INTERNATIONAL VIRTUAL OBSERVATORY ALLIANCE
US National Virtual Observatory

IVOA Data Access Layer
Table Access Protocol (TAP Version P [P+Q])

Doug Tody (NRAO/NVO)

IVOA Trieste, May 20 2008

TAP Tiger Team Discussions

Held
- November 19-20 2008 at JHU

Purpose

- Understand partner project requirements

- Discuss and agree upon main issues concerning TAP
- Provide basis for further work, broader discussions

- Attending (alphabetical order)

- J. Good, Bob Hanisch, K. Noddle, F. Ochsenbein, P. Osuna, Alex
Szalay (organizer), D. Tody (editor); also R. Plante (registry), M.
Graham (GWS)

IVOA Trieste, May 20 2008

TAP Tiger Team Discussions

- Meeting Notes

- Key Topics and Agreements
- Agreed need full up ADQL query with VOSpace integration,
async, etc.
- simple synchronous GET version should also be provided

- Agreed need ParamQuery (formerly SimpleQuery)
- uniform access to both table data and metadata
- primary mechanism used to query table metadata
- provide position-based search capability to replace cone search
- include region capability for more general regions (STC based)

IVOA Trieste, May 20 2008

TAP Tiger Team Discussions

- Key Topics and Agreements (cont’d)

- Metadata Queries
- minimal core TAP schema based upon registry model
- also provide "tableset” metadata in dataless VOTable and XML

- Interface Consistency
- TAP interface consistent with DAL service profile and semantics

- Minimal TAP Service

- implements ParamQuery for both data and metadata, core TAP
schema

- VOSI support (getCapabilities etc.)

- VOSpace integration
- strategy for how to do this was discussed

IVOA Trieste, May 20 2008

ADQL query capability
Support for multiple query languages
(e.g., SQL pass-through)

Simple parameter query (90/10,
robustness)

Minimal TAP service (small data
providers)

Uniform query interface for data and
metadata

TAP schema (core, extensible)

Tableset metadata (registry XML,
VOTable)

Uniformity of DAL service family
interfaces

Multiple table output formats (VOTable,
CSV/TSV, text, FITS, etc.)

Support for both "narrow" and "wide"
table output

Application-specific error customization

Required or Advanced Capabilities

Inline table uploads (via POST)

VOSpace integration for both query
input and output

Support for large streaming queries

Cone search capability to replace legac
cone search

Multi-position queries
Region-based queries (STC regions)

UTYPE (data model) and UCD-based
queries

Support for Google-like ranking of
queries (advanced)

Support for propagation of table update

Both synchronous and asynchronous
(UWS) execution

Authentication (anonymous, SSO)

VOSI support (capabilities, availability,
tableset metadata)

Distributed job tracking (RUNID)

IVOA Trieste, May 20 2008

Service Interface

- Operations

- AdqglQuery ADQL (or other QL) queries
ParamQuery Parameter queries (fully defined, no parser)
GetCapabilities VOSI interface for service metadata
GetAvailability VOSI interface for service monitoring
[UWS interface] Used to monitor asynchronous jobs (TBD)

- Commonality

AdqglQuery, ParamQuery share much of the same
implementation

Primary difference is in the form of the query (and complexity)

Back-end (query execution, output formatting) is the same for
both

IVOA Trieste, May 20 2008

Common Elements

- Table name syntax

- [[<catalog>"."[<schema>"."]1< table>

Field name resolution

- UTYPE or UCD references resolve to a physical table field name
- Uses namespace, e.g., ‘ssa:target.name”, “ucd:instr.bandpass”

- All query evaluation is done on physical table fields

- UCD is a special case of a UTYPE (data model)

Inline table uploads

- Tables (or regions etc.) can be uploaded inline in a query
- Tables can be directly queried: “SUPLOAD. tableNameée’

IVOA Trieste, May 20 2008

Common Elements

- VOSpace integration

- Use VOSpace tables for both input and output
- The user’s VOSpace appears as a DBMS schema in queries
- Tables can be used directly in queries: “$VOSPACE. tableNameé’
- Output tables saved at server, can be used in a subsequent query

- Provides per-user storage, persistence

- Asychronous execution
- Required for large queries; UWS used to monitor execution

Multiple Output formats

- Allow client to get data/metadata in desired format
- VOTable (default), CSV/TSV, FITS, text, html, etc.

