
Sexten Interop

Some evolutions in the PDL framework
implementations

Carlo Maria Zwölf and PDL Contributors

The component of the PDL framework
With PDL, the parameters and their related constraints are finely described with fine
grained granularity:

● Generic software elements are automatically “configured” by a specific PDL description
instance:

– Services containers (PDL server)

– Graphical User Interfaces (PDL client)

– Workflow Plugins (Astro-Taverna plugin include the PDL layer)
● Checking algorithms and interoperability checker between service are automatically

generated from descriptions

PDL CORE
(the grammar)

Automatic Generation of
Checking algorithms

Dynamic (assists user)
graphical client

PDL Server
(exposing every code as a UWS service)

Workflow(s) Plugin(s)

Interoperability Checker

calls

interact

uses

Based on

Based onPDL description editor Generate
descriptions

The component of the PDL framework

The Dynamic client

Generic client
code base

Specific
Client for the

Described
service

Configures Becomes

PDL
Service
Description

The Dynamic client

Generic client
code base

Configures Becomes

Specific
Client for the

Described
service

PDL
Service
Description

The Dynamic client

Generic client
code base

Configures Becomes

Specific
Client for the

Described
service

PDL
Service
Description

The Dynamic client

Generic client
code base

Configures Becomes

Specific
Client for the

Described
service

PDL
Service
Description

The Dynamic client

Generic client
code base

Configures Becomes

Specific
Client for the

Described
service

PDL
Service
Description

● The client implementation realized for RFC is based on Java Swing

● A French SME (Artenum, www.artenum.com) adopted PDL and has
developed a Java FX version of the dynamic client, based on our core
components (released with a free license).

http://www.artenum.com/

The Dynamic client

The Dynamic client

The Dynamic client

The Dynamic client

The Dynamic client

The Dynamic client

Generic client
code base

Configures Becomes

Specific
Client for the

Described
service

PDL
Service
Description

● The client implementation realized for RFC is based on Java Swing

● A French SME (Artenum, www.artenum.com) adopted PDL and has
developed a Java FX version of the dynamic client, based on our core
components (released with a free license).

● I am thinking at providing a full web version of the client, and started testing
prototypes with Google Web Toolkit.

● Do you think this is useful?
● Do you see any particular feature to include? (e.g. embedded workflow

engine, cf. Final remarks)

http://www.artenum.com/

Focus on the PDL server

PDL Server layer
(based on JSP)

UWS like service
Of the specific

code

Configures Becomes

Pattern
File

PDL
Service
Description

Focus on the PDL server

PDL Server layer
(based on JSP)

UWS like service
Of the specific

code

Configures Becomes

Pattern
File

PDL
Service
Description

Generic server routines
Getting param values

from user requests:

Param1 = 10
Param2 = 12.4
Param3 = toto
Param4 = true

● Read the PDL description and

● For each expected parameter, try
to get the parameter provided by
the user

● Verify if the set of the provided
parameters verify all the PDL
constraints

● Ok → the new job is created
● No → PDL errors are notified

to user as a server response

PDL Server layer
(based on JSP)

UWS like service
Of the specific

code

Configures Becomes

Pattern
File

Param1;Param2

Param3
Param4

./myProcessing -o Param1Param2
Tar -zcvf result Param3.tar

./myPostProcessing Param3 Param4

FILE
PATTERN1

FILE
PATTERN2

Generic server routines
Getting param values

from user requests:

Param1 = 10
Param2 = 12.4
Param3 = toto
Param4 = true

10;12.4

toto
true

./myProcessing -o 10 12.4
Tar -zcvf result toto.tar

./myPostProcessing toto true

Processed
FILE1

Processed
FILE 2

PDL
Service
Description

Focus on the PDL server

Focus on the PDL server

PDL server main features:

● It supports user authentication (a user cannot see the jobs or jobs lists of other users).

● It supports Grids of models
● Jobs for parametric studies may be grouped into arbitrary sets of runs (GridID for each grid).

Focus on the PDL server

PDL server main features:

● It supports user authentication (a user cannot see the jobs or jobs lists of other users).

● It supports Grids of models
● Jobs for parametric studies may be grouped into arbitrary sets of runs (GridID for each grid).

● It has three interfaces for job administration:
● Two machine oriented

● The first “speaking XML” (e.g. used by Taverna plugin)
● The second “speaking Json” (for alternate clients e.g. PDR-code client).

● One human readable
● The old one (based on java servlet) has been redesigned using Google Web Toolkit

● Three static web pages have been replaced by a unique dynamic page.

Focus on the PDL server

{
 "ExpectedResultsURLs": [
 "http://tepig.obspm.fr:8081/pdrlight//output/PDRlight.zip"
],
 "UserMail": "test-pdr@obspm.fr",
 "JobID": 8,
 "ManagementURL": "http://tepig.obspm.fr:8081/pdrJobManager/userId=27&mail=test-pdr@obspm.fr",
 "UserID": 27,
 "ServiceId": "http://tepig.obspm.fr:8081/pdrlight/"
}

{
 "errors": [
 {
 "errorMessage": "the following condition is not verified in the Grains Properties group: Grains max radius

belongs to range 1e-6 - 1e-4",
 "involvedParameter(s)": [
 "los_ext",
 "rrr",
 "metal",
 "cdunit",
 "gratio",
 "q_pah",
 "alpgr",
 "rgrmin",
 "rgrmax",
 "F_DUST_P"
]
 }
]
}

Focus on the PDL server

Focus on the PDL server

Focus on the PDL server

Focus on the PDL server

It is based on UWS but:

● Uses Java servlets for job management (functional architecture and not REST) Recall,
REST is just a binding example (actually the only) for UWS. It is not the core part of the
norm and historically a soap binding was proposed.

● Has extra features for dealing with
● Grids of jobs (e.g. search jobs by GridID)

● User authentication/authorisation

● Live notification of violated constraints.

Focus on the PDL server

What could be done to approach (and ideally converge) the UWS and the
PDL server?
Is it convenient to do so?

It is based on UWS but:

● Uses Java servlets for job management (functional architecture and not REST) Recall,
REST is just a binding example (actually the only) for UWS. It is not the core part of the
norm and historically a soap binding was proposed.

● Has extra features for dealing with
● Grids of jobs (e.g. search jobs by GridID)

● User authentication/authorisation

● Live notification of violated PDL constraints.

PDL provides some answers to issues discussed into
Massive and complex data session

- Final remarks-

● It is a very convenient way for exposing codes (thus bringing processes to data).
● It is fast to deploy services using PDL framework
● PDL avoids “dummy computation” (runs with non-sense parameters):

parameters verifications performed before jobs creation.
● PDL server is ready to work with computer clusters, cloud & computing grids.

● Enable “transversal interoperability” between services (PDL may be seen as a
meta-language for describing workflows, cf. PDL presentation of interop@Pune)

Ongoing efforts:

● Should a new client embed a sort of graphical workflow engine.
● Users can actually build “script-oriented” workflows, using the Json interface of

PDL server.

● What can we do in GWS to boost the operational adoption of PDL?
● Politically?
● Pratically? (e.g. how to register PDL services into registries?)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

