/ gioire
| .wvaEOIr‘e Dol . Virt g ?\&atory
de Paris : Obs
- Paris Data Centre

HEIDELBERG INTEROP 2013

PDL STATUS

CARLO MARIA ZWOLF, FRANCK LE PETIT, PAUL HARRISON.

///////M%
/ 7 :
"""" RMA L UTH MANCHESTER
i 1824
Laboratoire d’Etude du Rayonnement Laboratdire Univers et Théories The University of Manchester

et de la Matiére en Astrophysique

PDL OVERVIEW

Parameter Description Language (PDL) is intended to be a lingua franca of
parameters:

- Describes params in a sufficient detailed granularity to allow

* To generate automatically ad-hoc software from generic elements (client,
server,...)

* To generate verification layers (does parameter satisfy described constraints?)
* Workflow tools to check if parameters can be “piped” between services

- Physical Properties (Nature, Meaning, unit, precision,...)

- Computing (Numerical Type, UCD, SKOS concept)
* Also has capabilities do describe constraints on parameters

- Physical constraints

- Arbitrary (including mathematical) constraints

* Not a description of parameters “values” (cf. UWS).

PDL SHORT HISTORY

PDL needs come from scientific services: exemplum from basic
service for H2 broadening effect
e Initial level] € N Constraints

e Iinal level I € N o /< F
9’05/3
. '3
10071/2

e Temperature 71" in Kelvin &7

e Electron density p in em =3

PDL concepts and core grammar was presented in GWS@Puna,

First implementation (PDL-dynamic client and core libraries, by Zwolf and
Harrison) was presented in Apps@Urbana,

First IVOA Working Draft presented in GWS@Urbana,

Implementing note of First implementation available from summer 2012.

Second implementation (PDL-pluging for Taverna, by Garrido and Ruiz) was
presented in GWS@Sao-Paolo

Third implementation (PDL-Server, by Zwolf) was presented in Apps@Heidelberg
Fourth implementation (PDL-Graphical description editor, by Savalle) is under

development, see you @Hawai

mailto:Apps@Urbana
mailto:GWS@Urbana
mailto:Apps@Heidelberg

Architecture of PDL complete solution

Parameters and constraints are finely described with fine grained granularity:

1« Generic software elements are automatically “configured” by a specific PDL description
instance:

- Services containers
- Graphical User Interfaces
- Workflow Plugins

« Checking algorithms and interoperability checker between service are automatically generated
from descriptions

4 Workflow(s) Plugin(s) W
{ Dynamic 'intelligent’ W | |

graphical client interact b -
. ’,

calls
PDL Server
(exposing every code as a UWS service)

S i

USEesS

Checking algorithms

ye:

)

Client and Server

Find client and server presentation (with nice screen cast) at URL:

http: / /wiki.ivoa.net/twiki/bin/view /IVOA / InterOpMay2013Applications

(Application 2, Carlo Maria Zwolf, PDL service for Paris-Durham MHD Shock Code)

http://wiki.ivoa.net/twiki/bin/view/IVOA/InterOpMay2013Applications

PDL and Workflows : the plugin

PDL
Service
Description

Specific
PDL plugin for calling
the described service from
the Workflow engine X

Y,

Configures Becomes

* |n current developments (Garrido & Ruiz from WF4ever) engine X is Taverna

* For a given workflow engine X
» Generic plugin is written once and for all
» All the services will use the Plugin configured by the ad hoc description file

- Maintenance is strongly reduced due to this industrialization.

PDL workflows with heterogeneous workflows engines
* Unexpected feature when we started PDL, it appeared on the road

 PDL allow easy cross communication for workflows using different engines:

legend
We use different colors for presenting
\ \ \ different WF engines
v v v Cw
5 orkflow node element
N1.1 N1.2 N1.3 | BDL oluain for this WE engi
z plugin for this engine
WF1 .. Y o
E Piece of a WF exposed
N14 ——» N1.5 > ' as PDL service
\ \ Assume that we want to use
N2.1 <+ N2.2
WF2 \ - The entire WF2 as node N1.5 of WF1
N.2.3 > - The entire WF3 as node N2.3 of WF2

 Let us see how to perform this with PDL...

N3.1
WF3 *

N3.2 >

PDL workflows with heterogeneous workflows engines
* Unexpected feature when we started PDL, it appeared on the road

 PDL allow easy cross communication for workflows using different engines:

\ \ \
N1.1 N1.2 N1.3
WF1 A \
N14 ——» N15 >
\ \ .
N2.1 < N2.2
WF2 \
N.2.3 >
|
PDL \
Service | N3.1
exposing|
WEF3 |
N3.2 ﬂ

legend

" We use different colors for presenting
different WF engines

N Workflow node element

< - PDL plugin for this WF engine

Piece of a WF exposed
~ as PDL service

Assume that we want to use

- The entire WF2 as node N1.5 of WF1
- The entire WF3 as node N2.3 of WF2

Let us see how to perform this with PDL...

