
Simple Applications Messaging Protocol

Applications Working Group
IVOA Interop Meeting, Trieste, May 2008

$Id: appsamp.tex,v 1.19 2008/05/21 09:52:18 mbt Exp $

SAMP: Apps Working Group, IVOA Interop Meeting, Trieste May 2008 1/28

Plan For Sessions

Introduction

• History

• Summary of current status
. Outline of SAMP + Demo (Thomas Boch)

Outstanding Items

• Remaining open/contentious issues

• Work still to do
. MType vocabulary (Mike Fitzpatrick)

Future Plans

• Summarise work still required

• Commitments from document contributors

• Predictions from implementors

• Produce Roadmap

SAMP: Apps Working Group, IVOA Interop Meeting, Trieste May 2008 2/28

History

PLASTIC working and stable. . .

• A few working hub implementations

• Many compliant applications

• Popular with developers and users (including outside VO)

. . . but various things needed fixing

• Java-RMI dependency meant hubs could only be in Java

• Not generalisable for use in un-PLASTIC-like environments

• Various issues with the API discovered during use

SAMP intended to address these deficiencies

• Input from both PLASTIC and non-PLASTIC teams from IVOA

• Required to be “PLASTIC-like” in initial version, to build on existing base of developers and

users

• Future versions (TBD) may generalise further, but underlying similarity will facilitate

interoperability
. different operating requirements, transport layers, application coupling models. . .
. to some extent can address this by defining different Profiles

SAMP: Apps Working Group, IVOA Interop Meeting, Trieste May 2008 3/28

Current Status

SAMP document is fairly complete, “inWG”

• Lead authors (Boch, Fitzpatrick, M Taylor) worked together on initial draft (input from

J Taylor, Tody)

• Circulated on apps-samp list since 30 April 2008

• Some items resolved by discussion on-list

Implementation

• We have two interoperating implementations!
. Perl: hub implementation with test clients (Allan)

. Java: SAMP functionality in Aladin (Boch)

• Different languages, different authors, few hitches, quick completion
. Demonstrates that standard is close to complete and comprehensible

• Implementors note that standard is still in flux, so changes may be required

Some issues still to decide/resolve/complete

SAMP: Apps Working Group, IVOA Interop Meeting, Trieste May 2008 4/28

SAMP Document Overview

. . . over to Thomas

SAMP: Apps Working Group, IVOA Interop Meeting, Trieste May 2008 5/28

Next Steps

Plan for next six months:

1. Discuss outstanding issues here

2. Publish Working Draft shortly after this meeting (May/June)

3. Hub and client implementations

4. Revise draft in light of developer experiences

5. Produce Proposed Recommendation

Goals for this meeting:

• List open issues

• Reach consensus on open issues where possible . . .

• . . . but WD doesn’t need to be final, so if necessary we can identify provisional/deferred

decisions

• Criteria for published WD:
. must be sufficient for people to use for writing interoperable applications
. preferably later changes will not invalidate or require major (any?) changes to software

based on it

SAMP: Apps Working Group, IVOA Interop Meeting, Trieste May 2008 6/28

Outstanding Items

Several ISSUE and TODO items have been identified

• some flagged with initial draft (from earlier discussions between authors),

• some arose during discussion on list so far

• some only just introduced by me — (new)
. apologies for short notice of these

• Presentations here are my view of status — may be imperfect

Fall into several categories:

• Resolved ISSUEs

• Minor TODOs

• ISSUEs representing significant disagreement/uncertainty

• TODOs representing significant amounts of work

Discuss, resolve, assign responsibilities as appropriate

SAMP: Apps Working Group, IVOA Interop Meeting, Trieste May 2008 7/28

Resolved ISSUEs

Some items have been resolved by discussion on list already

• ISSUE: Message-id management
Q: How are message identfiers assigned by clients and hubs?
A: Client and hub can both choose their own free-form IDs.

• ISSUE: Lockfile in MS Windows
Q: Where to write hub-discovery file on Windows OS?
A: Use %USERPROFILE% environment variable.

• ISSUE: Difficulty of implementing synchronous call/response in hub
Q: Implementing synchronous call in hub requires non-trivial IPC or threading

— does this impose too heavy a burden on hub implementors?
A: No.

• ISSUE: Call argument order
Q: Arguments of some API methods look inconsistent.
A: Rearrange them.

