
Challenges and technics

Software architectures
for modern data in the

VO

2015.06.18 - Sesto - IVOA Interoperability meeting

david.languignon@obspm.fr

mailto:david.languignon@obspm.fr

Modern data challenges
old software architectures

• Datasets are big, Big Data(set)

• But not the only one problem

- datasets are chunks distributed in distant nodes

- objects are very different & may have lots of properties

PDR Database

parameters quantities

code

What you want What you know
inverse search

input output

what models input
you want to know

fix remaining models
parameters

what you have observed
(model output)

model matching an
observed quantity

105+ available output
properties !!

PDRDb inverse search

object prop1 prop2 … propN

o1 12 rad 1,2E+04

o2 …

…

oM

N is BIG
M is common

Use case

PDRDb inverse search

• We need flat tables with no relations but lots of columns

• We want to keep close to TAP semantics, TAP_SCHEMA

• But, get rid of relational dbs, with columns number limits

• Actually, get rid of any implementation tight coupling

PDRDb inverse search

Relational Database
physical tables
with relations

Implementation specific dbvirtual flat tables

tiny (abstract)
query language

SQL
ADQL

VOTable as virtual table
abstraction

• Map virtual flat tables to server-side VOTable

• Query through basic query language for flat tables

- select, where

• Doing so, we have for free:

- data exchange through VOTable xml serialisation

- table schema (VOTable header)

- VOTable have virtually infinite number of columns

Transparent sync/async

• You don't always know if it's best to choose either sync or
async.

• The server may have more data than you to choose the
best solution given a specific environment.

• Still allows manual settings for specific situations

- I want async if available, do not auto-choose sync.

Transparent sync/async
• /resource

response = {
 ‘job_state’: ‘queued’,
 ‘sync’: ‘async’,
 ‘result’: <monitoring resource>
}

response = {
 ‘job_state’: ‘completed’,
 ‘sync’: ‘sync’,
 ‘result’: 23.3
}

Distributed jobs communication
and synchronisation

• Micro services, composite services, SOA

- move the software close to the data

- no longer the other way around !

• Channels as interprocess communication (CSP, Hoare, 1978)

Micro services architecture

atomic-task agent

programweb service

adapter

batch

client

agent

atomic task agent atomic task agent

composite task agent

batch

client

agent

Micro services architecture

Micro services architecture

• Small

• Well defined functional perimeter

• Easy to debug & maintain

• Easy to document & delegate

• Easy to set up close to the data

• The complexity is shifted to services communication

Channels

agentA agentB

“hello”

channel

Channels

func1(c chan){
write(c, “hello”)

}

c := make_channel(string)
new_thread(func1, c)
print(read(c))

main process threadchannel

os process

Channels

/func1?c=http://cma/2

func1 agent
http://cma/2?data=“hello”

distributed processes

write(c, “hello”)read(c)

main process

channels agent

http://jobs-monitor
http://jobs-monitor

Channels

• UWS 1.1 blocking alternative

- /async?c=http://channel-resource

- service write to channel resource (c), ex: JOBID,
STATE

• Remove networks polling

• Alternative sync wrapping (cf uws 1.1 draft)

http://channel-resource

Channels

• But client must setup a channel resource

- best suited for server-side client (batch process)

- better for interoperability: oriented towards other
services instead of Human user.

- handle concurrent process very nicely (CSP/
blocking channel)

- a protocol must be set between consumer /
producer (uws 1.1 blocking is fine).

Case study

process the models of a grid
• How to configure all the jobs of a grid at once ?

- compact parameter language (cpl): array slicing, list

parameter value
a 1
b 2.3
c 20

parameter value
a 2
b 2.3
c 20

parameter value
a 3
b 2.3
c 20

parameter value
a 1:3:1
b 2.3
c 20

job1

job2

job3

start:stop:step
val1, val2, …

cpl v1

parameter value
a 1:3:1
b 2.3
c 20, 23

parameter value

a 1:10:1

b 2.3

c 20, 23

parameter value

a 1:10:1

b 2.3

c 20, 23

parameter value

a 1:10:1

b 2.3

c 20, 23

parameter value

a 1:10:1

b 2.3

c 20, 23

parameter value

a 1:10:1

b 2.3

c 20, 23

parameter value

a 3

b 2.3

c 23

cpl expansion

processing cluster agentjobs-monitor agent

/resource?chan=http://jobs-monitor

grid batch
http://jobs-monitor?runid=2&state=running

create grid config

Case study

process the models of a grid

http://jobs-monitor
http://jobs-monitor

Do not forget

• Functional programming

- would deserve an entire talk

- Is a central component of the new data software
architecture

• Divide & conquer large data !

• Micro services are distributed FP !

Do not forget
• Adaptive Software

- would deserve an entire talk too

Norvig and Cohn 1998

Learnt from (big)data
Machine Learning

