Registry Framework: Front-to-Back

TODD KING¹, JAN MERKA^{3,4}, THOMAS NAROCK^{3,4}, RAYMOND WALKER^{1,2}, LEE BARGATZE¹

- ¹ INSTITUTE OF GEOPHYSICS AND PLANETARY PHYSICS, UNIVERSITY OF CALIFORNIA LOS ANGELES, CA 90095,
- EARTH AND SPACE SCIENCE DEPARTMENT, UNIVERSITY OF CALIFORNIA LOS ANGELES, CA 90095,
- 3 HELIOSPHERIC PHYSICS LABORATORY, CODE 672 NASA GODDARD SPACE FLIGHT CENTER.
- 4 UNIVERSITY OF MARYLAND, BALTIMORE COUNTY, BALTIMORE, MD 21250

ESSI WORKSHOP, AUGUST 3-5, 2009

Overview

- A "Registry" is a location in an organization where definitions are stored and maintained.
- A "Metadata" registry stores information about data models.
- A "Resource" registry stores structured, descriptive information about resources.
 - o includes the scientific context related to the resource; its temporal, spatial or spectral range; expert contacts; and where the resource can be found and accessed.
- A Resource registry plays a central role in connecting a user to the data.
- Resource information is used to support search engines, retrieval services and resource exploration.

Registry Functional Aspects

ISO-11179 identifies functional aspects of a Metadata Registry which are also applicable (with a little twist) to Resource Registries.

Functional Aspects:

- Administration and Identification
 - Management of information related to a resource and its provenance.
 - Handled by the registry framework.
- Naming and Definition
 - Each managed item has a name and definition which conforms to established policies.
- Classification
 - The language (data model) used to describe the resource.

Domain Realities

(True in most science domains)

- Data and Metadata are not co-located.
- The Data and Metadata environments must be symbiotic.
 - Co-exist
 - Complementary
- Disciplines require different value-added services (views of the data and environment)
- Many concurrent efforts.
 - It's a large domain with multiple agencies involved.

Data Environment

- Missions
- Research Groups
- Archives
- International peer systems

Multiple disciplines

Heliophysics example:

- Magnetospheres
- × Waves
- **▼** Ionosphere-Thermosphere-Mesosphere
- Radiation Belts
- Energetic Particles
- Solar Physics
- Models and Simulations

Metadata Environment

- Metadata is needed to describe resources:
 - o Orignation: Observatories, Instruments, Persons
 - o Infrastructure: Registry, Repository, Service
 - Data: Numerical, Display, Catalog
- Metadata comes from many sources
 - A Virtual Observatory, data provider, researcher, resident archive and more.
- Metadata is utilized in services
 - Examples: registries, search engines, downloaders, visualization tools (autoplot)

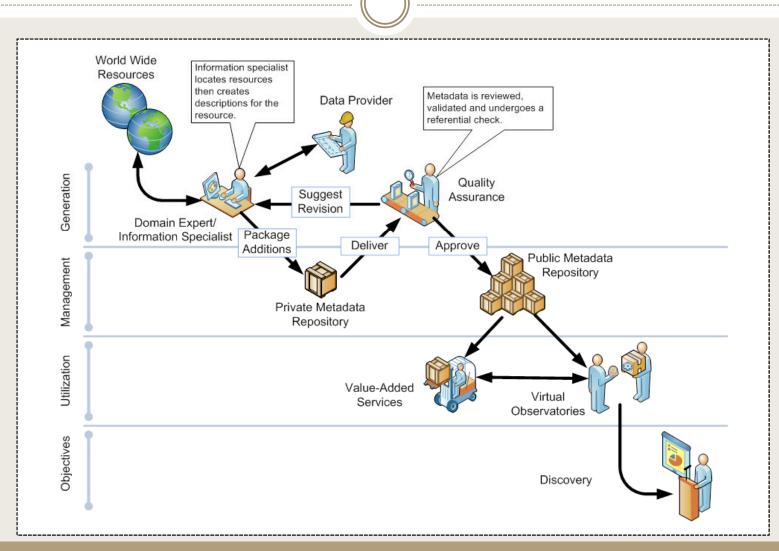
Framework Components

- Metadata Management
 - Well defined workflow
 - Reliable and trusted information
- Registry Services
 - Update-to-date content
 - Comprehensive scope
 - Reliable and trusted access

Metadata Management

- The key to a reliable and trusted data environment is well managed metadata.
- Distributed editing needs a moderator.
- There is a need for revision control.
- After exploring many alternatives we settled on "git" is for metadata development/management
 - Keeps track of history,
 - Allows a review process before "release"
 - Changes are properly attributed
 - ('we know who to blame'),
 - Simple to go back,
 - Off the shelf ready
 - no need to develop it.
 - robust and tested.

Protocols and Procedures



 Repositories are cloned, modified locally and patches sent to moderator.

Review Protocols

- Domain experts review content before inclusion in the shared repository.
- Harvesting and synchronizing
 - o supported by git commands.

Metadata Workflow

Registry Service Scope

- A Registry supports initial discovery.
 - Unstructured search (keywords)
 - Core science criteria
 - ▼ Temporal Range
 - Spatial Range
- Information needed for initial discovery is very general.
 - Applicable over a broad range of disciplines.
- Allows drill-down into detailed information.
 - Detailed information may be maintain in domain specific data models.

Principles Regarding a Resource

- Has a unique identifier.
- Has a time range of observation.
- Has descriptive information (name and narrative)
- Can have multiple measurement types.
- Can observe multiple regions.
- Can be associated with any number of other resources.
- Can have any number of indexed words.
- May have a spatial extent.