SAMP: Apps Working Group, IVOA Interop Meeting, Trieste May 2008 8/28

Minor TODOs

Small or uncontroversial items not yet addressed:

• mostly not done yet due to lack of time

• should be addressed before we issue a Working Draft

• can be handled by document authors

• noted here to make sure they get done

Items are:

• SAMP/PLASTIC comparison
. appendix explaining the differences

• More examples (is this required?)

. appendix with further examples of API use and/or XML-RPC communications

• Formal requirements for IVOA Recommendation Track document
. “Document Status” section
. Does LATEX need fixing up? e.g. bibliography, pdflatex processing only?

• Proofreading etc. . .

SAMP: Apps Working Group, IVOA Interop Meeting, Trieste May 2008 9/28

ISSUE: Synchronous call timeout?

Should the synchronous call method incorporate a user-set timeout?

• Existing method is

map response = callAndWait(string recipient-id, map message)

could be

map response = callAndWait(string recipient-id, map message,
string timeout)

• timeout represents integer value in seconds; <= 0 means wait forever

• timeout should be advisory:
. time out might occur later if hub is busy
. time out might occur earlier if underlying protocol connection times out

• For:
. Convenient for (e.g. script) applications which want a result but don’t want to risk hanging

• Against:
. Complicates hub implementation
. Complicates hub API slightly
. If you want more clever/flexible/robust invocation you can always use aysnchronous

call/response

SAMP: Apps Working Group, IVOA Interop Meeting, Trieste May 2008 10/28

ISSUE: Rename setMetadata? (new)

Should hub method setMetadata() be renamed? (my fault!)

• Existing methods are

setMetadata(map metadata) — set client’s own metadata

map metadata = getMetadata(string client-id) — get another client’s metadata

• setMetadata() is not really the opposite of getMetadata()

• Rename instead:
. setSelfMetadata()?
. declareMetadata()? (which it was before I changed it)

Same applies to setMTypes() (but see ISSUE: Annotations)

SAMP: Apps Working Group, IVOA Interop Meeting, Trieste May 2008 11/28

ISSUE: getHubID/getSelfID

There are special client IDs which a client may want to know

(a) client’s own client ID
. needed only if client wants to send a message to itself?

(b) the client ID used by the Hub (e.g. for sending hub stopping event messages)

. needed to send a messsage to the hub as application (e.g. to get hub metadata like
implementation name)

. needed to identify if a given message comes from hub (why?)

Should it be possible for client to obtain these?

If so, how?

• Currently hub API has method getHubID() but not getSelfID()

• Could add getSelfID()

• Could remove getHubID() and require hub ID equal to fixed value (e.g. “0”)

• Could have both returned at registration time:
. register() call currently returns nothing (abstract API) or private-key (Standard Profile)

. could return a map with keys self-id, hub-id (abstract API) and additionally
private-key (Standard Profile)

. allows extensibility to return other registration info too, if we think of other things

. presumably remove hub getHubID() method in this case

• Or some combination?

SAMP: Apps Working Group, IVOA Interop Meeting, Trieste May 2008 12/28

ISSUE: MType Wildcarding

Should you be able to subscribe to multiple MTypes using wildcards?

• You can subscribe to spectrum.load.votable and spectrum.load.fitstable

• How about subscribing to spectrum.load.* which lets you receive the above as well as

spectrum.load... messages not yet thought of (e.g. spectrum.load.fitsimage)
. (Should * match multiple levels, e.g. does spectrum.load.* cover

spectrum.load.fitstable.extnum?)

Against:

• If you receive messages with MTypes you don’t know about (haven’t seen documentation for),

how are you supposed to know how to process them?
. You won’t know what semantics the MType is supposed to represent
. You won’t know what parameters they have, or what return values you should send back
. If you understand spectrum.load.fitstable you might be able to guess about

spectrum.load.votable — but what about spectrum.load.echelle?

For:

• Useful for logging/monitor/forwarding type applications
. any applications which do not need to understand messages in order to process them
. . . . but even logging apps (which take no action) won’t be able to return correct replies

— would have to signal error for unknown MTypes.

• . . . more?

SAMP: Apps Working Group, IVOA Interop Meeting, Trieste May 2008 13/28

ISSUE: Rationalise Reserved Words? (new)

• Several places in the document have a vocabulary of reserved words (mostly map keys):

. Application metadata keys (samp.name, samp.icon.url, . . .)

. Message content encoding keys (mtype, params)

. Response content encoding keys (errortxt, usertxt, code, . . .)

