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PDL overview

• Parameter Description Language (PDL) is intended to be a lingua franca of 
parameters:

– Describes params in a sufficient detailed granularity to allow 

● To generate automatically ad-hoc software from generic elements (client, 
server,...)

● To generate verification layers (does parameter satisfy described constraints?)

● Workflow tools to check if parameters can be “piped” between services

– Physical Properties (Nature, Meaning, unit, precision,...)

– Computing (Numerical Type, UCD, SKOS concept)

● Also has capabilities do describe constraints on parameters

– Physical constraints

– Arbitrary (including mathematical) constraints

● Not a description of parameters “values” (cf. UWS).



PDL needs come from scientific services: exemplum from basic 
service for H2 broadening effect

PDL Short history

● PDL concepts and core grammar was presented in GWS@Puna,

● First implementation (PDL-dynamic client and core libraries, by Zwölf and 

Harrison) was presented in Apps@Urbana,

● First IVOA Working Draft presented in GWS@Urbana,

● Implementing note of First implementation available from summer 2012.

● Second implementation (PDL-pluging for Taverna, by Garrido and Ruiz) was 

presented in GWS@Sao-Paolo

● Third implementation (PDL-Server, by Zwölf) was presented in Apps@Heidelberg

●  Fourth implementation (PDL-Graphical description editor, by Savalle) is under 

development, see you @Hawai
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Parameters and constraints are finely described with fine grained granularity:

● Generic software elements are automatically “configured” by a specific PDL description 
instance:

– Services containers

– Graphical User Interfaces

– Workflow Plugins

● Checking algorithms and interoperability checker between service are automatically generated 
from descriptions
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(exposing every code as a UWS service)
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Architecture of PDL complete solution
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Client and Server

Find client and server presentation (with nice screen cast) at URL:

 http://wiki.ivoa.net/twiki/bin/view/IVOA/InterOpMay2013Applications 

(Application 2, Carlo Maria Zwölf, PDL service for Paris-Durham MHD Shock Code) 

http://wiki.ivoa.net/twiki/bin/view/IVOA/InterOpMay2013Applications


  

Generic PDL plugin
for 

workflow engine X

Specific
PDL plugin for calling

the described service from
the Workflow engine X

Configures Becomes

PDL
Service 
Description

PDL and Workflows : the plugin

● In current developments (Garrido & Ruiz from WF4ever) engine X is Taverna

● For a given workflow engine X

● Generic plugin is written once and for all 

● All the services will use the Plugin configured by the ad hoc description file

– Maintenance is strongly reduced due to this industrialization.
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Remarks

● WF1 can finally call easily element of other Workflow engines

● The resulting WF benefits from PDL advantages

– Strength scientific oriented interoperabilty

– Check of interoperabilty graph coherence

● Extracting a PDL service from a piece of Workflow is quick and the 
procedure could be automatized 
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