
THE INTERNATIONAL VIRTUAL OBSERVATORY ALLIANCE

Making a Service Standard
Registry-Ready
(Defining Capability Metadata

the VOResource way)
Ray Plante

14 May 2007
IVOA Interoperability Meeting – Beijing

14 May 2007 IVOA Interoperability Meeting – Beijing

VOResource Extension Metadata
• Purpose

– Provide a means for registry clients to discover/recognize a resource as a
standard service.

Find me all Cone Search services

– Allow selection of service instances based on its instance-specific capabilities
Find me all TAP services that support table upload

– Provide clients with a description of the services capabilities so that it can be
used effectively.

maxRecords,

• Defining capability metadata should be part of the service specification
• Process

– Defining & naming the concepts
– Creating a VOResource Extension Schema

We recommend the following process

14 May 2007 IVOA Interoperability Meeting – Beijing

0. What kinds of Resources?
• Possible VOEvent resources

– Repositories
– Subscription/Feed services
– …

• Types of metadata
– Metadata about the resource that is relevant independent of any

service interface
• DataCollection, Organisation
• (repository)

– Capability metadata: specific to a service protocol
• capabilities: SimpleImageAccess, ConeSearch, …
• (feed service)

– Resource that needs both specializations
• Registry resource type, registry-related capabilities: Harvest,

Search

14 May 2007 IVOA Interoperability Meeting – Beijing

1. Define the concepts
• Name the concepts and provide a

definition
– Try to be precise, avoid ambiguity
– If value is numeric, specify the units!
– Don’t worry if the value is not single-valued
– Indicate if whether a value is optional or

required, if multiple values are allowed.
[examples from SIA, including position]

14 May 2007 IVOA Interoperability Meeting – Beijing

About the VOResource Schema
• A service can many capabilities

– e.g. a “single” service can support Cone Search and TAP
• Service: a set of interfaces into a collection of data

– Each capability can support multiple interfaces
• Standard interface, a web browser interface, custom interface
• Each interface has one endpoint URL associated with it

– How do I recognize support for the Cone Search standard?
• xsi:type
• standardID

<capability xsi:type="cs:ConeSearch"
standardID="ivo://ivoa.net/std/ConeSearch">

• Service Resource types
– Identified by the xsi:type attribute on the root Resource element

<ri:Resource xsi:type="vr:Service"

• Service: a resource that can be invoked to perform some action on the user’s behalf
– a Resource that permits capability elements

• DataService: A service for accessing astronomical data
– a Service that permits coverage descriptions

• CatalogService: A service that interacts with one or more specified tables having some coverage of
the sky, time, and/or frequency.

– a DataService that permits table descriptions

– DAL services to date have been considered CatalogServices

14 May 2007 IVOA Interoperability Meeting – Beijing

2. Create a sample instance
• Choose preferred Service Resource Type

– DAL: Usually CatalogService
• Choose required Interface Type

– ParamHTTP: HTTP GET with name=value arguments
– WebService: a service whose interface described by a WSDL (SOAP)

• Add new capability metadata
– One element per named concept

• Please include a test query, if appropriate
– Allows a registry to regularly test and validate the service
– parameters must result in a legal response, preferably not empty

• Keep it simple
– Prefer flat structures
– Let semantics provide grouping of data into complex elements.

14 May 2007 IVOA Interoperability Meeting – Beijing

3. Create the Schema Extension

• Use SIA, ConeSearch as examples
– Mimic use of in-line documentation

• Derive a new type from the base Capability Type
• Often useful to create a sample instance first
3a. Import the VOResource schema
3b. Set the IVOA identifier for the standard

– Derive an intermediate type by restriction
3c. Derive the standard Capability type by extension

– Define elements for each capability metadatum
– Insert semantic definition into xs:documentation elements

• Style: first block is the definition, subsequent are extra notes
– If needed define types for complex capability metadata

14 May 2007 IVOA Interoperability Meeting – Beijing

4. Describe extension in the
protocol specification

4a. Indicate the preferred Resource type
“The resource element SHOULD have its xsi:type set to

vs:CatalogService; otherwise, it MUST be set to vr:Service or to a
type legally derived from it.”

4b. Require the new capability type
“The resource element MUST include a capability element with

xsi:type set to [new type]”

4c. Require the proper interface type
“This capacity element MUST include one interface element with xsi:type

set to vs:ParamHTTP [or vr:WebService].”

4d. Define each new capability element (and sub-elements), providing
– Semantic definition
– Units, restrictions on values
– If it is required or repeatable

4e. Include full schema document as appendix
– May leave out documentation to save space

• Example: Registries Interfaces, v1.0, section 4.3

14 May 2007 IVOA Interoperability Meeting – Beijing

4. Describe extension in the
protocol specification

4a. Indicate the preferred Resource type
“The resource element SHOULD have its xsi:type set to

vs:CatalogService; otherwise, it MUST be set to vr:Service or to a
type legally derived from it.”

4b. Require the new capability type
“The resource element MUST include a capability element with

xsi:type set to [new type]”

4c. Require the proper interface type
“This capacity element MUST include one interface element with xsi:type

set to vs:ParamHTTP [or vr:WebService].”

4d. Define each new capability element (and sub-elements), providing
– Semantic definition
– Units, restrictions on values
– If it is required or repeatable

4e. Include full schema document as appendix
– May leave out documentation to save space

• Example: Registries Interfaces, v1.0, section 4.3

*Not enforced by
Schema

*

*

14 May 2007 IVOA Interoperability Meeting – Beijing

Other Considerations
• Validation Issues

– Requirements not enforced by the Schema
• the preferred Resource Service sub-type
• the required interface type

– Full compliance check requires extra checks by
custom validater

• Use elementDefaultForm="unqualified"
– No namespace prefix required on elements

• Service types may be extended, too
– To add metadata not related specifically to an

interface or service capability
– Example: vg:Registry extends vr:Service to add a

listing of authorized IDs it manages