. Standard profile lockfile tokens (samp.secret, samp.hub.xmlrpc.url, . . .)

. register() return value keys (self-id, hub-id, private-key) (new)

. possibly more arising from discussions today?

• All these vocabularies are individually documented as being extensible:
. Undefined keys (ones not described in the SAMP document) MAY be used in these contexts
. Applications coming across keys they don’t understand should generally ignore them
. This means that applications can experiment with new features in such a way that the API

doesn’t need to change and they don’t break existing interoperability
. If such features are agreed to be useful, they can be introduced into future versions

• Some use “samp.” prefix to mark reserved namespace, others don’t (more or less at random)

• Should we rationalise?
. Add some text which explains the general extensibleness philosopy
. Use “samp.” prefix for all or none?
◦ Using samp. prefix is safer — can be sure of avoiding accidental clashes
◦ But flat namespace (no samp.) makes it easier to adopt de facto usages into the standard

SAMP: Apps Working Group, IVOA Interop Meeting, Trieste May 2008 14/28

ISSUE: Annotations

Annotations permit dynamic (run-time) refinement of MType semantics

• Transparent yet complete explanation of the exact what, why and how of Annotations in ten

words or less:
omitted due to lack of space in the margin

• Brief history
. Annotations in PLASTIC
◦ Retrofitted at slight cost to message syntax tidiness
◦ Demonstrated to do what they were supposed to do
◦ Not widely used

. Annotations in SAMP
◦ Present in early drafts of SAMP document
◦ Removed before mailing list circulation, since concepts not well integrated into the rest of the document

. A really neat idea, or completely unnecessary and misguided, according to who you talk to

. Widely misunderstood

• Possible ways forward:
. Reinstate section from early drafts, with appropriate required modifications to API and text
. Abandon idea altogether
. Omit for now, but modify API in such a way that they remain a possibility

SAMP: Apps Working Group, IVOA Interop Meeting, Trieste May 2008 15/28

ISSUE: Annotations — continued

Compromise: how to leave door open for Annotations

• Change to API
. Currently:
◦ A client’s subscriptions are represented as a list of MTypes

declareMTypes(list mtypes)
list mtypes = getMTypes(string client-id)

. Proposed:
◦ A client’s subscriptions are represented as a map in which the keys are Mtypes

declareSubscriptions(map subscriptions)
map subscriptions = getSubscriptions(string client-id)

◦ The values associated with these keys are undefined (may be empty)
◦ This provides a place which annotation information could be stored, if we decide we want it

. Notes
◦ The modified API is hardly any more complicated to use
◦ It’s set up so that Annotation-aware and Annotation-unaware applications can interoperate without either

needing to know the difference
◦ This introduces flexibility which could be used in future for other possibilities (e.g. finer-grained

subscriptions based on parameter values??)

• How to proceed if this is adopted
. Application developers can experiment if they wish (via discussions on apps-samp list)
. If annotations look useful, we can reconsider introducing them to doc before PR stage
. Maybe other useful possibilities using this additional flexibility could arise

SAMP: Apps Working Group, IVOA Interop Meeting, Trieste May 2008 16/28

ISSUE: Response Encoding (new)

• Currently processing success/failure flag is passed separately from response object, response

object contains either result or error info
. Asynchronous Call/Response:
◦ receiveResponse(string responder-id, string msg-id, string success, map response)
◦ for successful processing, success="1", response contains data as defined by MType
◦ in case of error, success="0", response contains error information in a standard form

. Synchronous Call/Response:
◦ map response = callAndWait(string recipient-id, map message) — may fail
◦ for successful processing, response contains data as defined by MType
◦ in case of error, the invocation itself results should fail in a protocol-dependent way

• Would it be better for response object to contain success flag?
. Asynchronous Call/Response:
◦ receiveResponse(string responder-id, string msg-id, map response)

. Synchronous Call/Response:
◦ map response = callAndWait(string recipient id, map message)

. In all cases (synch/asynch and success/error) response map has a single form, with keys:
◦ success: “1” for success, “0” for error
◦ result: return values as defined by MType; SHOULD be absent in case of error
◦ error: error information in standard form; SHOULD be absent in case of success

• Suggest change as above
◦ More consistent (all semantic information in the same place, both for synch and asynch)

◦ More extensible (additional map keys can be used)

SAMP: Apps Working Group, IVOA Interop Meeting, Trieste May 2008 17/28

ISSUE: Response Encoding — continued

Further refinements to response object?