Rosetta Attributes

The "Dublin Core" for data.

Attribute names and occurrence. All "type" are enumerations.

ResourceID [1]

ResourceName [1]

ResourceType [0..1]

Description [1]

MeasurementType [o..*]

PhenomenonType [0..1]

ObservedRegion [o..*]

ObservatoryID [1]

ObservatoryName [1]

ObservatoryType [o..*]

ObservatoryGroup [o..*]

InstrumentID [1]

InstrumentName [1]

InstrumentType [0..1]

ReleaseDate [1]

StartDate [1]

StopDate [1]

Cadence [0..1]

Latitude [0..1]

LatitudeExtent [0..1]

Longitude [0..1]

LongitudeExtent [0..1]

Association [o..*]

Word [o..*]

Registry Service Required Functions

- Search
 - Keyword
 - Facet (Constraint in IVOA, Sets in OAI-PMH)
 - Constrained (XQuery search in IVOA)

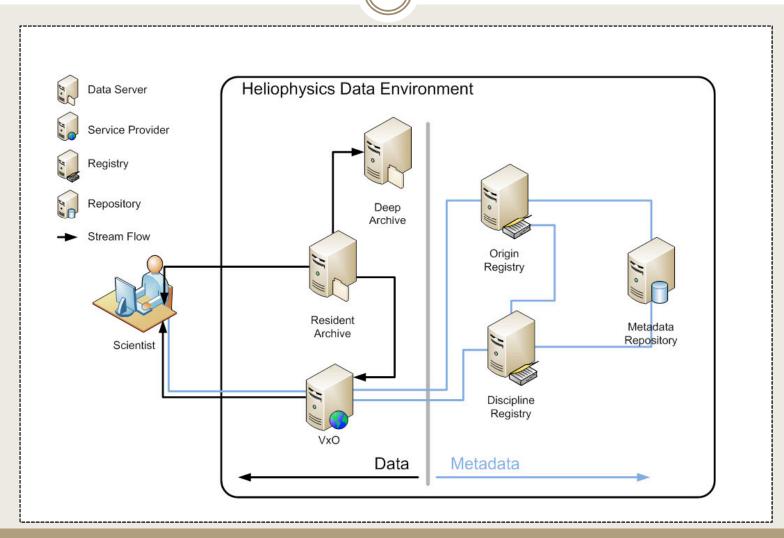
Note: A time range can be used to set the scope of any search.

- Retrieval
 - Resource Description
 - Resource references (URL and Resource ID)
- Existence
 - ID Stemming
 - ID Resolution

Will this work?

Yes.

Example: The Heliophysics Solution


SPASE metadata

- Designed for highly distributed data.
- Links metadata to data by a URL reference.
- Assigned universal identifiers to each described resource.

Operational separation of functions

- Resident Archives for data
- Virtual Observatory for services/views
- Resources (objects) passed by Resource ID
- SPASE aware sevices.

NASA's Heliophysics System Model

NASA's Heliophysics VxOs

- VxOs (and others) create resource descriptions using SPASE terms.
 - Expressed in XML.
 - One resource description per file.
- Files are stored in a metadata repository.
 - Repositories are organized by "authority" (e.g, one for VMO, VHO etc.)
- Repositories are harvested and query services are added forming registries.
 - All repositories are harvested to form the general Inventory.
 - o Discovered Resource ID collisions are resolved.
- Registries can be queried by others
 - Serve as a basis for value added services.

Example Registry Search Interface

Keyword Search

```
/registry/resolver?w={words}
/registry/resolver?w={words}&b={time}&e={time}
```

{words} is expressed in Lucene query syntax.

Example: /registry/resolver?w=plasma

Facet (Constraint in IVOA, Sets in OAI-PMH)

```
/registry/resolver?f={name:value}
```

{name} is pre-defined.

Example: /registry/resolver?f=instrumenttype:magnetometer

- Constrained
 - SPASE-QL protocols

Registry Retrieval

Resource Description

```
/registry/resolver?i={id}
```

{id} is a Resource ID.

```
Example:
/registry/resolver?i=spase://SMWG/Observatory/ISEE1
```

Resource References (Granules)

```
/registry/resolver?g={id}
/registry/resolver?g={id}&b={time}&e={time}
```

{id} is parent Resource ID.

```
Example:
```

/registry/resolver?g=spase://VMO/NumericalData/DE1/MAGA/PT0.062S

Registry Existence

• ID Stemming (used to discover resource by walking trees)

/registry/resolver?t={stem}

{stem} is a Resource ID stem.

Example:

/registry/resolver?t=spase://VMO/NumericalData/DE1

ID Resolution

/registry/resolver?e={id}

{id} is a Resource ID.

Example:

/registry/resolver?e=spase://VMO/NumericalData/DE1

Registry Tools

Metadata Management needs tools for:

- Validation (against data model schema)
- Referential checking (ID and URL)
- Collator (storage policy enforcer)
- Consolidated reports (Report card)

Registry Service is used by tools to:

- Find and access resources.
- Drill-down for details.

Tools already exist in the HPDE to do each of these.

What's Next? Community Agreement

Rosetta Attributes

- Derived from Heliophysics and Planetary data models.
- We need broad community vetting. Have we got it right?
- Service Interface
 - o Is REST enough?
- Resource Identifier Conventions
 - Use URI with data model name as scheme

scheme://authority/path

Scheme name	Data Model
spase	SPASE used by Heliophysics Data Environment
pds	Planetary Data System
ipda	International Planetary Data Alliance
ivoa	International Virtual Observatory Alliance