What caused that event: A proposed IVOA vocabulary for Objects, Processes (and instruments)

A. Preite Martinez - inaf/it

F. Hessman - mo.ne.t./de

S. Lesteven – cds/fr

R. Williams - caltech/usa

. . .

the IVOA Standard Vocabulary Status – recent docs & events

 VOEvent I - Caltech 2004 UCDs, Doc (Rec) VOConcepts • SV draft (v0.3) 2005 VOEvent II - Tucson UCDs, List (Rec) 2006 SV draft (v0.8)

the IVOA Standard Vocabulary why, what, how

- Standardise the vocabulary used to describe the data the IVOA community is working on
- Categories (of immediate IVOA usage):
 - Processes
 - Object types
 - Intrumentation (imagers, spectrographs) + theory, sim., ...
- Use UCD-like syntax: root-concept [[[.subordinate-concept(s)] ; concept-specification(s)]..]
- Based upon:
 - A&A keywords (324)
 - Simbad object types (155),
 - UCD1+ word-list (379)
 - Literature (6 Journals, last 6 years)

the IVOA Standard Vocabulary Syntax rules (FH + APM)

- Use of normal vocabulary, abbreviations when generally accepted (ISM), hyphens and capital letters when normally used (X-ray, HII) or to bridge words (dwarfNova, absLineSystem)
- Use UCD-like dots to generate hyerarchies and semicolons to concatenate concepts:
 - stars.binary.low-mass;em.X-ray (LMXB)
- object names assumed as archetypal of an object class (RRLyrae) or discoverer's name describing an object class (Seyfert) will be sub-words of concept "class"

the IVOA Standard Vocabulary Syntax rules (FH + APM)

- if an object or a class of objects are commonly designated by an abbreviated form or acronym, the standard word can be replaced by its abbreviated form or acronym
 - process.variation.burst;em.gamma == alias.GRB
 - stars.variable.cataclysmic;class.AMHer == alias.AMHer
- to indicate that an object (objectX) is a member of a multiple/composite object (objectY), the qualifier "stat.member" is used:
 - objectX;objectY;[objectZ;...]stat.member
- If an object is the subject of a simulation, the qualifier "stat.sim" can be used.

the IVOA Standard Vocabulary from v0.3 problems..

- Cumbersome "class.*" group, inconsistently applied:
 - Corrected, but still: stars.variable;class.deltaCep (IVOA/SV) stars.variable.deltaCep-class (VOConcepts)
- Redundant/inconsistent notation:
 - ISM.cloud vs. ISM.nebula vs. ISM.region (difference?) Yes.
 - ISM.nebula.planetary (VOC) vs. ISM.planetaryNebula (SV) (do we want to preserve hierarchies?) The real problem is to preserve meaning.
- Strange atoms like source. VeryRed, source. ExtremelyRed
 - These are Simbad object types, totally bottom-up
- Still missing important things like
 - phys.particle.*
 - obj.calib.* to classify calibration objects (photometric, guide-stars,...)
 - obs.calib.* to classify calibration observations

Transformed in RFMs

the IVOA Standard Vocabulary .. to v0.8 problems ..

Precise but not very succinct:

```
"QSO radio jet" =
galaxies.active.AGN.quasar;em.radio;process.mas
s-loss.jet, but see "alias" or
galaxies.QSO;process.mass-loss.jet;em.radio ($V)
```

the IVOA Standard Vocabulary .. to general problems (1)

• If the object is simple, the SV representation is simple (and, contrary to the title, this is not a problem!!):

```
"Star of spectral type B" => "stars.spType.B"

"Cluster of stars" => "stars.cluster"

"Cluster of galaxies" => "galaxies.cluster"

"Active galaxy" => "galaxies.active"

"White dwarf" => "stars.whiteDwarf"

"Elliptical galaxy" => "galaxies.elliptical"

"HII region" => "ISM.region.HII"
```

8

the IVOA Standard Vocabulary .. to general problems (2)

• If the object is complex (the majority?) the SV representation (i) is long/complex, (ii) could be not unique:

```
"Star in cluster of stars" => "stars;stars.cluster;stat.member"
"Semi-regular pulsating star" =>
"stars.variable;process.variation.quasi-periodic",
but why not:
"stars.variable.quasi-periodic" or:
"stars; process.variation.quasi-periodic"

"cataclysmic variable" =>
stars.binary.close || stars.variable.cataclysmic ||
stars.variable.*.dwarfNova || stars.*;class.UGem
```

the IVOA Standard Vocabulary .. to general problems (3)

```
"Eclipsing binary of Algol type" that could be declined as:
```

"stars.binary;process.eclipse;class.Algol"

"stars.binary.eclipsing.class-Algol"

"alias.Algol"

"Galactic nebula" => "ISM.nebula.galactic" or "ISM.nebula;Galaxy;stat.member"

"Supenova of type Ia" => "stars.superNova.la" or "stars.superNova.la;process.explosion", or "alias.SNIa"

the IVOA Standard Vocabulary .. to general problems (4)

- the SV representation is sometimes implicit as our language:
 - a "Low-mass X-ray binary" is a complex system made of (i) an evolved low-mass star, (ii) the remnant of a high-mass star, (iii) an accretion disk, heated by loss of gravitational energy of matter from the low-mass star, origin of the X-ray emission.

