	[image: image1.jpg]

	 International
 Virtual
 Observatory
Alliance

Data model for use in Simple Numerical Access Protocol (SNAP) IN PROGRESS
Version 0.1
IVOA Technical Note 2007/03/01
This version:

SNAP_SimulationDM0.1-20070319
Latest version:

Previous version(s):

Derived from SimulationDM0.1…
Author(s):

Gerard Lemson

Claudio Gheller

Laurie Shaw

Hervé Wozniak

…

Abstract

This specification defines a model for the metadata that should be the basis for discovery and query protocols for computer simulation of astronomical systems. The data model is meant to be reasonably comprehensive, but simple enough to create for data providers. It is in particular meant to be used in the Simple Numerical Access Protocol, namely for registration of such a service in an IVOA compatible registry, and the associated discovery of the service, and in the query phase of the protocol itself.
The model is based on a domain/analysis model for simulations presented elsewhere. In the current document we present a logical model derived from that domain model, phrased in UML. We explicitly provide links to other IVOA models where appropriate and give requirements on those.

We define various physical models in the form of proposed serialisations of the model specific to particular software environments, namely an XML and a relational mapping.
Status of This Document

This is an IVOA Working Draft for review by IVOA members and other interested parties. It is a draft document and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use IVOA Working Drafts as reference materials or to cite them as other than “work in progress”.
A list of current IVOA Recommendations and other technical documents can be found at http://www.ivoa.net/Documents/.
Contents

31
Summary

42
Use case, scenarios, requirements

43
Modelling simulations and related data products

54
SNAP data model

74.1
SNAPExperiment

84.2
SNAPProtocol

84.3
InputParameter

94.4
Snapshot

94.5
Curation

104.6
TargetObjectType extends ObjectType

104.7
RepresentationObjectType

104.8
Property

114.9
ObjectCollection

114.10
Characterisation

124.11
SNAPSimulation extends SNAPExperiment

134.12
SNAPSimulator extends SNAPProtocol

134.13
Physics

134.14
Algorithm

144.15
InputDataset

144.16
SNAPPostProcessing extends SNAPExperiment

144.17
SubvolumeExtraction extends SNAPPostProcessing

144.18
Gridding extends SNAPPostProcessing

144.19
GroupDetection extends SNAPPostProcessing

144.20
Visualisation extends SNAPPostProcessing

144.21
enumeration DataType

154.22
datatype Quantity

154.23
enumeration OntologyObject

154.24
enumeration UCD extends OntologyObject

154.25
enumeration AstroObject extends OntologyObject

154.26
enumeration IdentifiedObject extends OntologyObject

154.27
enumeration AstroJournalKeyword extends OntologyObject

164.28
enumeration PhysicalProcess extends OntologyObject

164.29
enumeration SNAPRepresentationObject extends OntologyObject

165
Consequences of model for SNAP discovery and query

176
Physical models, serialisations

176.1
XML mapping

186.2
Relational mapping

18References

18Appendix A: Simulation packages, data formats, post-processing and analysis services

21Appendix B XML schema mapping

21Appendix C Relational mapping

1 Summary
This document presents a model for describing certain types of numerical computer simulations and certain types of simulation post-processing products. The model is to be used in the query part of the Simple Numerical Access Protocol (SNAP, TBD think of better name?], and in discovery of interesting SNAP services in the first place.
We only consider simulations for systems that represent a space-time sub-volume of the universe and (part of) its material contents. In general these simulations will evolve this system forward in time and are able to produce snapshots, representing the state of the system at a number of consecutive times. These direct, raw results of simulations we call Level-0 products, following similar terminology for observations.
SNAP also covers Level-1 products, which consist of the results of certain types of post-processing of simulations, namely those products that in some form represent a spatial sub-volume of the universe.
We do not make any restrictions on the type of systems being simulated, or the size of the simulation, or the way the system is represented in the simulation code and results. We also make no restrictions on the type of “observables” produced by the simulations. The SNAP protocol includes online services that process level-0 or level-1 results and produce (by definition) other level-1 results. The allowed services deal with selecting the results in a sub-volume of the complete result, projections onto a 2-dimensional mesh,

2 Use case, scenarios, requirements
We have assembled a list of explicit use cases and scenarios from which we derive requirements for the current model and the SNAP protocol.
Scientific goals and corresponding questions to a repository of simulations:

· Scientific goal: investigate baryon wiggles in the evolved density field
Query: Return all cosmological, pure dark matter, N-body simulations with WMAP 3 initial conditions and a box size of at least 1000 Mpc comoving, containing snapshots at about 10 redshifts between 3 and 0.

