
IVOA Trieste, May 20 2008
1

IVOA Data Access Layer
Table Access Protocol (TAP Version P [P+Q])

Doug Tody (NRAO/NVO)

INTERNATIONAL VIRTUAL OBSERVATORY ALLIANCE
US National Virtual Observatory

IVOA Trieste, May 20 2008
2

TAP Tiger Team Discussions
• Held

– November 19-20 2008 at JHU

• Purpose
– Understand partner project requirements
– Discuss and agree upon main issues concerning TAP
– Provide basis for further work, broader discussions

• Attending (alphabetical order)
– J. Good, Bob Hanisch, K. Noddle, F. Ochsenbein, P. Osuna, Alex

Szalay (organizer), D. Tody (editor); also R. Plante (registry), M.
Graham (GWS)

IVOA Trieste, May 20 2008
3

TAP Tiger Team Discussions

• Meeting Notes
– http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/TapJhu

• Key Topics and Agreements
– Agreed need full up ADQL query with VOSpace integration,

async, etc.
• simple synchronous GET version should also be provided

– Agreed need ParamQuery (formerly SimpleQuery)
• uniform access to both table data and metadata
• primary mechanism used to query table metadata
• provide position-based search capability to replace cone search
• include region capability for more general regions (STC based)

IVOA Trieste, May 20 2008
4

TAP Tiger Team Discussions

• Key Topics and Agreements (cont’d)
– Metadata Queries

• minimal core TAP schema based upon registry model
• also provide "tableset" metadata in dataless VOTable and XML

– Interface Consistency
• TAP interface consistent with DAL service profile and semantics

– Minimal TAP Service
• implements ParamQuery for both data and metadata, core TAP

schema
• VOSI support (getCapabilities etc.)

– VOSpace integration
• strategy for how to do this was discussed

IVOA Trieste, May 20 2008
5

Required or Advanced Capabilities
• ADQL query capability
• Support for multiple query languages

(e.g., SQL pass-through)
• Simple parameter query (90/10,

robustness)
• Minimal TAP service (small data

providers)
• Uniform query interface for data and

metadata
• TAP schema (core, extensible)
• Tableset metadata (registry XML,

VOTable)
• Uniformity of DAL service family

interfaces
• Multiple table output formats (VOTable,

CSV/TSV, text, FITS, etc.)
• Support for both "narrow" and "wide"

table output
• Application-specific error customization

• Inline table uploads (via POST)
• VOSpace integration for both query

input and output
• Support for large streaming queries
• Cone search capability to replace legacy

cone search
• Multi-position queries
• Region-based queries (STC regions)
• UTYPE (data model) and UCD-based

queries
• Support for Google-like ranking of

queries (advanced)
• Support for propagation of table update
• Both synchronous and asynchronous

(UWS) execution
• Authentication (anonymous, SSO)
• VOSI support (capabilities, availability,

tableset metadata)
• Distributed job tracking (RUNID)

IVOA Trieste, May 20 2008
6

Service Interface

• Operations
– AdqlQuery ADQL (or other QL) queries
– ParamQuery Parameter queries (fully defined, no parser)
– GetCapabilities VOSI interface for service metadata
– GetAvailability VOSI interface for service monitoring
– [UWS interface] Used to monitor asynchronous jobs (TBD)

• Commonality
– AdqlQuery, ParamQuery share much of the same

implementation
– Primary difference is in the form of the query (and complexity)
– Back-end (query execution, output formatting) is the same for

both

IVOA Trieste, May 20 2008
7

Common Elements

• Table name syntax
– [[<catalog>"."[<schema>"."]]<table>

• Field name resolution
– UTYPE or UCD references resolve to a physical table field name

• Uses namespace, e.g., “ssa:target.name”, “ucd:instr.bandpass”
– All query evaluation is done on physical table fields
– UCD is a special case of a UTYPE (data model)

• Inline table uploads
– Tables (or regions etc.) can be uploaded inline in a query
– Tables can be directly queried: “$UPLOAD.tableName”

IVOA Trieste, May 20 2008
8

Common Elements
• VOSpace integration

– Use VOSpace tables for both input and output
• The user’s VOSpace appears as a DBMS schema in queries
• Tables can be used directly in queries: “$VOSPACE.tableName”
• Output tables saved at server, can be used in a subsequent query

– Provides per-user storage, persistence

• Asychronous execution
– Required for large queries; UWS used to monitor execution

• Multiple Output formats
– Allow client to get data/metadata in desired format
– VOTable (default), CSV/TSV, FITS, text, html, etc.

