
Suggested sync/async operations
● High-level (language-neutral) "API"s (details TBD)

– Hub API
– Application API

● Message send/reply examples
– Send and forget
– Asynchronous (response required)
– Synchronous utility method

Hub API (called by apps)
Called by application sending a message:

Request with no reply required:
(msg-id =) notify(private-key, recipient-id, message)

(msg-id =) notifyAll(private-key, message)

Asynchronous request:
msg-id = request(private-key, recipient-id, message)

msg-id = requestAll(private-key, message)

Synchronous request (utility method):
response = call(private-key, recipient-id, message)

Called by application responding to a message:
Used to send message replies:

void reply(private-key, msg-id, response, status)

Application API (called by hub)
Receive message, requiring response or not:

receiveRequest(sender-id, receiver-id,
 msg-id, message)
receiveNotification(sender-id, receiver-id,
 msg-id, message)

(calls are the same, but client SHOULD call hub.reply after

getting receiveRequest)

Receive response relating to earlier asynch request:
receiveResponse(responder-id, msg-id, response,
 status)

Send and Forget

sender hub recipient

notify() receiveRequest()

Also broadcast equivalent using notifyAll()

Asynchronous (response required)

sender hub recipient

msg-id = request() receiveRequest(msg-id)

reply(msg-id)receiveResponse(msg-id)

Also broadcast equivalent using requestAll()

Synchronous

sender hub recipient

call()
receiveRequest(msg-id)

reply(msg-id)

● No broadcast equivalent (use asynch if you need this)
● Identical to asynchronous case from recipient's point of view

Summary
● Messaging based on asynchronous model

– No unavoidable timeouts
– Scarcely more difficult for recipient applications

(call hub.reply() rather than return value from receive())

● Provide synchronous utility method for sender
– Makes it easy for, e.g. calling from scripting language
– Less robust, but you can always use asynch

● Details up for grabs
– Method names (and of course language bindings)
– Hub methods vs. special messages
– Different methods vs. same methods with different flags