· Scientific goal: investigate whether observed structures in X-ray cluster that seem to indicate turbulence, can truly be that.
Query: return all hydro-dynamical simulations of galaxy clusters of mass at least that have a model for viscosity included in the simulation. Moreover, return only those simulations that have associated to them an online visualisation service that can produce projected temperature and pressure maps.

· Scientific goal: interpret the possible histories of an observed galaxy merger to calculate possible star formation episodes and compare these to the observed stellar populations.
Query: Return all simulations of galaxy mergers where the component galaxies have a particular mass ratio and where there are enough snapshots to follow the evolution over a few Gyr.
· Scientific goal: compare the luminosity function of galaxies in the SDSS survey with those in synthetic catalogues
Query: Select all cosmological simulations that have produced as secondary product synthetic galaxy catalogues on a light-cone and provide those via an SQL (ADQL?) query interface.
· …
3 Modelling simulations and related data products
For the purpose of this specification we consider a simulation as
 the execution of software that produces a representation of a spatial

system, and possibly follows its evolution form one state to the next

by approximating the true physical processes acting on the system with

numerical algorithms.
A description of such a simulation can be provided by giving the representation of the state of the system at each point of time, of the physics being modelled as differential equations and the way these act on the representation variables. It requires initial condirtions and parameters describing the physics as well as numerical approximations. For discovery purposes it is also important to be able provide summarising information about the results.
To think about the appropriate structure of the model it is useful to think about the steps a user might go through when querying a database system in various “drilling down” steps. For example the following questions might be asked
:
· What system/object is being simulated?

· What physical processes are included?

· How is the system being represented in the simulation (particles (Langrangian), (adaptive) mesh (Eulerian)), both, other?

· Per process:

· How are the physical processes implemented ?

· Characterise the numerical approximations (.e.g. resolution, softening parameter)

· What observables are available for the system/object, possibly as function of time? As it is a spatial system, at least size, center-of-mass position.

· What observables are available for the constituents, i.e. what is the “schema” of the “atomic” objects?

· Per snapshot, per atomic object type, per variable:

· Characterise the possible values

· Characterise the result

· Are post-processing results available?

· Are services/applications available working on the results?

· Which code ran the simulation?

· What were values of physical parameters?

· How were initial conditions created, what parameters?

4 SNAP data model
The process shortly described in the previous sections has led first to an analysis, or domain model which we will not describe here (see [2]). That model in combination with the particular application specific requirements have led us to design a logical model for describing simulations and how this is to be used in the discovery and query phases in SNAP. The diagrams in Figure 1 and Figure 2 show the UML version of that model. We now proceed to describe this model in detail, first the Class-es (orange), then the Datatype-s, which includes Enumerations, colored grey.
[image: image2.jpg]Garation
Resource
EAREipertient -protocol [~ SHAPProtocol
Ferchived - srng
tces il |-documertation : anyUR!
tagets pEe——
TargetObjectType f—parameters
get0bjectType " InpuParameter DetaType
[Fabel - AstroGbject N =
e imaer ety DataType complex
Bt kel OrdclogyOtject deteme:
Seholoimalutiec: Astoloumabeywerd s g o
-descriion- srng st
long
ratonst
ObjectType i
ki |string
Frame - <tng
-descrinion srng
representaihs & arumerdions
rvices [RpPlcabISSAPWebService [Esmeraton
resentationObjec e [| ik
Rept asionobiectTyp: [-baseURL : string
[Habel: SNAPRepresertationObject -description - string [downioadt
|-astroObject : AstroOhbject [0..1] |-type - SNAPServiceType. e
ki
Gusteriner
otectTy [
properties
Property.
Frame st
ety DataType J—
e D
£ ul Srapehat ==enumerstion=>
Ferchiveid sting Ontofogybject
e Gusrity
-property SpataSzePhysica: Gy *
B Cermerdion
——|astroJournakeywora
Characterisation
stjectCotections pE = Carmerdion
[fEetound - Quently AstroObject PhysicalProcess
FtperBound: Guertty
|-nominalvalue : Quartty GicciCoslection
o ravtaton
|-min : Quartity ~characterisation |-numberOfObjects : integer |stars: atmosphere. ———hydrodynamics
e Gty Supernoves editve ransfer
nean : Guaniy e awarts || [dare: formaten
Stabey Guarty Firecions Imlecuar processes
planetey nebulee
ienifing
elies
P — e csters
o ermerdions
—_ staPRepresentationobject
i sting | foortparton
Carumerdion i
Jaentiiedobject fce—

Figure 1 The base classes in the logical model supporting discovery of SNAP simulations and related results. [In white some registry related classes, which may be included in the model.]
[image: image3.jpg]SHAPProtocol

[rame - string

[documertation : anyUR!