- TAP schema
- Standard data model for Table/DBMS metadata; extensible

IVOA Trieste, May 20 2008

AdqglQuery

Input parameters

Query, QueryType URL-encoded ADQL (or other) expressio
Format Output data format specification (any)
Maxrec Allows streaming of large queries

Mtime Allows propagation of table update/add/delete
Runld Monitoring of distributed jobs

Output Direct output to VOSpace, initiate async

Functionality

- All query specification is done using ADQL
- Common functionality for output formatting, data staging, etc.

IVOA Trieste, May 20 2008

ParamQuery

Input parameters
Pos, Size Single or multiple position ("cone search")
Region More general regions
Select,From,Where Simplified param-based SQL like query
Top Heuristic-based (Google-like) query
Format,Maxrec, Common with AdglQuery
Mtime,Runlid,Output

Functionality

— All query specification is parameter-based, constrained, robust
- Common functionality for output formatting, data staging, etc.

IVOA Trieste, May 20 2008

ParamQuery

Table metadata queries

- Metadata is represented like data tables (TAP Schema)
- Entire query interface can be used for metadata queries
- VOSI/Registry compatibility is easily provided as well

Basic Examples

- FROM=TAP_SCHEMA.tables

- FROM=TAP_SCHEMA.columns &WHERE=tableName,fp_psc
- FROM=TAP_SCHEMA.tableset &FORMAT={xml|votable}

More Advanced Examples
- FROM=TAP_SCHEMA.tables & WHERE=tableName,$VOSPACE.*
- FROM=TAP_SCHEMA.tables &POS=xx&SIZE=yy

(ADQL could also be used for metadata queries of course)

IVOA Trieste, May 20 2008

TAP Schema

Concept
Same concept as SQL92 INFORMATION_SCHEMA

That is, represent DBMS/Table metadata as data tables

Allows power of RDBMS mechanism to be re-used for metadata
queries

Easily extensible since it is data, not interface

- TAP_SCHEMA.tables
- TableName Table name including catalog and schema
- Description Brief description of table
- TableType Base_table, view, output
- Utype UTYPE if table corresponds to a data model

IVOA Trieste, May 20 2008

TAP Schema

- TAP_SCHEMA.

- Name
TableName
Description
Unit
Ucd
Utype
Datatype
Arraysize
Primary
Indexed

- Std

columns

Column name

Table name, e.g., <schema>.<table>
Brief description of column

Unit in VO standard format

UCD of column if any

UTYPE of column if any

Datatype as in VOTable/Registry

Array dimensions as in VOTable/Registry
Column is visible in default selection
Column is indexed on the server
Standard column (as opposed to custom)

13
IVOA Trieste, May 20 2008

ParamQuery

- Multi-Position Queries

- Concept
- User uploads or references table containing multiple positions
- Perform same query for each position
- Scale up to many objects; first phase of cross-match

- Approach

- Generalize POS,SIZE to multi-position
- POS=@UPLOAD.tableName (VOSpace, DBMS can also be used)

- Output
- A single table containing data for all positions
- Rows for a given position are tagged by postion ID
- Either sync/async is possible

IVOA Trieste, May 20 2008

ParamQuery

- "Cone Search” Capability
- Motivation

- Simple cone search most successful VO service of all time!

- Obsolete/replace legacy simple cone search capability

- Replace with more powerful, but still simple, capability

- Supports multiple data collections, UTYPE/UCD, etc.

- Non-positional queries are always possible - not a limitation

- Approach

- ParamQuery, POS/SIZE, optional SELECT, WHERE constraints
- REGION can be also be used to generalize search region
- Multi-position version can be used to scale up

- Example
- FROM=tableName &POS=x,y&SIZE=z &WHERE=flux,3/

IVOA Trieste, May 20 2008