 In SV => "stars.binary.low-mass;em.X-ray", forgetting about half a dozen physical processes (last but not least: "process.emission")
 - In a similar way, we say "Pulsar" and the SV suggests "stars.pulsar", but an equally effective way of using words of the SV would be to write "stars.neutron;process.rotation;process.emission;em.radio" and we still miss the "very fast" qualifier!

the IVOA Standard Vocabulary ... to general problems (5)

- So in most cases the SV representation is the result of:
 - (i) a choice between "object" or "hierarchy" and "process"
 - (ii) a choice of the process most relevant to the observer
- How to deal with "common-language" qualifiers:

Late/early, high/medium/low, hot/cold, bright, fast/slow, etc.

My suggestion is to put them in the hierarchy rather than in "stat.*" to avoid ambiguities in the concatenation of concepts.

different views of the same object:

variable cataclysmic | explosive | nova-like | dwarfNova close binary (eclipsing binary) dwarf | late-type K-M giant filled Roche lobe white dwarf, accretion disk, hot spot X-ray source low-state, emission lines high-state, absorption lines class UGem (SSCyg, SUUMa, ZCam)

the IVOA Standard Vocabulary .. is that all?

 Are we sure we are getting all the necessary semantic richness with the few hundred keywords of A&A?

Some work was done to dig into the most recent literature searching for the way the "users" describe events, processes, astronomical objects, instruments

The approach was:

- (1) derive statistics on the use of all "A&A keywords" in recent years
- (2) select keywords with high frequencies (>100 citations/year)
- (3) find all the sentences (in the abstract) containing the selected keywords
- (4) extract all the different meaningful semantic content

Different expressions with different semantic meaning of selected objects/keywords in the literature (years: 2000-2005):

Detail of:	journals	issues	sentences	expressions	DR(%):
abundances	2	235	2792	45	1.6
accretion	2	248	2672	130	4.9
circumstellar	2	204	592	129	21.8
galaxies active	6	445	854	41	4.8
galaxies cluster	6	781	4481	120	2.7
GRB	6	396	2205	37	1.7
hydrodynamics	2	115	192	8	4.2
mass-loss	2	122	261	30	11.5
neutron stars	2	214	1486	52	3.5
numerical	2	229	1170	76	6.5
stars binary close	6	277	409	37	9.0
stars formation	2	267	1769	129	7.3
supernova	2	248	1969	34	1.7
X-ray	6	856	14995	740	4.9

supernova core-collapse	stars.superNova;process.collapse
supernova explosion	stars.superNova;process.explosion
supernova explosion thermonuclear	stars.superNova;process.explosion.thermonuclear
supernova fallback	stars.superNova.fallback
supernova blast-wave	stars.superNova;process.shock
supernova shock	stars.superNova;process.shock
supernova ejection pencil-beam	stars.superNova;process.mass-loss.jet
supernova kick	stars.superNova;process.angMomentumTransfer
supernova enrichment	stars.superNova;process.enrichment

	·
neutron star accreting	stars.neutron;process.accretion
neutron star bursting	stars.neutron;process.variation.burst
neutron star coalescing	stars.neutron;process.merging
neutron star cooling	stars.neutron;process.cooling
neutron star evolution	stars.neutron;process.evolution
neutron star glitches	stars.neutron;process.variation.glitch
neutron star magnetar/magnetized	stars.neutron.magnetar
neutron star mergers	stars.neutron;process.merging
neutron star millisecond	stars.neutron;process.rotation
neutron star non-rotating	stars.neutron?
neutron star oscillations	stars.neutron;process.pulsation
neutron star pulsations	stars.neutron;process.pulsation
neutron star rotating	stars.neutron;process.rotation
neutron star rotating differentially	stars.neutron;process.rotation.differential
neutron star rotating fast	stars.neutron;process.rotation.fast
neutron star rotating slow	stars.neutron;process.rotation.slow
neutron star spin/spinning	stars.neutron;process.rotation
neutron star spinning rapidly	stars.neutron;process.rotation.fast
•	

(4-c/4-w): bright soft X-ray loops (4-c/4-w): modeled X-ray burst oscillations (4-c/5-w): high-mass X-ray binary pulsar transient low-mass X-ray binaries (4-c/5-w): (4-c/5-w): X-shaped soft X-ray morphology (4-c/6-w): high-luminosity accretion-powered X-ray pulsars (4-c/6-w): intermediate-mass black hole X-ray binaries (4-c/6-w): redshift-limited, X-ray-selected cluster sample X-ray-selected high-redshift radio-quiet quasar (4-c/7-w): (5-c/5-w): intrinsically absorbed X-ray emission regions inverse S-shaped X-ray sigmoid structures (5-c/5-w): (5-c/5-w): transient binary supersoft X-ray source (5-c/6-w): accretion-powered, transient, millisecond X-ray pulsars (5-c/6-w): eclipsing halo low-mass X-ray binary (5-c/6-w): extended electron-scattered hard X-ray emission (5-c/6-w): low-luminosity globular cluster X-ray sources X-ray-bright, eclipsing magnetic cataclysmic variable (5-c/6-w): type I X-ray-bursting low-mass X-ray binary (5-c/7-w):

(5-c/7-w):

X-ray-heated Roche lobe-filling secondary star

X-ray-heated Roche lobe-filling secondary star...