SNAPEperiment

—snapst

Snapshat

protocel

erchivelD: string
publicaton : anyLR

SHAPSimulator

[cadk anyLRI
[version: string

SHAPSimulation

ime Guertty
archiveld: string
-spatialSizePhysical : Quartty

simuistor

execuionTime : datetime

[SHAPPostProcessing

Pl

e finputn

ataset

q
{subsets protocol)

15| physics

Physics

el

[rame - string

[astroJournalkeyword : Astrodournalkeyword

PhysicaProcess

aigorthm
Aidorithm

[iabel OrtologyObjct

nputData

[GroupDetection

[Gridding

Con) cta

[Crestes a fiid from an existing resut,
/a5 a reqular (LSO ADAPTIVET) grid
lcontaiing one or more values,
represerting a smacthect
representation of the uncrlying raw

[SubvolumeExtraction

[Visustisation

dertifies groups halosiclusters in
resut of a simulation or fher SHAP
— —fproshuct Can be e both rom

Jobject catalogues, but also
|(CORRECT?) from meshike data
structures. Calcuiates propertes of
e resuting clusters

Joe done by sicing, projecting or

ether physical, or some artfcal
rtensy.

(Crestes a 2D image of aresu. Can

Imore complex algorms. The data
inthe 2D image can be of any type,

(Crestes a resut form a given resut by
utting o1t & subvolume of the complete
[vome. The resut s of the same type as
fthe ariinal G, partices->particles, mesh-
mesh).

Figure 2 Specialisations of the SNAPExperiment. SNAPSimulation adds only a description of the physics “moving” the simulation from snapshot to snapshot. Also note the definition of SNAP post-processing, which requires an input data set which must be a snapshot.
4.1 SNAPExperiment
The base class for those kinds of experiments that can produce representations of a part of the universe. It is an experiment in the sense defined in the analysis model in [TBD add reference to domain model document] …
Attributes

· archiveID [string]: the identifier by which this experiment is identified in its archive. Any service working on the results of this experiment must understand this archiveID as referring to the selected SNAPExperiment.
· publication [anyURI]: a URL to the publication describing the experiment.

References

· protocol [SNAPProtocol]: The protocol according to which this experiment was performed. Will in general be overridden by sub-classes of SNAPExperiment to indicate a sub-class of SNAPProtocol.
Collections

· parameters [InputParameter]: The collection of simulator input parameters used in this simulation. These parameters must correspond to actual parameters that can be set on the simulator.

· goals [TargetObjectType]: An indication of the actual system that was being simulated. For example, star, jet, galaxy, large scale structure. The creation of this was the goal (were the targets) of the simulation

· representations[RepresentationObjectType]: Indicates the different object types used to represent the system that is being simulated/produced by the experiment.
· snapshots [Snapshot]: The collection of snapshots that are the individual results as function of time of the simulation or other SNAP experiments.

· parameters [InputParameter]: the parameters used in the experiment. In this logical model the parameters are both defined and given a value in a single object. In the analysis model parameters are defined on the protocol, and only given a value on the experiment.

4.2 SNAPProtocol
The base class of all protocols producing snapshots. These objects define how SNAP experiments can be performed, like a blue-print, template. For simulations the protocol will be the simulation code, here represented by SNAPSimulator. In the analysis model this class is more fully defined, but for the logical model for discovering SNAP experiments much of its components are moved to the SNAPExperiment itself.
Attributes

· name [string]: The name by which this simulator is commonly known.
Ex: Gadget, Flash

· documentation [anyURI]: web page where documentation of this simulator can be obtained.

4.3 InputParameter

This class represent a parameter setting for a SNAP experiment. The parameter can be used in describing the physics (for example mass of a particle), in the initial conditions (for example cosmology), in the numerical implementation (for example mesh size).

Attributes:

· name [string]: the name of the parameter in the SNAPProtocol.
Ex: omegaLambda, particleMass, linking length
· datatype [Datatype]: the data type of the parameter.
· label [OntologyObject]: Indicates the meaning of this parameter. Could be a UCD, but possibly another ontological descriptor, such as a journal subject keyword.
Ex: phys.mass (fro UCD1+ controlled vocabulary), …
· value [Quantity]: The actual value of this parameter. Should have the type corresponding to the datatype attribute.
4.4 Snapshot
This class represents a part of the universe at a particular point in time, or possibly a more general sub-volume of space-time, for example a light-cone. We realise this does not represent all possible outputs of simulations. For example some simulations of dense (collisional) stellar systems produce orbits of the individual particles, at individual output times
. In general though those results can be used to produce snapshots as well (Peter Teuben, private communication). Hence for the current version of the model we propose the use of Snapshot results of simulations and other SNAPResults as well, the only exception being light-cones through cosmological simulations.
Attributes

· simulationTime [real]: The time in the simulation at which this snapshot is produced. A real value in terms of the timestep units that are being used. [TBD need to find a place for those units, note that we need to support co-moving quantities !]