• Should success flag (=“0”/“1”) be replaced by status value?
. More possible values: status = “ok”, “warning”, “error”, . . . ?

• More carefully thought out error detail keys:
. Currently errortxt, usertxt, debugtxt (free form strings), code (numeric code)
. Require more parseable error indications?

• MType considered as part of response object — rejected

SAMP: Apps Working Group, IVOA Interop Meeting, Trieste May 2008 18/28

ISSUE: Message Send Terminology

Delivery pattern and message type terminology needs to be clarified

• We have two apparently similar but orthogonal sets of concepts:
. Delivery Pattern
◦ Whether (and how) a sender wishes to receive a response from a given message sent
◦ Decided by the sender when it sends the message

. MType Category
◦ Whether a message is the kind which means “I want you to do X” or “X has just happened”
◦ Determined by the MType and how it is documented

• Confusion has arisen because

typically you will want some response from “I want you do to X” and

typically you will not want some response from “X has just happened”.

• However, the rules of SAMP do not enforce these habits — either category of MType can be

sent using any delivery pattern

• There is no genuine technical problem here, but the use of language (especially in API method

names) has repeatedly caused confusion

• We need to decide once and for all how to label these things and adjust the API method names

accordingly

SAMP: Apps Working Group, IVOA Interop Meeting, Trieste May 2008 19/28

ISSUE: Message Send Terminology — continued

Current usage in the draft document is as follows

• The terms used are:
. Delivery Pattern:
◦ Call/Response: sender does require a response
◦ Notification: sender does not require a response

. MType Category:
◦ Request: Mtype with semantics indicating “I want you to do X” (e.g. file.load)

◦ Event: MType with semantics indicating “X has just happened” (e.g. file.event.load)

• These appear in the normative parts of the document as:
. Hub API methods notify*(), call*() and

client API methods receiveNotification(), receiveCall()
. MTypes *.event.*

as well as in the descriptive text

Although internally consistent some people still believe this too confusing:

• the term “notify” suggests something which cannot have a response

• the term “call” sounds inappropriate for informing “X has happened”

SAMP: Apps Working Group, IVOA Interop Meeting, Trieste May 2008 20/28

ISSUE: Message Send Terminology — continued

Replace “Notify” and “Call” by “Send”?

• The term “send” has been proposed to be used for all delivery patterns

• Would require modifications of hub/client APIs (notify(), call() etc)

to distinguish between want response and do not want response:
. replace existing method names by variants of “send”
◦ a bit unwieldy:

notify[All]()→ sendVoid[All]() (or sendNotify[All]()?)
call[All]() → sendAsynch[All]()
callAndWait()→ sendSynch()

. overload single send() method with different signatures
◦ not good for use with wire protocols or languages which do not support overloading

. use single send() method with delivery pattern information in arguments
◦ Existing notify() and call() methods have different signatures, so can’t just amalgamate by adding a

new wantReply argument
◦ Could do it by moving the wantReply argument inside the message map argument. Less explicit what’s

going on?

SAMP: Apps Working Group, IVOA Interop Meeting, Trieste May 2008 21/28

ISSUE: Message Send Terminology — continued

Summary of possibilities:

1. Do nothing
. Leave notify()/call() methods as they are
. “Event” and “Request” are terms only used in discussion of MTypes
. Perhaps work harder to clarify the issues in the text

2. Avoid discussion of MType categories altogether
. Leave notify()/call() methods as they are

. Remove general discussion of distinct “Event”/“Request” MType semantics (though
.event. MTypes still exist)

3. Use overloaded send()
. Replace notify()/call() methods by overloaded send() method
. “Event”, “Request”, “Notify” and “Call” may be used in discussion of MTypes

4. Use send() with delivery pattern flag inside message
. Replace notify()/call() methods by single send() method with wantReply flag

encoded within message argument envelope
. “Event”, “Request”, “Notify” and “Call” may be used in discussion of MTypes

5. Use sendSomething()
. Rename methods notify()/call() as sendVoid()/sendAsync() (or something)
. “Event”, “Request”, “Notify” and “Call” may be used in discussion of MTypes

SAMP: Apps Working Group, IVOA Interop Meeting, Trieste May 2008 22/28

ISSUE: HTTP/JSON? (new)

Should we add an HTTP-GET-based interface alongside the XML-RPC one?

