Scalable Access to Large Tables using STIL

Mark Taylor, Bristol University

Initial work: Clive Page
More detail: VOTech DS6 Study Report sec. 5.5.1
(see DS6StudyReport on VOTech wiki: http://tinyurl.com /27cbk8)


http://wiki.eurovotech.org/twiki/bin/view/VOTech/DS6StudyReport
http://tinyurl.com/27cbk8

Techniques

e Column-oriented access

e File mapping
Implementation
Data and results

Possible applications

Outline



Column-Oriented Access

Two obvious ways to store a table on disk:

row-oriented: store all of row 1, then all of row 2, . . .

column-oriented: store all of column 1, then all of column 2, . ..

Most existing table formats are row-oriented
e FITS, CSV, VOTable, nearly all RDBMS, . ..

The two are efficient for different things (especially with wide tables)

e row-oriented for all columns from a number of rows

> selection of indexed rows, reorder rows in table

e column-oriented for all all rows from a number of columns, . . .

> plots, selections from unindexed columns, full-table statistics on a column, . . .



File Mapping

File Mapping can be used as an alternative to seek/read type |/0O

e Unix mmap(2)
e Java java.nio.MappedByteBuffer

Data accessed as if in in memory, read from disk on demand by OS

Several advantages:

e [nstant “load”
e Somewhat faster data transfer (factor of 27)

e Minimal penalty for random access to small items
e OS handles disk block caching

Potential OS-related issues

e Address space may become scarce for multi-Gb files on 32-bit OS



Implementation in STIL

Column-oriented formats defined, based on FITS

colfits-basic: 1-row BINTABLE, each cell holds nrow-element vector
colfits-plus: same, with metadata attached as VOTable in primary array HDU
e These are legal (if somewhat perverted) FITS files

STIL I/O handlers written for these formats

e STIL architecture means TOPCAT, STILTS etc can read/write these formats
e No changes to applications required

e Only difference is performance

Only really worth using for large datasets

e STIL already quite fast for ~ 100 Mbyte tables



Data

Need a lot of data to test scalability
Used 2MASS supplied on 10xDVDs:

PSC: Full Point Source Catalogue

> 470,992,970 rows X 61 cols ~ 111 Gbyte
> physical memory < single column

PSC_B: Northern-hemisphere Point Source Catalogue
> 177,756,896 rows X 61 cols ~ 42 Gbyte
> physical memory > single column
XSC: Full Extended Source Catalogue
> 1,647,599 rows X 391 cols ~ 2.2 Gbyte
> physical memory =~ many columns

XSC_B: Northern-hemisphere Extended Source Catalogue

> 908,817 rows X 391 cols ~ 1.2 Gbyte
> physical memory > entire table



Data Conversions

Use STILTS to convert gzipped ASCIl — FITS, colfits, MySQL

e stilts tcopy in=psc.txt.gz out=psc.fits
e stilts tcopy in=psc.txt.gz out=psc.colfits

e stilts tcopy in=psc.txt.gz omode=tosql protocol=mysql
database=astro protocol=mysql newtable=psc



Results

Ran three unindexable benchmarks for each dataset:

SEL2: Select on a function of two columns (J — K > 8)
STAT1: Calculate statistics on a single column (u, o, min, max)

STAT2: Calculate statistics on two columns (u, o, min, max)

Benchmark MySQL colfits fits fits-nomap
X_SEL2 66 49 4.7 3.2 89 86 449 442
X_STAT1 65 49 2.0 1.8 51 39 208 223
X_STAT2 66 49 2.4 2.1 51 44 224 221
XB_SEL2 36 27 2.4 2.1 21 3.8 124 124
XB_STAT1 36 27 1.4 1.0 14 2.6 117 113
XB_STAT2 36 27 2.0 1.2 14 2.8 122 119
P_SEL2 3422 397 2417 10281
P_STAT1 3390 105 2321 10256
P_STAT2 3404 284 2351 10399
PB_SEL2 1278 95 74 837 3840
PB_STAT1 1330 37 28 811 3926
PB_STAT2 1290 70 59 802 3926

Colfits ~ 10-40 times faster than MySQL for suitable queries

e XSC (2Mrow) queries interactive (1 min — 2 sec) — OK for TOPCAT /STILTS
e PSC (0.5 Grow) queries while you wait (1 hour — 2 min) — OK for STILTS
e Should scale to the largest catalogues (< 2063 bytes?)



Operating System Issues

Files/columns are mapped for efficient random access

Requires a 64-bit OS for very large tables

Mapping 2 4 Gbyte exceeds 32-bit VM address space limit

Linux (kernel 2.6.9) had issues with swapping

Scan through large mapped file swaps out process pages — disk thrashing
Virtual memory tuning issue?

echo 0 >/proc/sys/vm/swappiness helps

swapoff -a fixes it (not ideal)

Other OSs (Solaris? other Linux kernels?) might be better. Or worse.

There are probably ways around this

Unmap least recently used file blocks
. or use normal file reads with cached blocks rather than mapping
. or whatever RDBMS do for accessing large files

Probably slightly slower, and more complex, but still get column-oriented speedups



Possible Applications

Hybrid (colfits/SQL) Large Table Data Servers

e Queries which can use an index are fastest with SQL

> selections, extrema, joins on indexed columns

e Queries which require a full scan of few columns are fastest column-oriented

> scatter plot/density map, statistics, operations using unindexed columns or
expressions

e A data service could duplicate the data, one in RDBMS form, one column-oriented (disk is
cheap)

e Incoming requests could be served by whichever backend was most appropriate (either
selected by user or dynamically resolved)

Medium-sized Survey Archive

o Catalogues of ~ 1 Gbyte (10%row x 102 col) are now suitable for interactive use (e.g.
TOPCAT)

e Sometimes it is more convenient to download a whole catalogue than query it remotely

e An archive of ~ 1 Gbyte full survey catalogues in pre-digested (colfits) form would be a
useful resource



Conclusions

Column-oriented data access:

e Useful for full scans of a few columns

e Factor 10—40 improvements over MySQL for wide tables

File mapping

e Permits efficient random access easily

e Issues on Linux with large files?

Implemented in STIL — STILTS & TOPCAT