· spatialPhysicalSize [Quantity]: The typical size of the target system in this snapshot. Left up to the data publisher to give a useful value for this. Is not necessarily equal to the size of the box containing the full simulation (covered by Characterisation). Could be the rough size of the galaxy merger, or cluster, or the size of a box containing 90% of the mass or whatever.
Collections

· objectCollections [ObjectCollection]: We anticipate that many results contain objects of different types. For each of these types a separate collection of objects is provided on the snapshot.

4.5 Curation
Registry-like curation [1] object representing persons or organisations that can play a role such as responsibility, ownership, creator for/of data products, simulations etc.

4.6 TargetObjectType extends ObjectType
This class represents the actual system that is being simulated. Instances of this object should correspond to physical objects and/or systems. They should be the answer to queries such as, “what does this simulation simulate?”
Attributes

· label [AstrObject]: Ontology based label for this object. Hope is that the IVOA Semantics working group effort on an ontology for astronomical objects will be rich enough to provide the values for this attribute.
Ex: star, large scale structure, galaxy, jet.

· multiplicity [integer]: Indication on how many objects of this type are being modelled. [TBD This may become an enumerated value, like “one, two, tens, many …”].

· name [IdentifiedObject]: In some cases a real identified object in the universe is being modelled. If that is the case, this attribute allows that object to be identified. We assume a list of such objects may be provided through some means, embodied by the IdentifiedObject data type.
Ex: Galaxy, Antennae, M31

· astroJournalSubject [AstroJournalSubject]: Alternative to the label attribute, using a subject keyword from the astronomical journals list.

Collections

· representation [ObjectType]: Represents how the target system is represented in the simulation.

4.7 RepresentationObjectType

This class represents the smallest units from which a target system/object is built. It defines also the actual objects that the Snapshot-s contain. Examples are the particles in an N-body simulation, the cells in an adaptive mesh simulations, the halos in the result of a group finder.
Attributes

· name [string]:

· label [OntologyType]: Name that this type of particle is given in an appropriate ontology (or dictionary, or standard vocabulary, or …).

Collections

· variables [Variable]: The properties of the object.
Ex: mass, position,velocity.
4.8 Property
The properties of an object. Similar to the FIELD in a VOTable.
Attributes

· name [string]: The name by which this property is known in the simulation result.

· datatype [Datatype]: The datatype of the representation of the property in the result.

· ucd [UCD]: the UCD of this property. [TBD Could be generalised to OntologyObject if necessary]
4.9 ObjectCollection

We assume that a single SNAPResult can consist of collections of objects (ObjectType). For example some simulations can produce both dark matter, stellar and gas particles, together building up the whole target objects. Each of these sets of particles is in general separately characterised and the ObjectCollection class provides an anchor for this. They may also be separately stored.

Attributes

· numberOfObjects [integer]: Gives the number of objects in this collection.

References

· objectType [ObjectType]: the type of object stored in this collection.
Collections

· characterisation [Characterisation]: the characterisations of the different variables. In contrast to the domain model in [2] we make no distinction w.r.t. a priori and a posteriori characterisation as separate classes/collection, but load all possible characterising quantities in one
4.10 Characterisation

This class represents the characterisation of a property of an object in a given object collection. It represents both a priori and a posteriori characterisations. With a priori characterisation we indicate possible and/or nominal [?] values the variable may take, it defines the possible range of values of the property. In contrast, an a posteriori characterisation of a property in an object collection provides summarising, likely statistical, information on the values that were actually taken up (observed, simulated) by the objects in the collection.

The a priori characterisation is most similar, in fact a generalisation of the Characterisation model of the IVOA Data Model working group [3]. In the domain model in
In the current model we stick to simple quantities for characterising a collection of objects. For example the equivalent value of a support from [3] is absent, as it is not terribly useful for discovery and querying, even more so of course for concepts equivalent to sensitivity.
[TBD How relevant is it for simulations? Examples if we require it for the actual meta data specification, for example for usages beyond query and discovery.]

