Data Mining of Be stars in VO

Petr Škoda & Jaroslav Vážný

Astronomical Institute Academy of Sciences
Ondřejov
Czech Republic

&

Faculty of Theoretical Physics and Astrophysics
Masaryk University
Brno

Motivations for Be Stars

The ~40 years of research in Ondřejov (data) Stellar astronomers – non VO involved at all way to convince them to use VO (their topic) Be stars are mysterious (after >100 years) Challange for SSA postprocessing Different time scales, quasi periodicity (not sure) emission epizodes, can look normal (20% of B = Be!) Zoo of line profiles (winebottle, abs+em, high em)

Astro Data Mining

Its fancy – emerging – attracting informaticians

Photometric data mining (using color indices)
Spectral data mining

specific profiles – emission in Halfa (other ?) parameters for characterization – Gaussian fit

How the VO standards supports such DM?

Classification of different objects

SDSS (types in CAS)

Feasibility study – J.V Bachelor + semestral in DM

100 stars 99 galaxies 99 QSO

Be Stars - Introduction

Gamma Cas (Padre Angello Sechhi 1866)

Vatican obs predecessor – visual spectrograph

Some have or have had emission in Balmer lines

Slettebak 1988

Gamma Cas - 1st Be star

Be Stars: Emission in absorption

Be Stars: Shell lines vs. no absorption

Be Stars

Circumstellar disk – decretion/accretion???

Density waves (one-arm — ratio of peeks)

Some binary (multiple) stars

Pulsation components, DACs ...

Hirata & Kogure 1984

New models Siljaj 2010...

Photometry Data Mining

List of 645 Be stars HIP# Selected from literature

But some have still indirect evidence (SED, IR ex)

Rest from HIP – Sptype B

excluded the above – (overlap in classification)

ConeSearch in 2MASS

to get JHK -> color indices J48 Weka (SVM simillar)

Be Stars Data Availability

BAD (especially spectra)

The known ones too bright for surveys

BeSS – mostly amateurs (but important!)

Still the Data Jealousy + non-VO archives

Problem with other colours (transformation)

Different focus of surveys

IPHAS – failed (no bright stars)

Hipparcos + 2MASS

SEGUE in SDSS – galactic astronomy

Be vs other B stars (645+407)

Photometry Errors

Figure 3.6: Color diagram of confirmed Be stars, B stars with errors

Spectral Data Mining

List of Be HIP# 645

OND spectra : 20 yr of digital spectra, same setup, ~1 representant

OND coverage ~400A

cutout of SDSS to OND

Only Halfa 50 A

but more ranges

(SSA BAND)

Continuum normalized

J48 in Weka (DT C45)

Example of OND CCD700 camera

Resolution degradation + binning

Figure 3.8: Reduction of spectral resolution of Ondřejov spectra of the Be star 4 Her. The top figure shows Gaussian function used for convolution with the spectrum, followed by the original spectrum then there is a spectrum after convolution with the Gaussian profile. The last is the final spectrum after binning

Diffent spectral resolution

convolution of instrumental profile

binning ~4 pix in 1

Feature extraction (emission)

Feature extraction (>>abs+em)

Spectral Data Mining Results

```
=== Summary ===
Correctly Classified Instances
                                   145
                                                    83.815 %
Incorrectly Classified Instances
                                    28
                                                    16.185 %
Kappa statistic
                                     0.6529
Mean absolute error
                                     0.1849
                                    0.3652
Root mean squared error
Relative absolute error
                                    39.8819 %
Root relative squared error
                                    75.8919 %
Total Number of Instances
                                    173
```

```
=== Confusion Matrix ===

Be Others <-- classified as

95 15 | Be

13 50 | Others
```

If intensity+width + robust SNR used

If only intensity of emission used

Be Star Candidate #1 in SEGUE

Figure 3.11: Example 1: SDSS J035747.16-063850.7

Be Star Candidate #2 in SEGUE

Be Star Candidate #3 in SEGUE

Candidates - Similarity!

Conclusions

Photometry not very convincing (more colours)

Verified candidates not in massive surveys!!!

VO discovery role

Spectral DM – support in VO standards needed

From 178314 SEGUE spectra 1110 identified as Be stars candidates (massive download of TB)

But lot of objects with emission,

Some probably novae or post-AGB phase

(e.g. V838 Mon – even more important!)

Ball lines at 6500 – see candidate #3

Conclusions - Future Plans

TIME evolution – LC + spectrum together

Specific shapes - Wavelet coefficients - features

(quite new – feature extractions, licence plate recognition, pedestrian identification, human emotions, mental diseases in EEG, EKG, DNA features, not so far in astronomy)

The support in VO needed (SSA)

Spectrum range cutout (BAND as service)

Continuum normalization (FLUXCALIB=normalized)

Resolution degradation (SRP service)

The Obscore use case 2.3 - (em. width of Ha > 2000)

VO mostly extragalactic support (stars = side effect)

Conclusions - Future Plans

The support in VO needed (Photometry)

Work with time series as with spectra (SVO way)

Period – metadata + folding (Period04, FROG)

Plug-in algorithms – O-C trends, chaotic

SED + Photometry DM + Filters (who provides curve)

The Uptake Committe influence ??

in stellar astronomy very low

VO is not serious science, its extremely complicated way of storing data

hoping someone will use them one day