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PDL OVERVIEW

Parameter Description Language (PDL) is intended to be a lingua franca of
parameters:

- Describes params in a sufficient detailed granularity to allow

* To generate automatically ad-hoc software from generic elements (client,
server,...)

* To generate verification layers (does parameter satisfy described constraints?)
* Workflow tools to check if parameters can be “piped” between services

- Physical Properties (Nature, Meaning, unit, precision,...)

- Computing (Numerical Type, UCD, SKOS concept)
* Also has capabilities do describe constraints on parameters

- Physical constraints

- Arbitrary (including mathematical) constraints

* Not a description of parameters “values” (cf. UWS).



PDL SHORT HISTORY

PDL needs come from scientific services: exemplum from basic
service for H2 broadening effect
e Initial level ] € N Constraints

e Iinal level I € N o /< F
9’05/3
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10071/2

e Temperature 71" in Kelvin &7

e Electron density p in em =3

PDL concepts and core grammar was presented in GWS@Puna,

First implementation (PDL-dynamic client and core libraries, by Zwolf and
Harrison) was presented in Apps@Urbana,

First IVOA Working Draft presented in GWS@Urbana,

Implementing note of First implementation available from summer 2012.

Second implementation (PDL-pluging for Taverna, by Garrido and Ruiz) was
presented in GWS@Sao-Paolo

Third implementation (PDL-Server, by Zwolf) was presented in Apps@Heidelberg
Fourth implementation (PDL-Graphical description editor, by Savalle) is under

development, see you @Hawai
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Architecture of PDL complete solution

Parameters and constraints are finely described with fine grained granularity:

1« Generic software elements are automatically “configured” by a specific PDL description
instance:

- Services containers
- Graphical User Interfaces
- Workflow Plugins

« Checking algorithms and interoperability checker between service are automatically generated
from descriptions
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Client and Server

Find client and server presentation (with nice screen cast) at URL:

http: / /wiki.ivoa.net/twiki/bin/view /IVOA / InterOpMay2013Applications

(Application 2, Carlo Maria Zwolf, PDL service for Paris-Durham MHD Shock Code)


http://wiki.ivoa.net/twiki/bin/view/IVOA/InterOpMay2013Applications

PDL and Workflows : the plugin

PDL
Service
Description

Specific
PDL plugin for calling
the described service from
the Workflow engine X

Y,

Configures Becomes

* |n current developments (Garrido & Ruiz from WF4ever) engine X is Taverna

* For a given workflow engine X
» Generic plugin is written once and for all
» All the services will use the Plugin configured by the ad hoc description file

- Maintenance is strongly reduced due to this industrialization.




PDL workflows with heterogeneous workflows engines
* Unexpected feature when we started PDL, it appeared on the road

 PDL allow easy cross communication for workflows using different engines:

legend
We use different colors for presenting
\ \ \ different WF engines
v v v Cw
5 orkflow node element
N1.1 N1.2 N1.3 | BDL oluain for this WE engi
z plugin for this engine
WF1 .. Y o
E Piece of a WF exposed
N14 ——» N1.5 > ' as PDL service
\ \  Assume that we want to use
N2.1 <+ N2.2
WF2 \ - The entire WF2 as node N1.5 of WF1
N.2.3 > - The entire WF3 as node N2.3 of WF2

 Let us see how to perform this with PDL...

N3.1
WF3 *

N3.2 >




PDL workflows with heterogeneous workflows engines
* Unexpected feature when we started PDL, it appeared on the road

 PDL allow easy cross communication for workflows using different engines:
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legend

" We use different colors for presenting
different WF engines
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< - PDL plugin for this WF engine
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Assume that we want to use

- The entire WF2 as node N1.5 of WF1
- The entire WF3 as node N2.3 of WF2

Let us see how to perform this with PDL...
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PDL workflows with heterogeneous workflows engines
* Unexpected feature when we started PDL, it appeared on the road

 PDL allow easy cross communication for workflows using different engines:
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PDL workflows with heterogeneous workflows engines
* Unexpected feature when we started PDL, it appeared on the road

 PDL allow easy cross communication for workflows using different engines:
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PDL workflows with heterogeneous workflows engines
* Unexpected feature when we started PDL, it appeared on the road

 PDL allow easy cross communication for workflows using different engines:
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 Assume that we want to use
- The entire WF2 as node N1.5 of WF1
- The entire WF3 as node N2.3 of WF2

 Let us see how to perform this with PDL...

WE3 is exposed as a PDL Service
Node 2.3 calls (using the plugin) the PDL service of WF3
WEF2 is exposed as a PDL Service

Node 1.5 calls (using the plugin) the PDL service of WF2



PDL workflows with heterogeneous workflows engines
* Unexpected feature when we started PDL, it appeared on the road

 PDL allow easy cross communication for workflows using different engines:

legend
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