Attributes

· lowerBound [Quantity]: For numerical properties, the lower bound on the possible values of the property. An a priori characterisation. An a priori characterisation. Corresponds to the “Bounds” property in [3].

· upperBound [Quantity]: For numerical properties, the upper bound on the possible values of the property. An a priori characterisation. Corresponds to the “Bounds” property in [3].

· nominalValue [Quantity]: For numerical properties, a typical value a property is expected to take, basically the expected center of mass. An a priori characterisation. Corresponds to the “Location” property in [3].
[TBD, is this a useful concept to introduce in the current model as well?]

· min [Quantity]: For numerical properties, the minimum value of a property in a collection of objects.
· max [Quantity]: For numerical properties, the maximum value of a property in a collection of objects.

· mean [Quantity]: For numerical properties, the mean value of a property in a collection of objects.

· stdDev [Quantity]: For numerical properties, the standard deviation around the mean of a property in a collection of objects.

· … [TBD other statistics?]
References

· Property [Property]: The property of the object type that is being characterised.
4.11 SNAPSimulation extends SNAPExperiment
This class represents the basic simulations from which eventually all SNAP data products are derived. It extends SNAPExperiment by adding descriptions of the physical processes that were simulated.

Attributes

· executionTime [datetime]: The date/time at which the simulation was completed.

References

· simulator [SNAPSimulator]: The simulator that was used in this simulation. This reference overrides the protocol reference of SNAPExperiment, indicating that not any protocol can be added as a reference, but only a SNAPSimulator.
Collections

· physics [Physics]: The collection of physical processes modelled in this simulation.

4.12 SNAPSimulator extends SNAPProtocol
This class represents the simulation software that is used in a SNAPSimulation. We do not prescribe this model in great detail here [TBD should we?]. Some of the components currently placed in the definition of the SNAPSimulation more rightly belong in the definition of the Simulator, such as details on the physics that can be simulated, the objects the simulation can produce etc. The analysis/domain model document presents this part of the model in such a more normalised form.

Attributes

· code [anyURI]: link where the code can be downloaded, if available.
· version [string]: the version of the simulator code that was used.
4.13 Physics

This class represents physical processes that are taken into account by a simulation. These may correspond to equations of motion evolving the simulated system from one state to the next, but also specifications of parameters describing initial conditions belong her.
Attributes

· name [string]: Name by which this physical process is referred to in the simulator code.

· label [PhysicalProcess]: The name by which this process is (approximately) known in the IVOA ontology of physical processes.
Ex: gravity, hydrodynamics, cosmology

· astroJournalKeyword [AstroJournalSubjecty]: The name by which this process is (approximately) known in the list of subject keywords of the Astrophysical Journal, MNRAS and A&A (see Appendix B).

Collections

· algorithms [Algorithm]: indication how this physical process is implemented in the simulator.
If there is in general only one Algorithm required per Physics oject, we may consider putting the Algorithm.label attribute as an attribute on the Physics class and remove the Algorithm class.
Ex: (gravity) tree-PM, (hydrodynamics) AMR.
4.14 Algorithm

Represents the numerical algorithm representing a physical process in the simulator code.

Attributes

· label [OntologyObject]: Short name by which this implementation is known in the ontology of numerical implementations.
Ex: n-body, tree, amr, …
4.15 InputDataset

Associates a snapshot to a SNAPPostprocessing experiment. The associated snapshot is assumed to have been the target of the post-processing.
References

· snapshot [Snapshot]: The actual snapshot being post-processed.
4.16 SNAPPostProcessing extends SNAPExperiment
Represents a SNAPExperiment that acts on a pre-existing Snapshot to produce another Snapshot. In standard terminology this produces Level 1 data products (this is true whether the original Snapshot was a Level 0 products or already a Level 1 product).

Collections

· inputData [InputDataset]: The collection of association objects giving indicating which Snapshot(s) was used in the post-processing.
4.17 SubvolumeExtraction extends SNAPPostProcessing
Represents the extraction of a subvolume from an existing Snapshot.

4.18 Gridding extends SNAPPostProcessing
Represents the creation of a snapshot consisting of a regular (?) grid of cells with one or more observables from an existing Snapshot. The original Snapshot can be particle based, but also already a mesh.
4.19 GroupDetection extends SNAPPostProcessing
Represents the creation of a Snapshot consisting of a catalogues of groups of objects extracted form the input Snapshot. Those can be particles, but also grid cells.
4.20 Visualisation extends SNAPPostProcessing
Represents the creation of a 2-dimensional image-like representation of the universe from a three dimensional one. This can be done for example by projection, slicing. Any (set of) variables can be used. Important is (?) that the spatial dimensions are properly transferred to the new data product.