• TAP schema
– Standard data model for Table/DBMS metadata; extensible

IVOA Trieste, May 20 2008
9

AdqlQuery

• Input parameters
– Query, QueryType URL-encoded ADQL (or other) expression
– Format Output data format specification (any)
– Maxrec Allows streaming of large queries
– Mtime Allows propagation of table update/add/delete
– RunId Monitoring of distributed jobs
– Output Direct output to VOSpace, initiate async

• Functionality
– All query specification is done using ADQL
– Common functionality for output formatting, data staging, etc.

IVOA Trieste, May 20 2008
10

ParamQuery
• Input parameters

– Pos, Size Single or multiple position ("cone search")
– Region More general regions
– Select,From,Where Simplified param-based SQL like query
– Top Heuristic-based (Google-like) query
– Format,Maxrec, Common with AdqlQuery
– Mtime,RunId,Output

• Functionality
– All query specification is parameter-based, constrained, robust
– Common functionality for output formatting, data staging, etc.

IVOA Trieste, May 20 2008
11

ParamQuery
• Table metadata queries

– Metadata is represented like data tables (TAP Schema)
– Entire query interface can be used for metadata queries
– VOSI/Registry compatibility is easily provided as well

• Basic Examples
– FROM=TAP_SCHEMA.tables
– FROM=TAP_SCHEMA.columns &WHERE=tableName,fp_psc
– FROM=TAP_SCHEMA.tableset &FORMAT={xml|votable}

• More Advanced Examples
– FROM=TAP_SCHEMA.tables &WHERE=tableName,$VOSPACE.*
– FROM=TAP_SCHEMA.tables &POS=xx&SIZE=yy

(ADQL could also be used for metadata queries of course)

IVOA Trieste, May 20 2008
12

TAP Schema

• Concept
– Same concept as SQL92 INFORMATION_SCHEMA
– That is, represent DBMS/Table metadata as data tables
– Allows power of RDBMS mechanism to be re-used for metadata

queries
– Easily extensible since it is data, not interface

• TAP_SCHEMA.tables
– TableName Table name including catalog and schema
– Description Brief description of table
– TableType Base_table, view, output
– Utype UTYPE if table corresponds to a data model

IVOA Trieste, May 20 2008
13

TAP Schema

• TAP_SCHEMA.columns
– Name Column name
– TableName Table name, e.g., <schema>.<table>
– Description Brief description of column
– Unit Unit in VO standard format
– Ucd UCD of column if any
– Utype UTYPE of column if any
– Datatype Datatype as in VOTable/Registry
– Arraysize Array dimensions as in VOTable/Registry
– Primary Column is visible in default selection
– Indexed Column is indexed on the server
– Std Standard column (as opposed to custom)

IVOA Trieste, May 20 2008
14

ParamQuery

• Multi-Position Queries
– Concept

• User uploads or references table containing multiple positions
• Perform same query for each position
• Scale up to many objects; first phase of cross-match

– Approach
• Generalize POS,SIZE to multi-position
• POS=@UPLOAD.tableName (VOSpace, DBMS can also be used)

• Output
– A single table containing data for all positions
– Rows for a given position are tagged by postion ID
– Either sync/async is possible

IVOA Trieste, May 20 2008
15

ParamQuery

• "Cone Search" Capability
– Motivation

• Simple cone search most successful VO service of all time!
• Obsolete/replace legacy simple cone search capability
• Replace with more powerful, but still simple, capability
• Supports multiple data collections, UTYPE/UCD, etc.
• Non-positional queries are always possible - not a limitation

• Approach
– ParamQuery, POS/SIZE, optional SELECT, WHERE constraints
– REGION can be also be used to generalize search region
– Multi-position version can be used to scale up

• Example
– FROM=tableName &POS=x,y&SIZE=z &WHERE=flux,3/