PDL workflows with heterogeneous workflows engines
* Unexpected feature when we started PDL, it appeared on the road

 PDL allow easy cross communication for workflows using different engines:

legend

" We use different colors for presenting
different WF engines

* * * | N Workflow node element
N1.1 N1.2 N1.3 | PDL olugin for this WE engi
z ugin Ttor tnis engine
WF1 . ' @ POk g
Piece of a WF exposed
N14 ——» N15 > as PDL service
\ \ Assume that we want to use
N2.1 <+ N2.2
WF2 \ - The entire WF2 as node N1.5 of WF1
N.2.3 > - The entire WF3 as node N2.3 of WF2
‘ Let us see how to perform this with PDL...
\J
PDL N3 « WEF3 is exposed as a PDL Service
Service | '
exposing|
WF3
N3.2 ﬂ

PDL workflows with heterogeneous workflows engines
* Unexpected feature when we started PDL, it appeared on the road

 PDL allow easy cross communication for workflows using different engines:

legend

 We use different colors for presenting
different WF engines

* * * | N Workflow node element
N1.1 N1.2 N1.3 | PDL olugin for this WE engi
1 > ugin 1or tnis engine
WF1 e v 4 o g
Piece of a WF exposed
N1.4 ——» N1.5 > as PDL service
\ \ Assume that we want to use
N2.1 <«— N2.2
WF2 - The entire WF2 as node N1.5 of WF1
\;*"/PDL\O\\\?*+ .
 Plugin - The entire WF3 as node N2.3 of WF2
/ A « Let us see how to perform this with PDL...
PDL : :
Service N3.1 « WF3 is exposed as a PDL Service
exposing| . . .
WF3 | NP » Node 2.3 calls (using the plugin) the PDL service of WF3

PDL workflows with heterogeneous workflows engines
* Unexpected feature when we started PDL, it appeared on the road

 PDL allow easy cross communication for workflows using different engines:

legend

 We use different colors for presenting
different WF engines

* * * | N Workflow node element
N1.1 N1.2 N1.3 | PDL olugin for this WE engi
: plugin for this engine
WF1 \4/ * <> :
r— Piece of a WF exposed
N1.4 —» N1.5 > as PDL service

\ v Assume that we want to use
N2.1 = N2.2 |

- The entire WF2 as node N1.5 of WF1

Z',E’.DLO‘Z'?Z";i‘“’\‘é?gﬁn\4 - The entire WF3 as node N2.3 of WF2
WF2
e 4 Let us see how to perform this with PDL...
geDr';ice | N3.1 « WF3 is exposed as a PDL Service
wis 9 NZ : . Node 2.3 calls (using the plugin) the PDL service of WF3

« WF2 is exposed as a PDL Service

PDL workflows with heterogeneous workflows engines
* Unexpected feature when we started PDL, it appeared on the road

 PDL allow easy cross communication for workflows using different engines:

WF1

exposing
WF2

legend

 We use different colors for presenting
different WF engines

N Workflow node element

< . PDL plugin for this WF engine

Piece of a WF exposed
as PDL service

N2.1

PDL ServicM'—

o, Plugin_«

PDL

Service
exposing,

WF3

3

N3.1

N3.2

 Assume that we want to use
- The entire WF2 as node N1.5 of WF1
- The entire WF3 as node N2.3 of WF2

 Let us see how to perform this with PDL...

WE3 is exposed as a PDL Service
Node 2.3 calls (using the plugin) the PDL service of WF3
WEF2 is exposed as a PDL Service

Node 1.5 calls (using the plugin) the PDL service of WF2

PDL workflows with heterogeneous workflows engines
* Unexpected feature when we started PDL, it appeared on the road

 PDL allow easy cross communication for workflows using different engines:

legend

 We use different colors for presenting
different WF engines

* * * | N Workflow node element
N1.1 N1.2 N1.3 | PDL olugin for this WE engi
: > plugin for this engine
— r— Piece of a WF exposed
N1.4 > Pugn % as PDL service
A AN
N2.1 = N2.2 Remarks
PDL Sgervice*/FfngL\i;fT* « WEF1 can finally call easily element of other Workflow engines
exposing
WF2 A * The resulting WF benefits from PDL advantages
, - Strength scientific oriented interoperabilty
PDL N3
Service ' - Check of interoperabilty graph coherence
exposing|
WF3 N3 « Extracting a PDL service from a piece of Workflow is quick and the
' | procedure could be automatized

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