Note that this is not the same as applying a virtual telescope where some model is made of the photon streams/fluxes originating from the simulated object. It is merely a small representation of the underlying observables. In that sense the product is a representation of a part of the universe.
4.21 enumeration DataType

The values of this type are to be used in the definition of metadata fields such as Property and InputParameter. These data types correspond to actual types used in computation and data representation and are slightly different from the more abstract types in the domain model in [2].
They are clearly related to similar concepts as in the DataType defined in the XML schema for VOTable.

The values are:

· boolean

· complex

· datetime

· double

· float

· long

· rational

· short

· string

· …
4.22 datatype Quantity

A structured data type, indicating a numerical value and corresponding unit. The latter will require some standard dictionary for a uniform usage. This is here not modelled.

4.23 enumeration OntologyObject
Base data type for concepts that provide standard dictionaries created by the IVOA Semantics working group, for example in their ontology efforts. See also the links under [5] for lists of keywords.

4.24 enumeration UCD extends OntologyObject
Represents the IVOA UCD concept.

4.25 enumeration AstroObject extends OntologyObject
Represents a standard name for a an astronomical object type. Could be taken from the Semantic WG’s AstroObject ontology [5].

4.26 enumeration IdentifiedObject extends OntologyObject
Represents an identified object on the sky, for example “M32”, “Sun”. Should be taken from a standard list of such identifiers, for example Simbad (http://simbad.u-strasbg.fr/simbad/sim-fid) at CDS.

4.27 enumeration AstroJournalKeyword extends OntologyObject
Represents a keyword from the ApJ/MNRAS/A&A list of subject keywords as found for example in http://www.journals.uchicago.edu/ApJ/instruct.key.html .
4.28 enumeration PhysicalProcess extends OntologyObject
Represents a standard name referring to a physical process.

4.29 enumeration SNAPRepresentationObject extends OntologyObject
Represents a standard name for the objects that can be used to represent a snapshot of the universe in SNAP data products. Examples from simulations are “n-body particle”, “SPH particle”, “mesh cell”. But also simplified representations of astronomical objects could be used here, for example in halo catalogues or semi-analytical galaxy catalogues, both results of post-processing experiments.
5 Consequences of model for SNAP discovery and query
The model proposed in the previous section is intrinsically very hierarchical, in the sense that there are multiple layers of 1-many relationships between different classes. This implies that it is difficult to “flatten” the model into a single tabular structure without introducing a lot of redundancy. It is consequently also hard to conceive of a simple, one step query protocol similar to the other simple data access protocols. Those are HTTP GET requests, based on parameter-value(s) pairs, where the parameters can be predefined and named.
The problem for the current situation is caused by the heterogeneity of the simulated data products. In contrast to observational protocols, we have many more possible “observables” and can hardly assume a specific, useful subset to be available for all simulations and restrict the protocol to those.
The lack of pre-defined parameters and observables will require questions in to the existence of particular observables to be mixed in with questions for particular values for them. For example one can conceive of queries into simulations that simulate a galaxy cluster, which calculates temperatures for the intra-cluster gas and which produces gas with temperatures in a particular range.

In terms closer to the standard DAL language, a getCapabilities-like request as defined in SSAP [4] may be of relatively much greater importance, something already claimed for the old proposal for a Theoretical Spectrum Access Protocol [TBD get some reference to the latter].
An alternative to a query phase relying on a simple protocol like HTTP GET would be to provide a mapping of the model to a representation which allows more complex queries to be phrased. Obvious possibilities are SQL for a relational mapping and XQuery for an XML mapping. The former is slightly to be preferred for the moment as it also forms the basis for the query language under development in the VOQL working group.

Another possibility is to use a multi-stage query protocol, in which users can drill down into the datasets in subsequent queries. The support for such a protocol could still consist of individual HTTP (GET) requests, but the parameters will have to be more flexible. Such a protocol is most easily implemented through a web browser that allows browsing and navigating between different pages showing different aspects (views) of the model.