• What
. Standard Profile would require hubs to provide an interface based on HTTP GET and

JSON as well as the existing XML-RPC one
. JSON (http://www.json.org/, RFC 4627 — 10 pages!)
◦ Simple prescription for encoding structured data (maps, lists) in strings

◦ JavaScript Object Notation — but in no way Java/JavaScript specific!

. Clients can choose whether they use XML-RPC or HTTP/JSON flavour

. Only requirements for use are:
◦ HTTP GET: very widely available, often without requiring external libraries
◦ JSON parser: libraries available for many languages, but very feasible to write your own/parse by hand

. Only certain SAMP operations would be available
— no Callable clients ⇒ no asynchronous calls or MType subscriptions

SAMP: Apps Working Group, IVOA Interop Meeting, Trieste May 2008 23/28

http://www.json.org/
http://www.ietf.org/rfc/rfc4627

ISSUE: HTTP/JSON? — continued

Should we add HTTP/JSON to Standard Profile?

• For
. Makes limited use of SAMP really easy
. Makes limited use of SAMP possible from restrictive/primitive environments (e.g. shell

scripts, IDL, . . .)
. Useful for, e.g., doing something very simple like broadcasting a load table message

• Against
. Complicates (Standard Profile part of the) specification
. More work for hub implementors
. Proliferating wire protocols willy-nilly is a bad thing
. More choices of wire protocol means more things to go wrong, more untested code in hubs
. Applications using this can’t use all SAMP capabilities (e.g. asynchronous messaging)

• Only worth doing if it makes worthwhile use cases significantly easier

(e.g. enables SAMP use from places it would otherwise be impractical)

SAMP: Apps Working Group, IVOA Interop Meeting, Trieste May 2008 24/28

ISSUE: Rename Standard Profile PLASTIC? (new)

Should we retain PLASTIC name for PLASTIC-like parts of SAMP?

• What
. SAMP covers messaging architecture designed to be extended in future for different

messaging requirements
. “Standard Profile” describes XML-RPC bindings, hub discovery using lockfiles etc
. SAMP + Standard Profile is by design PLASTIC-like
. We could, e.g., label the Standard Profile the PLASTIC Profile or PLASTIC v2 or

SAMP/PLASTIC.

. SAMP itself remains the overall label for the more general/generalisable messaging system

• For:
. The PLASTIC “brand” is quite well known and popular, among developers and even

(non-VO) astronomers.
. Starting with a new name may be hard to sell to existing users.

• Against:
. Could result in confusion about compatibility etc
. May risk underselling the differences/improvements represented by SAMP over PLASTIC

SAMP: Apps Working Group, IVOA Interop Meeting, Trieste May 2008 25/28

TODO: MType vocabulary

. . . over to Mike

SAMP: Apps Working Group, IVOA Interop Meeting, Trieste May 2008 26/28

PLASTIC/SAMP migration

Hopefully existing PLASTIC tools will start to move to SAMP.

• Do we need to be proactive about this?
. “Why should I recode my PLASTIC-speaking app to use SAMP?”
. “What happens if I don’t?”

How do we manage the transition?

• Danger of alienating existing PLASTIC users

• Would be nice if nothing/not much stopped working while applications migrate

• Do we need to take special steps?
. Attempt to fix crossover date from PLASTIC to SAMP?
◦ Difficult to organise — probably not practical

. Existing PLASTIC applications encouraged to speak both PLASTIC and SAMP?
◦ Temporary measure
◦ Not ideal for developers
◦ Probably would work best

. PLASTIC/SAMP bridge?
◦ Temporary measure
◦ A SAMP hub implementation could also function as PLASTIC hub, translating messages between the two
◦ Or separate daemon could do a similar job (hence work with any SAMP hub)

◦ Translation unlikely to be perfect (PLASTIC msg ↔ SAMP Mtype correspondance required)
◦ Could probably be made to work reasonably well??

SAMP: Apps Working Group, IVOA Interop Meeting, Trieste May 2008 27/28

Implementations

Coming along nicely!

Next steps following WD publication (May/June):

• Existing implementations updated as required
. Perl hub — AA
. Aladin — TB

• New hub implementations/infrastructure

. Java hub (freestanding or embeddable) — MT

. Java client toolkit — MT

. Hub test suite? — MT?

. . . . other people’s plans?

• Uptake in existing applications
. TOPCAT — MT
. SPLAT — MT
. VODesktop? — MT/AG
. GAIA? — MT
. . . . other people’s plans?

SAMP: Apps Working Group, IVOA Interop Meeting, Trieste May 2008 28/28

