PluginPDL Service

exposing
WF2

PDL
Plugin

PDL workflows with heterogeneous workflows engines
● Unexpected feature when we started PDL, it appeared on the road

● PDL allow easy cross communication for workflows using different engines:

N1.1 N1.2

N1.4

N1.3
N

legend

Workflow node element

PDL plugin for this WF engine

Piece of a WF exposed

as PDL service

We use different colors for presenting
different WF engines

N2.1 N2.2

WF1

PDL
Service
exposing
WF3

N3.1

N3.2

Remarks

● WF1 can finally call easily element of other Workflow engines

● The resulting WF benefits from PDL advantages

– Strength scientific oriented interoperabilty

– Check of interoperabilty graph coherence

● Extracting a PDL service from a piece of Workflow is quick and the
procedure could be automatized

PDL
PluginPDL Service

exposing
WF2

PDL
Plugin

PDL workflows with heterogeneous workflows engines
● Unexpected feature when we started PDL, it appeared on the road

● PDL allow easy cross communication for workflows using different engines:

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