Independently of the resolution to this issue we will provide mappings to a relational model and an XML schema for the model in the next section.
6 Physical models, serialisations
This section defines serialisations of the SNAP data model introduced in section 4 that can be used in software contexts. In particular we provide an XML schema, a relational model in the form of table definitions, and a Java class library.
6.1 XML mapping
We use as much as possible a standardised mapping of the UML elements to XML schema elements, similar to what is proposed for example in http://www.ivoa.net/twiki/bin/view/IVOA/VOResource010RevNotes.
In summary

· Datatype-s without attributes are mapped to simpleType.
· Enumeration is mapped to a simpleType with enumeration components for the corresponding enumerated values.
· Datatypes with attributes are mapped to a complexType without an ID attribute.
· Class is mapped to complexType.
Every such complexType gets an attribute of type xsd:ID.
· Class Attribute is mapped to a contained element (not an attribute!) of the appropriate simpleType, in the complexType definition for the Class.
· Composition is mapped to element of appropriate complexType and with multiplicity (minOccurs/maxOccurs) corresponding to the one in the model, in the complexType of the parent. The name of the element is derived from the name of the AssociationEnd (possibly turned to the singular if the composition is plural).
· Reference is mapped to an element of type IDREF if the referenced instance will always also exist in the same document, otherwise to an element of type xsd:anyURI. This URI should be an IVOA-Identifier. The name of the element is the name of the opposite AssociationEnd. The minOccurs/maxOccurs is derived from the multiplicity in the model.
· Inheritance of Class-es is mapped to an XML schema extension.
Subsetting of AssociationEnds can not be modeled using extension. This were possible in restrictions, however restriction can not be extended and are therefore in general not useful for complexType.
The schema is distributed over two or more documents. One of these defines all the types as described above. The others define the valid documents in a particular application context, by listing root-elements that can be used.
In the case one wants to always list complete objects, these root elements will correspond to all the concrete (i.e. non-abstract) classes at the upper level in the containment hierarchies. In other cases, for example where only parts of documents are required, single snapshots for example, not all, a different choice can be made. This is TBD.
6.2 Relational mapping
The mapping from the UML model to a relational schema is based on typical object-relational mapping methods (see for example [TBD add reference(s)]).

In summary

· Class is mapped to a table.

· Attributes are mapped to columns (possible multiple ones in case the attribute’s Datatype has attributes).

· Composition is mapped to a foreign key of the child element to its parent.

· Reference is mapped to foreign key from the referrer to the referred table.

· Inheritance is incorporated by
· either adding a child table which contains only columns corresponding to the subclass and must have a primary key column which is at the same time a foreign key to the “base class” table;
· or by incorporating in the ultimate base table all the columns added by the subclasses. An extra column named “class” is added which stores the actual class of the contained object.

The actual relational schema for the model is defined in [TBD].
References

…
[1] IVOA Registry WG: Resource Metadata for the Virtual Observatory http://www.ivoa.net/Documents/latest/RM.html .

[2] Simulation domain model document at http://www.ivoa.net/internal/IVOA/IVOATheorySimulationDatamodel/SimulationDomainModel.doc
[3] IVOA Characterisation data model …

[4] IVOA SSAP protocol …
[5] IVOA Semantics WG: Ontology of Astronomical Objects http://www.ivoa.net/internal/IVOA/IvoaSemantics/WD_2007-02-19.pdf . See also http://www.journals.uchicago.edu/ApJ/instruct.key.html.,
http://www.ivoa.net/internal/IVOA/IvoaUCD/VO-standard-vocabulary_8.pdf
Appendix A: Simulation packages, data formats, post-processing and analysis services

Table 1: A listing of major simulations packages available online. SNAP should support results from (most of) these simulations. See also http://bima.astro.umd.edu/nemo/#others
	Simulation packages
	Type

	Data format(s)
	Services available

	Gadget

http://www.mpa-garching.mpg.de/galform/gadget/index.shtml

	NB, SPH
	Gadget-1

Gadget-2

HDF-5
	Splotch

	
	
	
	Smac

	
	
	
	Cut-out

	Flash

http://flash.uchicago.edu/website/home/
	AMR
	HDF5 (HDF4)
	

	Enzo

http://www.cosmos.ucsd.edu/enzo/
	AMR
	HDF5
	- 2D projections

- Peakfinder

-Hop Halo finder

- Radial profiles calculation

	Nemo

http://bima.astro.umd.edu/nemo/ (many usefule links!)

http://www.astro.umd.edu/nemo/tvo/teuben-iau208.ps
	Various (“all”)
	
	Contains lots of simulation packages

	Zeus

http://jhpc.ucsd.edu/ZEUS-2/
	
	
	

	Ramses

http://www-dapnia.cea.fr/Phocea/Vie_des_labos/Ast/ast_sstechnique.php?id_ast=904
	AMR
	
	

	Joshua A. Barnes tree code

http://www.ifa.hawaii.edu/~barnes/software.html
	NB
	
	

	Sverre Aarseth’s code

http://www.ast.cam.ac.uk/~sverre/web/pages/nbody.htm
	
	
	

	Parallel Programming Laboratory

http://charm.cs.uiuc.edu/research/cosmology/
	
	
	

