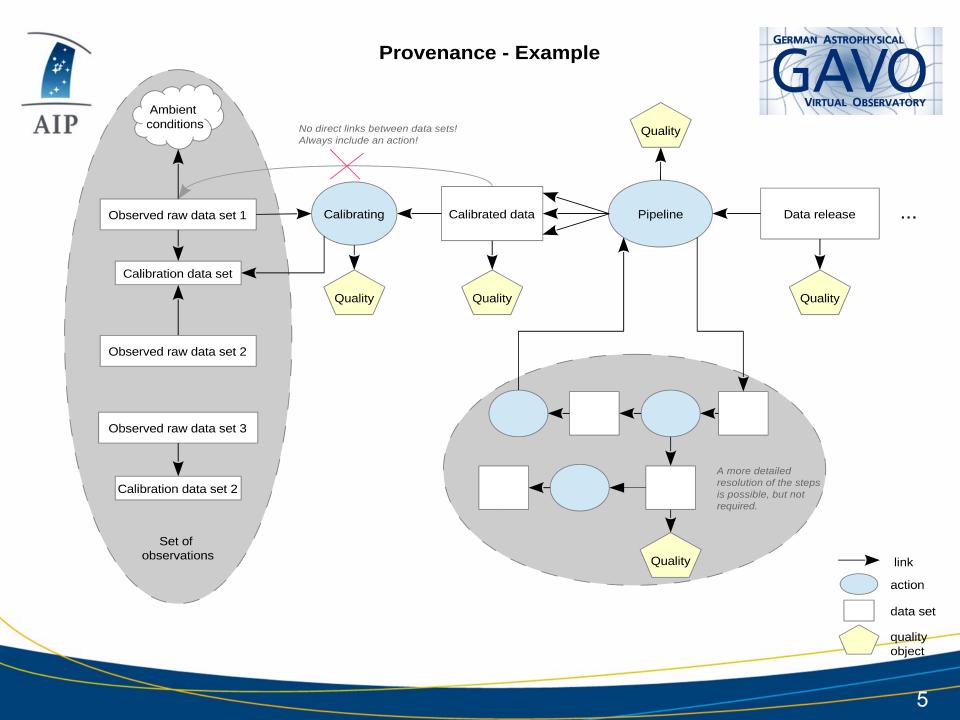
Provenance Data Model

Thoughts from GAVO

Kristin Riebe, Leibniz-Institut für Astrophysik Potsdam

- What is provenance for?
- For a given data set, it should help to ...
 - discover steps of production
 - Which processing steps have been done already?
 - give attribution
 - Who was involved in the project? Who can I ask about these data?
 - aid in reprocessing
 But not necessarily: allow reprocessing on keypress
 - aid in debugging
 Find possible error sources, e.g. check version of processing software, ambient conditions, telescope configuration, parameter settings, …
 - allow to assess the "quality" of the observation/processing \rightarrow Quality DM?
 - search in structured provenance metadata



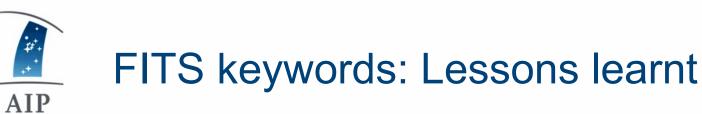
- collected some raw use cases to define the scope (MuseWise, RAVE, CALIFA, STELLA, also see talk by François Bonnarel last year)
- list of requirements for data model
- started with a list of processing steps that should be covered
- research on ambient conditions and instrumental parameters: trying to find common keywords

- distinguish two types of things: data sets and actions (processes)
- links between data sets involve an action in between
- actions have input/output data set; provide links to them
- provide 'backward' links, from result to previous action/data set

- provenance data model should also cover
 - processes with/without raw data
 - non-automatic steps
 e.g. line fitting ,by eye', awk/sed replacements in the bash, masking of foreground stars, ...
- include ambient conditions, telescope, telescope site (data characterization => Characterisation Data Model; but things above not included ...)
- include observer/data creator + affiliation for reference

- Data reduction
 - for CCDs: bias subtraction, dark field and flat field, rebinning of pixels
 - sky subtraction
 - remove hot & bad pixels
 - stacking images (reduce signal-to-noise ratio)
 - cosmic ray rejection
 - correction for atmospheric extinction, galactic extinction
 - spectra: flux calibration, wavelength calibration, correction for differential atmospheric refraction (DAR), image reconstruction
 - astrometric calibration

8


- Data analysis
 - masking (e.g. of foreground stars or masking quasars to find quasar host galaxies)
 - for stars: fit point-spread function, convolve with it
 - combining signals (interferometry, radio telescopes like LOFAR)
 - cross matching with other catalogues
 - source extraction (e.g. with SExtractor, find stars, extended sources etc.)
 - spectra:
 - correct for redshift (from characteristic lines)
 - fit continuum
 - fit model atmospheres
 - fit synthetic spectra (to determine stellar parameters)

Ambient conditions

- What ambient conditions should usefully be covered by the PDM?
- Leech work done by designers of existing FITS headers: All-VO searches for Spectra and Images, extract headers
- (Interested? Want to contribute? Ask us!)
- Concept groups we've identified:
 - Geometry of celestial objects (e.g., SUNANGLE, DAYNIGHT, MOONFRAC, SUN_ALT...)
 - Atmosphere (AIRMASS, ZD)
 - Near-Instrument environment (e.g., temperature, pressure demarcation to instrument telemetry not always clear)
 - Environmental Hazards (e.g., "LWR header warmup" demarcation to instrument telemetry and process description not always clear)
 - Sensor location and movement (e.g., SITELAT, SITELONG, ORBAXIS, V_GEOCEN, INCLINAT...)
 - "Freetext" (QUALCOMi, QUALITY)

- All told, we've collected about 50 FITS keywords we'd put into the ambient condition group.
- For instrument metadata, our small sample already has about 700 FITS keywords.
- Clearly, these cannot be directly mapped into data model components (even if there were a use case for them)
- Proposal:
 - Simple DM
 - (e.g., conceptName, conceptValue, valueUnit, relation*)
 - have concepts in a thesaurus, including wider/narrower relations, where terms never die.

- Allow to group processing steps?
 - How?
 - Benefit: different layers of "resolution"; if storing provenance information in fits-header, it can be easier to handle coarser information, which could be looked up in detail at a "provenance repository"
- Workflow management systems (e.g. AstroTaverna):
 - Could use their experience, what did they include? What is missing?
 - easily track workflow and thus provenance of a data set
 - => follow each step? (or at least link to AstroTaverna's log?)
- Access
 - allow restricted access?

- How to treat "political" information?
 - e.g. project name, PI of project, link to proposals
 - partially given in fits-headers
 - could be used for linking telescopes with scientific outcome/impact
 - => Should it be included in Provenance Data Model or is it out of scope?
- Implementation
 - How and where to store this information? Provenance repository similar to VO registry?
 - Keep as much information with the data as possible?