Software architectures

for modern data In the
VO

Challenges and technics

david.languignon@obspm.fr

Can “ *
Ll BrisDafoCentre

2015.06.18 - Sesto - IVOA Interoperability meeting

mailto:david.languignon@obspm.fr

Modern data challenges
old software architectures

e Datasets are big, Big Data(set)
e But not the only one problem
- datasets are chunks distributed In distant nodes

- objects are very different & may have lots of properties

PDR Database

What you want What you know

Inverse search

—

parameters » *
input

code

guantities
output

Q) ISM serVices CODES & DATABASES TECHNOLOGIES PARTNERS REGISTRATION

Contact

PDR DataBase Inverse Search service

Grid of isobaric PDR models

2015.04.17

1 - search among two parameters

Pgas (input parameter) (cm-3 K 0Q scale

what models input
you want to know

ISRF scaling factor (obs side) (Mathis_unit) 0g scale

> - fix all the other parameters

fix remaining models
parameters

observational constraints

| what you have observed
type quantities to plot here, with optional constraint. Ex: (click Search to view the example result)
CO v=0J=1->v=0,J=0 angle 00 deg) > 2.4e-9 (mOd el OUtpUt)

CO v=0,J=1->v=0,J=0 angle 00 deg) < 7.2e-8

N(H2)
| Search |

type quantities to plot here, with optional constraint. Ex: (click Search to view the example result)

CO v=0,J=1->v=0,J=0 angle 00 deg) > 2.4e-9
CO v=0,J=1->v=0,J=0 angle 00 deg) < 7.2e-8

N(H2)
| Soarch

| understood the following query

(CO v=0J=1->v=0])=0 angle 00 deg) > 2.4e-09
(CO v=0J)=1->v=0J)=0 angle 00 deg) < 7.2¢-08
N(H2)

I(CO v=0,)=1->v=0,)=0 angle 00 deqg)

model[matching an .
observed.quantity

(obs side) (log)

ISRF scaling factor

Pgas (input parameter) (log)

Contact

PDR DataBase Inverse Search service

Grid of isobaric PDR models
2015.04.17

1 search among two parameters

Pgas (input parameter) cm-3_K 0g scale

ISRF scaling factor (obs side) (Mathis_unit) 0g scale

10>+ available output

2 - hix all the other parameters

properties !!

observational constraints

PDRDDb Inverse search

Use case

object prop1 prop2 propN

rad 1,2E+04

N IS BlG

M IS common

PDRDDb Inverse search

We need flat tables with no relations but lots of columns
We want to keep close to TAP semantics, TAP_SCHEMA
But, get rid of relational dbs, with columns number limits

Actually, get rid of any implementation tight coupling

PDRDb lnverse search

physical tables
with relations

tiny (abstract)
g query Ianguage

BERKELEY DB

Elmplementation specific db'

virtual flat tables

VOTable as virtual table
abstraction

 Map virtual flat tables to server-side VOTable

* Query through basic query language for flat tables
- select, where

* Doing so, we have for free:
- data exchange through VOTable xml serialisation
- table schema (VOTable header)

- VOTable have virtually infinite number of columns

Transparent sync/async

 You don't always know if it's best to choose either sync or
async.

* The server may have more data than you to choose the
best solution given a specific environment.

o Still allows manual settings for specific situations

- | want async if available, do not auto-choose sync.

Transparent sync/async

e /resource

response = {

‘job_state’: ‘queued’,

‘sync’: ‘async’,

‘result’: <monitoring resource>
response = {

‘job state’: ‘completed’,
‘sync’: ‘sync’,
‘result’: 23.3

Distributed jobs communication
and synchronisation

* Micro services, composite services, SOA
- move the software close to the data
- no longer the other way around !

 Channels as interprocess communication (CSP, Hoare, 1978)

Micro services architecture

Micro services architecture

atomic task agent atomic task agent

¥
-»> O

composite task agent

Micro services architecture

e Small

o Well defined functional perimeter
 Easy to debug & maintain
 Easy to document & delegate
 Easy to set up close to the data

* The complexity is shifted to services communication

Channels

Channels

OS Process
main process channel thread
c := make channel (string)
new thread(funcl, c) — QNS —— funcl(c chan){
print(read(c)) - GO — write(c, “hello”)

}

Channels

distributed processes

/func1?c=http://cma/2

write(c, “hello”)

main process \
http://cma/2?data="hello”

read(c)

channels agent

http://jobs-monitor
http://jobs-monitor

Channels

« UWS 1.1 blocking alternative

- /async?c=http://channel-resource

- service write to channel resource (c), ex: JOBID,
SIIA=

* Remove networks polling

e Alternative sync wrapping (cf uws 1.1 draft)

http://channel-resource

Channels

But client must setup a channel resource
- best suited for server-side client (batch process)

- better for interoperability: oriented towards other
services instead of Human user.

- handle concurrent process very nicely (CSP/
blocking channel)

- a protocol must be set between consumer /
producer (uws 1.1 blocking is fine).

Case study
process the models of a grid

 How to configure all the jobs of a grid at once ?

- compact parameter language (cpl): array slicing, list

job
arameter value
: . 1 cpl v
b 2.3
C 20 start:stop:step
job2 vall, val2, ...
parameter value
a 2 parameter value
b 2.3 a 1:3:1
C 20 b 2.3
job3 C 20

parameter value
a 3
b 2.3

C 20

Case study
process the models of a grid

cpl expansion

parameter value
a 1:3:1
b

C 20, 23

create grid config

o 2N

grid batch

/resource?chan=http://jobs-monitor

http://jobs-monitor?runid=2&state=running

jobs-monitor agent processing cluster agent

http://jobs-monitor
http://jobs-monitor

Do not forget

* Functional programming
- would deserve an entire talk

- |s a central component of the new data software
architecture

- Divide & conquer large data !

- Micro services are distributed FP !

Do not forget

 Adaptive Software

- would deserve an entire talk too

Traditional Black Box:

oI oup

| Open Implementation: [Tweak
Norvig and Cohn 1998

Adaptive Software::_.x'"’/

Input Learnt from (big)data
| Machine Learning