	Pluto

http://plutocode.to.astro.it/
	AMR
	
	Jet simulations

	Fly

http://www.ct.astro.it/fly/
	Tree N-body
	binary
	Cosmological simulations

	CactusCode

http://www.cactuscode.org/
	AMR
	HDF5
	Multi-pourposes package

	Starlab (Piet Hut and collaborators)

http://www.ids.ias.edu/~starlab/
	
	
	Collisional dynamics

	The Art of Computational Science

(Piet Hut, June Makino)

http://www.artcompsci.org/

http://www.artcompsci.org/kali/vol/acs_data_format/title.html (data format)
	
	ACS Data Format

self-describing datafiles

	

	GRAPE

http://astrogrape.org/
	NB
	
	

	NBODY6++

http://www.ari.uni-heidelberg.de/mitarbeiter/spurzem/index.html#f3
	
	
	

	Cloudy

http://www.nublado.org/
	PDR code

SNAP???
	
	

	
	
	
	

Table 2: "Standard" data formats used by major siSTarclmulation packages, and others interesting standard formats.
	Data format “name”
	Characteristics
	Documentation/links

	Gadget-1
	
	

	Gadget-2
	
	http://www.mpa-garching.mpg.de/gadget/users-guide.pdf

Section 6.

	HDF-5
	Metadata included, advanced support functions
	http://hdf.ncsa.uiuc.edu/HDF5/

	Tipsy
	
	http://bima.astro.umd.edu/nemo/tipsy/tipsy.html

	VOTable
	XML
	http://www.ivoa.net/Documents/latest/VOT.html

	FITS
	Astronomy standard
	http://fits.gsfc.nasa.gov/

	ACS Data Format
	
	http://www.artcompsci.org/kali/vol/acs_data_format/title.html

	
	
	

Table 3: A list of existing analysis/visualisation packages/tools taht can serve as example for SNAP services (in case we extends these beyond simple sub-volume extraction).

	Visualisation/analysis package
	Supported data formats
	Comments

	VisIVO

http://visivo.cineca.it/
	HDF5, FITS, VOTables, ascii tables, raw binaries, Gadget2 (type 1 and 2)
	Can read data from VizieR Web service

	Tipsy

http://www-hpcc.astro.washington.edu/tools/tipsy/tipsy.html
http://bima.astro.umd.edu/nemo/tipsy/tipsy.html
http://hubble.sourceforge.net/
	Tipsy,

Gadget2? (Klaus Dolag priv comm.)
	

	CAPGADGET

http://www.geocities.com/capgadget/
	Gadget 1.1
	

	Splotch

http://dipastro.pd.astro.it/~cosmo/Splotch/
	Gadget2
	

	Smac

(see http://www.g-vo.org/hydrosims/)
	Gadget2
	

	Jacques (based on IDL)

http://cosmos.ucsd.edu/~tabel/Jacques/
	HDF5
	For Enzo data

	VISIT

http://www.llnl.gov/visit/
	ALL
	Visualization tool

	Minkowski

http://www.cosmunix.de/buchert_software.html
	
	Calculating geometry and topology of mass distribution

	P3D (Andrey Kravtsov)

http://astro.uchicago.edu/~andrey/soft/
	
	fortran routines for plotting and manipulating 3D particle distributions with PGPLOT

	Starcluster
http://starcluster.org/
	“…native Starlab "dyn" format, or a much simpler columnar ASCII format.”
	“StarCluster is a collection of tools and libraries for the analysis of data produced by N-body simulations of star clusters and related dense stellar systems”

	
	
	

	
	
	

	
	
	

Table 4: Level-1 simulations codes, i.e. codes that use results of other simulations to produce new results, but in contrast to "pure" analysis services add new physics.
	Level-1 simulation packages
	Comment
	Data products

	L-galaxies (not public)
	Semi analytical galaxy formation from MPA, Garching.
	Galaxy catalogues.

	GalForm (not public)
	Semi analytical galaxy formation from Durham.
	Galaxy catalogues.

	CRASH

http://www.arcetri.astro.it/science/cosmology/crash.html
	Radiative transfer through pre-calculated density field form numerical simulation
	Field with gas ionisation and other properties

	
	
	

	
	
	

	
	
	

Appendix B XML schema mapping

Appendix C Relational mapping
� We actually interviewed astronomers along these lines and their answers are incorporated in these examples and the resulting model.

� Peter Teuben’s examples …

� NB: pure gravitational n-body; SPH: smooth-particle hydrodynamics; UM: uniform mesh; AMR: adaptive mesh refinement; O: other.

