
Scalable Access to Large Tables using STIL

Mark Taylor, Bristol University
m.b.taylor@bristol.ac.uk

Initial work: Clive Page
More detail: VOTech DS6 Study Report sec. 5.5.1

(see DS6StudyReport on VOTech wiki: http://tinyurl.com/27cbk8)

1

http://wiki.eurovotech.org/twiki/bin/view/VOTech/DS6StudyReport
http://tinyurl.com/27cbk8


Outline

Techniques

• Column-oriented access

• File mapping

Implementation

Data and results

Possible applications

Mark Taylor, IVOA Interop, Beijing, May 2007 2



Column-Oriented Access

Two obvious ways to store a table on disk:

row-oriented: store all of row 1, then all of row 2, . . .

column-oriented: store all of column 1, then all of column 2, . . .

Most existing table formats are row-oriented

• FITS, CSV, VOTable, nearly all RDBMS, . . .

The two are efficient for different things (especially with wide tables)

• row-oriented for all columns from a number of rows

. selection of indexed rows, reorder rows in table

• column-oriented for all all rows from a number of columns, . . .

. plots, selections from unindexed columns, full-table statistics on a column, . . .

Mark Taylor, IVOA Interop, Beijing, May 2007 3



File Mapping

File Mapping can be used as an alternative to seek/read type I/O

• Unix mmap(2)

• Java java.nio.MappedByteBuffer

Data accessed as if in in memory, read from disk on demand by OS

Several advantages:

• Instant “load”

• Somewhat faster data transfer (factor of 2?)

• Minimal penalty for random access to small items

• OS handles disk block caching

Potential OS-related issues

• Address space may become scarce for multi-Gb files on 32-bit OS

Mark Taylor, IVOA Interop, Beijing, May 2007 4



Implementation in STIL

Column-oriented formats defined, based on FITS

colfits-basic: 1-row BINTABLE, each cell holds nrow-element vector

colfits-plus: same, with metadata attached as VOTable in primary array HDU

• These are legal (if somewhat perverted) FITS files

STIL I/O handlers written for these formats

• STIL architecture means TOPCAT, STILTS etc can read/write these formats

• No changes to applications required

• Only difference is performance

Only really worth using for large datasets

• STIL already quite fast for ∼ 100 Mbyte tables

Mark Taylor, IVOA Interop, Beijing, May 2007 5



Data

Need a lot of data to test scalability

Used 2MASS supplied on 10×DVDs:

PSC: Full Point Source Catalogue

. 470,992,970 rows × 61 cols ' 111 Gbyte

. physical memory < single column

PSC B: Northern-hemisphere Point Source Catalogue

. 177,756,896 rows × 61 cols ' 42 Gbyte

. physical memory > single column

XSC: Full Extended Source Catalogue

. 1,647,599 rows × 391 cols ' 2.2 Gbyte

. physical memory ≈ many columns

XSC B: Northern-hemisphere Extended Source Catalogue

. 908,817 rows × 391 cols ' 1.2Gbyte

. physical memory > entire table

Mark Taylor, IVOA Interop, Beijing, May 2007 6



Data Conversions

Use STILTS to convert gzipped ASCII → FITS, colfits, MySQL

• stilts tcopy in=psc.txt.gz out=psc.fits

• stilts tcopy in=psc.txt.gz out=psc.colfits

• stilts tcopy in=psc.txt.gz omode=tosql protocol=mysql
database=astro protocol=mysql newtable=psc

Mark Taylor, IVOA Interop, Beijing, May 2007 7



Results

Ran three unindexable benchmarks for each dataset:

SEL2: Select on a function of two columns (J −K > 8)

STAT1: Calculate statistics on a single column (µ, σ, min, max)

STAT2: Calculate statistics on two columns (µ, σ, min, max)

Benchmark MySQL colfits fits fits-nomap

X SEL2 66 49 4.7 3.2 89 86 449 442
X STAT1 65 49 2.0 1.8 51 39 208 223
X STAT2 66 49 2.4 2.1 51 44 224 221

XB SEL2 36 27 2.4 2.1 21 3.8 124 124
XB STAT1 36 27 1.4 1.0 14 2.6 117 113
XB STAT2 36 27 2.0 1.2 14 2.8 122 119

P SEL2 3422 397 2417 10281
P STAT1 3390 105 2321 10256
P STAT2 3404 284 2351 10399

PB SEL2 1278 95 74 837 3840
PB STAT1 1330 37 28 811 3926
PB STAT2 1290 70 59 802 3926

Colfits ≈ 10–40 times faster than MySQL for suitable queries

• XSC (2 Mrow) queries interactive (1 min → 2 sec) — OK for TOPCAT/STILTS

• PSC (0.5 Grow) queries while you wait (1 hour → 2 min) — OK for STILTS

• Should scale to the largest catalogues (< 263 bytes?)

Mark Taylor, IVOA Interop, Beijing, May 2007 8



Operating System Issues

Files/columns are mapped for efficient random access

Requires a 64-bit OS for very large tables

• Mapping
>∼ 4 Gbyte exceeds 32-bit VM address space limit

Linux (kernel 2.6.9) had issues with swapping

• Scan through large mapped file swaps out process pages → disk thrashing

• Virtual memory tuning issue?

• echo 0 >/proc/sys/vm/swappiness helps

• swapoff -a fixes it (not ideal)

• Other OSs (Solaris? other Linux kernels?) might be better. Or worse.

There are probably ways around this

• Unmap least recently used file blocks

• . . . or use normal file reads with cached blocks rather than mapping

• . . . or whatever RDBMS do for accessing large files

• Probably slightly slower, and more complex, but still get column-oriented speedups

Mark Taylor, IVOA Interop, Beijing, May 2007 9



Possible Applications

Hybrid (colfits/SQL) Large Table Data Servers

• Queries which can use an index are fastest with SQL

. selections, extrema, joins on indexed columns

• Queries which require a full scan of few columns are fastest column-oriented

. scatter plot/density map, statistics, operations using unindexed columns or
expressions

• A data service could duplicate the data, one in RDBMS form, one column-oriented (disk is

cheap)

• Incoming requests could be served by whichever backend was most appropriate (either

selected by user or dynamically resolved)

Medium-sized Survey Archive

• Catalogues of
<∼ 1 Gbyte (106 row × 102 col) are now suitable for interactive use (e.g.

TOPCAT)

• Sometimes it is more convenient to download a whole catalogue than query it remotely

• An archive of
<∼ 1 Gbyte full survey catalogues in pre-digested (colfits) form would be a

useful resource

Mark Taylor, IVOA Interop, Beijing, May 2007 10



Conclusions

Column-oriented data access:

• Useful for full scans of a few columns

• Factor 10—40 improvements over MySQL for wide tables

File mapping

• Permits efficient random access easily

• Issues on Linux with large files?

Implemented in STIL → STILTS & TOPCAT

Mark Taylor, IVOA Interop, Beijing, May 2007 11


